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Deep learning

e Neural networks are function approximators trained to optimize an objective
o Parameters or weights trained by gradient descent

e Hugely successful in recent years, has revolutionized many domains

Speech recognition

Speech synthesis

Machine translation

Image recognition / segmentation

Agents

m Playing games: Go, Chess, Atari
m self-driving cars

e Capable of modelling complex data
o Long range, subtle patterns, with redundancy, needing generalization
o Structure of the network gives inductive bias to certain kinds of modelling
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Why machine learning
for protein structure modelling

e A complex problem

e Hard to model all the complex interactions in a long molecule
o Local and long-range dependencies

e There is data thanks to experimental structure techniques
o 146,000 PDB entries

o highly redundant, not the scale of many problems
m 10s of millions of utterances for speech
m 15 million labelled images in ImageNet

e CASP assessment provides a benchmark with well-defined goals
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Where have we applied machine learning in CASP13?

e Torsion prediction
o End-to-end training:
m {Sequence, MSA features} — torsions
o As a generative model from which we can draw
samples
o Based on DRAW’, a Variational Auto Encoder model
o Used for fragment generation

v: Features

x: Cos/Sin
angles
e Scoring
o Score a decoy by predicting the GDT distribution GDT
m {Distance map, contact prediction, MSA features} —
score
e Residue distance prediction
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*DRAW: A Recurrent Neural Network For Image Generation K.Gregor, |. Danihelka, A. Graves, D. J. Rezende, D. Wierstra arxiv.ora/abs/1502.04623



https://arxiv.org/search/cs?searchtype=author&query=Gregor%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Danihelka%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Graves%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Rezende%2C+D+J
https://arxiv.org/search/cs?searchtype=author&query=Wierstra%2C+D
http://arxiv.org/abs/1502.04623

Predicting inter-residue distances

e Much focus in recent years on predicting residue contacts T0955 Native
o Contacts provide a strong constraint on non-sequence-local
structure
o DCA, CCMPred, MetaPSICov, Raptor-X, ...
o Explosion in sequencing expands multiple sequence
alignments and coevolution data
e Previous work has predicted distances, or contacts with .- ¥
various thresholds | B R
e Distances are predictable not just from N s
coevolutionary contact information
o Local propagation of distance constraints
o Secondary structure interactions
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Deep distance distribution network

e Train a large 2-dimensional dilated residual convolutional

network to predict CB atom distances 014-

o Foreachi,j pair, output is a softmax probability distribution ;..
Well-calibrated

Train to cross-entropy objective

40 0.5A bins from 2-22A (later 64 bins)
Distance histograms — “distograms”

We predict the highly-correlated distance marginals, "
not a joint distribution . | Il
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e 2-dimensional throughout Bidtanse, Angstn
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Input features

4 Residual network blocks with NxN representations
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Data
e PDB 2018-03-15/ Uniclust30 2017-10
e Train on 29,400 CATH (2018-03-16) s_35 cluster
representatives
e MSA features e.g.

o  HHBIits and PSIBLAST profiles

o 2D features from Potts model fit in TensorFlow
m FrobeniusnormLxLx1 :
m Raw parameters L x L x 22 x 22

o  No Mutual Information

TQ953s2-1128_s32
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Repeat 1D features,
tiling in x and y then ! 150-
concatenate with 2D features
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Dilated convolutions

e Dilated convolutions skip pixels
o Allow wide receptive fields with few parameters and low computation

Dilation 1: 3x3

e Propagate long range dependencies ]
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Residual network

1 residual block

Modifies a 64x64x128
representation from
the previous block
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Project down

,  64dim

Batch norm

v
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3x3 dilated

!

Batch norm

v
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Project up

128 dim

Repeat 220 times, cycling through
dilations 1, 2, 4, 8

NxN
o Input features
21 million parameters

Residual network blocks

N x N
Distance predictions
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Cropping

e Handling arbitrary protein length L leads to O(L?) memory usage i

o Consistent size helps distributed training
e Train on all 64x64 crops from proteins
o Random offset
o Including up to 32 residues off-edge
e Foracrop (i, i+63)x(j, j+63) j
o  Crop corresponding 2D input features
o Tile corresponding (i, i+63) and (j, j+63) 1D parameters
o  Still allows modelling long range correlations fromito j

e Helps avoid overfitting
o Data augmentation
o Each protein leads to many different training examples
e Ensembling:
o Attest time weighted average across alternative offsets
o Also average across 4 slightly different models
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True distance

True contacts’
Distograms for T0O955 residue 29

T0955 example

TBM/FM 88.4GDT

Residue 29 true contacts
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Helix

Auxiliary losses

e We know the contact map encodes secondary structure

o  Adistance network should be good at predicting it el .....i

e Auxiliary loss of secondary structure from 1D reductions
for both (i, i+63) and (j, j+63) -
o Ensembled across all 2D crops
e Q3 Accuracy on CASP11 ~84%

[ Predicting secondary structure improves contact prediction
Two N x 8 secondary structure predictions

NxN
Input features

N x N x40
Distance predictions
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Auxiliary losses: torsions

e Forrepeated gradient descent, we need torsion predictions
o From 1D reduction also predict a joint (phi, psi) Ramachandran probability
distribution for each residue (10 degree bins)
o Again marginal distributions
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Distogram performance on contact metrics

e Sum probability mass below 8 Angstrom
e Roughly a 4% gain when data was refreshed from pre-CASP12 to latest

CASP12 FM (27 domains)

L long

Single model 50.7%

4-model ensemble 52.3%

Without MSA features 13.6%

Reference model 3.8%
(no AA-type, is_glycine only)
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Precisions
Set Domains L/1long+A L/2long +A
FM 31 447 +0.0 57.9 +0.1
Both 43 48.5 62.0

F scores

Set Domains L/1long+A  L/2long+A
FM 31 41.9 +0.8 36.9 +0.7
TBM/FM 12 55.1+3.4 48.7 +3.4
Both 43 45.6 40.2
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CASP13 contact accuracies

L/1 medium
39.6
441
40.8

L/5long
22.7
31.4
25.1

L/2 medium L/1 short L/2 short
58.8 32.3 52.2
65.5 41.9 63.7
60.7 35.0 55.4

L/1T medium L/2 medium L/5 medium

49.4 56.5 47.3
56.4 62.4 47.0
51.4 58.1 47.2
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GDT vs Long range contact accuracy
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Conclusions

What worked well?

e Deep learning!
e Distance prediction
o  Gives greater contact prediction accuracy
o s aricher source of information than contact prediction
o Constructing a potential, with a reference that uses the whole distribution is very
valuable

e Crops are effective for modelling even long-range contacts
e Avoiding domain segmentation

What doesn’t work well?

e With few or no alignments accuracy is much worse
e T0961-D1 (-35 GDT, TBM Easy), T0966-D1 (-37.8, TBM Hard)
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