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The residue-residue contacts information is essential in the protein structure prediction task. A
comprehensive protein structure prediction algorithm was developed by integrating contact-driven
modeling, template-based modeling, and protein model assessment methods. The prediction of the
residue-residue distances and orientations of contact-driven modeling was formulated into a data-
driven, dense prediction problem and a deep CNN model equipped with attention modules was
used for this purpose. Then, trRosetta was used to generate a set of candidate protein structures
and re-ranked them using a 3D CNN model for quality assessment.

Methods
Both the template-based and template-free approaches were considered in our framework. Given

a query protein sequence, CSI-BLAST! and SAM? were used to search against the protein
templates database, if homologous structural templates were found, the pairwise query-template

sequence alignments and the template structures would be fed into Modeller? to build the protein
structural models. In parallel to the template-based modeling approach, the template-free approach
was also proposed, which utilized a novel contact-driven deep neuron network to predict the
protein structure from scratch: 1) Multiple alignments were generated for the query protein

sequence by searching against different protein sequence databases (e.g. Uniclust30% and

UniRef90° ) through a combination of the HH-suite and HMMER programs6. 2) A novel deep
learning model was used to take the multiple alignments as input and produce multiple contact

7

predictions map, 3) the contact map was fed into trRosetta’ to build structural models.
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Figure 1.Pipeline of iPhord

For contact map prediction, the input features derived from the multiple sequence
alignment (MSA) result were cropped and then fed to the deep neural network to predict four
objectives: one distance histogram and three angle histograms. A high-resolution segmentation
network was used to maintain high-resolution representations by connecting high-to-low
resolution convolutions in parallel. After the backbone, four independent paths were branched out
with each path consisting of two convolutions to predict four objectives.

Both the template-based models and/or template-free models were added into a model pool
for model ranking. To construct the ranking method, a 3D-grid box centered by the CA atom of
each residue was used to extract local features. These features were fed to a 3DCNN model to

predict the quality of the local structure. The 3DCNN model adopted an I3D-like3
based on Inception v1°. The global score was calculated by averaging the values of local scores.

The top-5 scored conformations were further refined by CHARMM! . The refined structures and
the original structures were mixed up and rescored, among which the final submitted model was
selected by considering both CHARMM energy and the global score.

architecture

1. Biegert,A., Soding,J. (2009). Sequence context-specific profiles for homology searching. Proc
Natl Acad Sci U S A. 106, 3770-3775.

2. Hughey,R., Krogh,A. (1995). SAM: SEQUENCE ALIGNMENT AND MODELING
SOFTWARE SYSTEM. University of California at Santa Cruz.
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We have previously developed a single model quality assessment method using 3DCNNI1, but its
performance was insufficient because it used only atom type features. Therefore, we added profile-
based features, those are also used in other methods, to improve the performance.

Methods

The previous MQA method using 3DCNN! (Sato-3DCNN) utilized only 14 atom-type features.
This study aims to improve performance adding profile-based features. As profile-based features,
we used the Position-Specific Scoring Matrix (PSSM), the predicted secondary structure
(predicted SS) and the predicted relative solvent accessibility (predicted RSA). We used exactly
the same method as the Sato-3DCNN methods except for the addition of profile-based features.
We used CASP 7-10 for training dataset, as in Sato-3DCNN.

We use PSSM as evolutionary information. PSSM was generated using PSI-BLAST?
against Uniref90 database (downloaded April, 2019) with 2-iteration. PSSM was normalized and
used as features. We also use predicted local structure as features, and actual local structure of a
model structure is not used because it is considered to be observable using 3DCNN. Predicted SS
and predicted RSA are used as predicted local structure. SS is predicted from the sequence profile
using SSpro®. SSpro predict SS into 3 classes, therefore we use predicted SS in the form of 3
dimensional one-hot vector. RSA is predicted from the sequence profile using ACCpro20°. We
normalized predicted RSA and used as a feature. PSSM, predicted SS and predicted RSA are all
residue level features, but we assign them to all atoms that make up the residues.

Availability
This method is available on our website at http://www.cb.cs.titech.ac.jp/p3cmga .

1. Sato, R. and Ishida, T. (2019). Protein model accuracy estimation based on local structure
quality assessment using 3D convolutional neural network. Plos One, 14, €0221347.

2. Altschul, S. F., Madden, T. L., Schéiffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman,
D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic acids research, 25, 3389-3402.

3. Magnan, C. N. and Baldi, P. (2014). SSpro/ACCpro 5: Almost perfect prediction of protein
secondary structure and relative solvent accessibility using profiles, machine learning and
structural similarity. Bioinformatics, 30, 2592-2597.
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Recent advances in deep convolution neural network and language modelling open up many
opportunities to improve residue contacts prediction. In this work, we propose LateFuse methods
which leverage the representation of sequence and alignment features. In our methods, the queried
protein sequence is transformed into an embedding vector using self-supervised language
modeling. The embedding vector is transformed into an embedding correlation map then combined
with co-variance MSA features for contact prediction using the convolution neural network with
residual architecture.

Methods

Embedding feature: In our method, the pre-trained language model provided by TAPE! is
leveraged as an additional input feature. First, the embedding vector of a protein sequence is

obtained using the pre-trained Transformer model provided by TAPE!. The Transformer model is
trained using Pfam dataset which contains over 30 million protein sequences. The pre-train task is
predicting the masked token in the input protein sequence. Then the pairwise product is performed
on the embedding vector. This results in the correlation map between each position of the
embedding vector. The pipeline is shown in Figure 1. The correlation map is expected to provide
the correlation between tokens in protein sequence over the embedded space. Then the embedding
correlation map is fed into the convolution neural network together MSA co-variance features.

The MSA- covariance feature is fed into residual blocks, which results in a 64XLXL feature
map. Then the result feature maps are concatenated with the embedding correlation map along the
channel axis. The result feature maps are fed into a batch normalization, ReLU activation, and 3X
3 convolution layer which transforms the feature maps dimension into 1{LXL. Finally, a sigmoid
activation is used to predict the probability of residue-residue contact. The second approach is
illustrated in Figure 2.
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Pretrain step using self-supervised language modeling
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Figure 1: The process of constructing the embedding correlation map from a protein sequence.
First, the embedding vector with the dimension of Lx768 of the protein input sequence is obtained
using the pre-trained Transformer language model. L is the protein sequence length. Then the
embedding vector is pairwise multiplied with its transposed vector to form the embedding
correlation map with size LxL.

Embedding
correlation map
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Figure 2: The model architecture of LateFuse.

1. Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., Abbeel,P., Song, Y.S.:
Evaluating Protein Transfer Learning with TAPE. In: Advances inNeural Information

Processing Systems (2019).
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We participated in CASP14 tertiary structure prediction as human group “AILON”, with our

newly developed cmFinderl, which uses artificial intelligence-based protein structure prediction
methodology via contact map-based searching for similar protein folds. The proposed cmFinder
algorithm focuses on template-based modeling (TBM). Due to the difficulty in searching similar
fold templates, however, the accuracy of TBM decrease when the target sequence has no fold

identity within the known protein fold database. We applied another structure prediction method

that resembles DISTFOLDz, which is used for free-modeling (FM), given predicted secondary
structure and distance map information.

Methods
Our tertiary structure prediction consists of the following steps (Figure 1).
Step 1: sequence analysis: Given a target protein

sequence, our method first used HHblits to produce a multiple ‘
sequence alignment (MSA), and XtalPred to search homolog’s Secondary
templates, structural disordered regions and conserved domains. structure

Step 2: secondary structure and contact map prediction c Ontait Map r——

Secondary structure predicted by PSIPRED and SPIDER3. | sequence

Contact maps (where a contact is a distance of 8 A or less between dmModeler cmFinder :
C-beta atoms) predicted by DeepECA, SPOT-Contact, DNCON2 (FM) (TBM)
and MapPred.

Step 3: emFinder or dmModeler: cmFinder, which aims

to construct structural models by searching same fold in the
contact map database, and dmModeler, which aims to generate

structural models by CNS suite with distance restrains. buiing
Step 4: structural model building and refinement. 1f the

target protein has the same fold as the templates’ structure, Model

selected on the basis of cmFinder results, it can be easily built and

refined with the COOT program. If not, models built by |

dmModeler need to be validated by structural biology and protein

functional domain knowledge. Figure 1. AILON pipeline for CASP14

19



Results

At the present date, several TS targets are released on PDB. Our submitted prediction models
compared favorably with released structures. We calculated the TM-score and RMSD of the best
of five models for the released structures (Table 1 and Figure 2).

TS | fedioted released ™ | RMsp TS
target ID | P (A) 9

score ;
model |structure image

T1024 | modelO1 6T1Z 0.8407 2.715

T1026 | model02 | 6S44 0.6957 1.567

T1030 | model01 | 6POO | 0.5607 5.401

T1046S1 | model03 | 6PX4_A | 0.6918 1.847

T1046S2 | model02 | 6PX4_B | 0.6235 3.752

Table 1. Structural comparision of AILON
predictied structural model and released PDB

T1049 | model02 | 6YAF | 06733 & 2.434 structure.

Figure 2. RNAP substructures’ prediction
results. Each color shown form TS1031 to
TS1043 targets.

T1056 | modelO1 6YJ1 0.578 2.572

T1064 | modelo4 | 7JT1 | 02351  10.725 ,
c A\
s ’l
T1099 | model02 = 6YGH | 04935  6.190 %‘&
Availability

cmFinder is being prepared for publication. Upon publication, its standalone executable version
would be accessible as an appended material, and the source code will be available soon.
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We have tested our updated AIR! to use multiple energy functions as multi-objectives to refine the
protein structure model. For each target, we use 3 initial models as the input particles to AIR. We
collect 20 refined models from GalaxyRefine2? and 10 from refineD>. Then, the top two models
of the 20 prediction models ranked by Pcons* software, as well as the initial model provided by
the CASP server are used as the original models. From these three initial templates, we give each
of them some random perturbation, resulting in a total of 50 different particles.

In the refinement iterations, by analyzing the challenge cases in CASP13, we adopt a wake-
up mechanism to modify the definition of dominance so that the high-quality models can be saved
to the Pareto set during the refinement iterations. Furthermore, we also tried a decomposition-
based method, which decomposes the multi-objective optimization into a set of subproblems and
optimizes them in a collaborative manner. Our local experiments show that it is a promising way
in dealing with complicated Pareto set shapes. After enough iteration times, we clustered the
structures from the pareto set using TM-score® program, and the top 5 models will be chosen from
the Pareto set using clustering and knee® algorithm.

1. Wang, D., Geng, L., Zhao, Y. J., Yang, Y., Huang, Y., Zhang, Y., & Shen, H. B. (2020). Artificial
intelligence-based multi-objective optimization protocol for protein structure refinement.
Bioinformatics, 36(2), 437-448.

2. Lee, G. R., Won, J., Heo, L., & Seok, C. (2019). GalaxyRefine2: simultaneous refinement of
inaccurate local regions and overall protein structure. Nucleic Acids Research, 47(W1), W451-
W455.

3. Bhattacharya, D. (2019). refineD: improved protein structure refinement using machine learning
based restrained relaxation. Bioinformatics, 35(18), 3320-3328.

4. Wallner, B., & Elofsson, A. (2006). Identification of correct regions in protein models using
structural, alignment, and consensus information. Protein Science, 15(4), 900-913.

5. Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure
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In the CASP14 experiment, we deployed AlphaFold 2. This new system uses a different deep
learning method than CASP13 AlphaFold, and it produces much more accurate protein structures
and estimates of model accuracy. The training data for the system is publicly available and similar
to that used for CASP13 AlphaFold.

Methods

Input data: Given a query sequence, we obtain related sequences by searching three
databases: UniRef90!, BFD??, and MGnify clusters*. JackHMMER? is used to search UniRef90
and MGnify clusters while HHblits®’ is used to search BFD. Additionally, potential templates are
found using HHsearch®’ on the PDB70 clustering of the Protein Data Bank® provided by the
So6ding lab. No server predictions are used.

Folding: The input sequence, multiple sequence alignment, and template hits are used as
inputs for the deep learning-based method that produces a variety of predictions including
distances, torsions, atom coordinates, and estimates of the per-residue value of the Ca-IDDT®.

We found that existing deep-learning architectures overly favor sequence-local interactions
and do not sufficiently account for global structural constraints. To remedy this, we have
developed a novel, attention-based deep learning architecture to achieve self-consistent structure
prediction. We also allow the deep learning algorithm to attend arbitrarily over the full MSA
instead of using pairwise co-evolution features like mutual information or pseudolikelihood,
allowing the algorithm to ignore irrelevant sequences as well as to extract much richer information
from the MSA. The resulting algorithm shows vastly improved performance, especially for
shallow MSA depths, when compared to traditional co-evolution methods.

22



The predicted structures are ranked according to the predicted value of the Ca-IDDT. All
deep learning models were trained using publicly-available structures in the PDB.

Refinement: Each prediction is relaxed using restrained gradient descent on the Amber
ff99SB force field!® using OpenMM!'!. Empirically, the RMSD of the structure change during
relaxation is small.

Manual interventions: Domains arising from H1044: We first folded four subsequences
individually using crops of the full chain MSAs then re-folded the full chain using these structures
as templates. The submitted domains were cropped out of this full-chain folding. We improved
our models during the competition so that we can now fold 2000+ amino acid chains accurately
without manual intervention.

T1064: Five additional sequences were added to the MSA using a manual search with
NCBI’s Protein BLAST tool'? and a wider range of models was used before ranking.

Additional targets: For several targets, the five models produced were very similar, and we
sometimes used older or differently-trained models in positions 3, 4, or 5 to increase diversity. E.g.
on target T1024, templates were clustered into 3 classes to provide more diverse predictions in the
last three positions.
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AngleQA: protein single-model quality assessment based on torsion angles
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Protein structure quality assessment (QA) plays important role in analysis of protein structure. It
is one of open problems in structural bioinformatics. Here we proposed a single-model quality
assessment model angleQA. The proposed method was build using the full connected neural
network technology and the model was optimized both TM-scores and GDT-TS scores. It can score
the global quality of input model.

Methods

The proposed method was training on the all single domain targets from CASP7-10, and all targets

from CASP11 and CASP12. The model was validated on all targets from the stage 2 of CASP13.
The new method angleQA, fused the following features, (1) The energy scores from

dDFIREl, RWplus2 and Sbord>. (2) The similarity scores of solvent accessibility and secondary
structure and torsion angles. (3)The energy function scores based on the torsion angles and solvent

accessibility predicted from SPOTID?, (4)The evolutionary scores from the positive specific score

matrix and outputs from HHblits". (5) contact score, gap score and align length from mapAlign6.

Results
We postpone the assessment of the approach until the official release of CASP14 results.

Availability
The proposed method, angleQA is depend on SPOTI1D framework. The angleQA package is
available at www.biomath.cn
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regions with secondary structures. Proteins: Structure, Function, and Bioinformatics, 72(2),
793-803.
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AP_1 structure predictions in CASP14

Hyung-Rae Kim!'
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The goal of AP 1 is single chain protein structure scoring and combines our refinement protocol.
AP 1 employs several characteristics, such as database search and structure retrieval without
calculating pair-wise potentials and without building a fixed form potential.

Methods
The goal of AP _1 is to accurately score not only the topology of a protein structure, but also the
side-chain positions of the high-accuracy template-based models.

Our structure prediction pipeline consists of the following steps:
1. Five of the best models were picked using AP 1 from all submitted server models of CASP14.
2. Five of the best models were picked and used as the seed model for our refinement protocol.
3. Subsequently, five generated models were added to the seed models.
4. We applied AP_1 again to the above candidate models and selected the five best models to
submit.

In CASP14, we submitted 390 models for 78 TS regular targets.

Availability

A new AP 1 is being prepared. Its standalone executable version would be accessible as an
appended material, once published.
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In this CASP, we used three different approaches to generate oligomer structures based on
predicted oligomer interactions from MSAs and templates. We took a template-based approach
when targets had proper oligomer templates detected by HHsearch. If no oligomer templates were
found, we took either ab initio docking or simultaneous fold-and-dock approach depending on the
quality of predicted homo-oligomer contacts from MSAs.

Methods

Co-evolution based oligomeric inter-residue interaction prediction. For each subunit,
MSAs were generated by running HHblits' against UniRef/Uniclust database and metagenomic
sequence database. For homo-oligomer targets, both GREMLIN? and the in-house deep learning
based homo-oligomer contact prediction method were used to predict inter-chain contacts from
given MSAs. For hetero-oligomer targets, inter-chain contacts were predicted with GREMLIN and
trRosetta® based on the paired alignments*. Predicted inter-chain contacts were utilized as restraint
energies to guide overall sampling and to pick final models.

Template-based approach: HHsearch® and TM-align® were used to detect oligomer
templates based on not only sequence similarity but also structure similarity to the subunit
structures predicted by trRosetta. Up to five oligomer templates were selected according to the
HHsearch ranks among the hits having structures similar to the given subunit structure (TM-score
> (.5) and in the given oligomer state. Rosetta hybridization protocol” was used to build oligomer
structures based on the given subunit structures and the detected templates. In the hybridization
protocol, unreliable local regions were rebuilt by inserting fragments and recombining the
secondary structure segments between templates. The overall structures were further refined using
FastRelax in Rosetta. The inter-chain restraints from predicted contacts were applied during the
model building process as well as the intra-chain restraints driven from trRosetta. The entire
process was symmetry aware for homo-oligomer targets. Total 500 structures were sampled by
running independent template-based modeling protocol, and 5 models having lowest Rosetta
energy with inter-chain contact restraints were selected after clustering.

Docking-based approach: When there were no proper oligomer templates and no predicted
contacts with high confidence for the target protein, oligomer structures were predicted using ab
initio docking with subunit structures predicted by trRosetta. SymDock® was employed to predict
symmetric homo-oligomer structures, while ZDOCK?® and RosettaDock'® were used for hetero-
oligomer targets. Top 50 models after clustering were further refined by FastRelax in Rosetta, and
5 models having lowest Rosetta energy were selected after clustering.

Simultaneous fold-and-dock approach with direct gradient-based optimization: Small
local inaccuracy at the interface can hinder generating correct oligomer structures with ab initio
docking. Moreover, as proteins interact with other proteins, their lowest free-energy backbone
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conformations typically shift in response to their partners, and it is really hard to predict using
typical docking after folding approach. To overcome these limitations, we developed simultaneous
fold-and-dock approaches consisting of two stages of sampling. In the first low-resolution stage,
the oligomer conformation is sampled by alternating gradient-based folding and low-resolution
docking starting from a conformation with randomly assigned backbone torsion angles. During the
gradient-based folding, the conformation is minimized against Rosetta centroid energy function
with intra-chain restraints derived from trRosetta and inter-chain restraints derived from predicted
contacts. During the low-resolution docking, Motif Dock Score!® with inter-chain restraints is used
to optimize orientation between subunits. In the second stage, side chains are built into the
backbone conformations, and small rigid-body perturbations followed by all-atom relaxations are
performed to further refine overall complex structures. For homo-oligomer targets, symmetry is
considered during the entire process. We took this simultaneous fold-and-dock approach when
there were no proper oligomer templates, but inter-chain contacts were predicted with high
confidence based on MSAs.
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residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci.
U.S.A. 110, 16674-16679.

3. Yang,lJ., Anishchenko,l., Park,H., Peng,Z., Ovchinnikov,S. & Baker,D. (2020). Improved
protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. U.
S.A. 117, 1496-1503.

4. Ovchinnikov,S., Kamisetty,H. & Baker,D. (2014). Robust and accurate prediction of residue—
residue interactions across protein interfaces using evolutionary information. Elife 3, €02030.

5. Soding,J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics

21, 951-960.

6. Zhang,Y. & Skolnick,J. (2005). TM-align: a protein structure alignment algorithm based on
the TM-score. Nucleic Acids Res. 33, 2302-23009.

7. Song,Y., DiMaio,F., Wang,R.Y.R., Kim,D.E., Miles,C., Brunette,T.J., Thompson,J. & Baker,D.
(2013). High-resolution comparative modeling with RosettaCM. Structure 21, 1735-1742.

8. Andre,l., Bradley,P., Wang,C. & Baker,D. (2007). Prediction of the structure of symmetrical

protein assemblies. Proc. Natl. Acad. Sci. U.S.A. 104, 17656-17661.

9. Chen,R., LiL. & Weng,Z. (2003). ZDOCK: An Initial-stage Protein Docking Algorithm.
Proteins 52, 80-87.

10. Marze,N.A., Burman,R.S.S., Sheffler,W. & Gray,J.J. (2018). Efficient flexible backbone

protein—protein docking for challenging targets. Bioinformatics 34, 3461-3469.

29



BAKER-ROSETTASERVER, BAKER (TS)
Protein structure prediction guided by predicted inter-residue geometries

Ivan Anishchenko!, Minkyung Baek!, Hahnbeom Park!, Justas Dauparas', Naozumi Hiranuma!,
Sanaa Mansoor!, Ian Humphrey', and David Baker!'-?

'~ Department of Biochemistry and Institute for Protein Design, University of Washington, WA, US4,
2 - Howard Hughes Medical Institute
dabaker@uw.edu

Key: Auto:Y; CASP serv:N; Templ:Y; MSA:Y;, Fragm:Y; Cont:N; Dist:Y; Tors:N; DeepL:Y;
EMA:Y; MD:Y

For this CASP round, we developed an automated modeling pipeline where the primary driving
force for model building are residue-residue geometry constraints derived from coevolutionary
data as well as from top scoring structural templates by deep learning. Human BAKER group TS
submissions were additionally refined using the protocol outlined in ‘BAKER, BAKER-
experimental (Refinement)’ abstract.

Methods

Sequence and template searches: Multiple sequence alignments (MSAs) for the target
sequences were generated by several rounds of iterative hhblits search against the Uniclust30
database (Jan 2020 version) with gradually relaxed e-value cutoffs as outlined in'. For human
BAKER group predictions, the resulting MSAs were manually inspected to fine-tune the e-value
and coverage cutoffs and enriched with metagenomic sequences®. In either case, the generated
MSAs were then used to search for putative structural templates in the PDB by hhsearch.

Predicting residue-residue geometries and model building: To predict residue-residue
geometries, we employed two variants of the trRosetta network with the one relying on sequence
data only (original trRosetta') and the other additionally using the information on the top 25
putative structural homologs as identified by hhsearch (modified trRosetta®). Two corresponding
pools of structure models were then generated using the t7Rosetta folding protocol. To recombine
the two sets of models, we developed a new network, called t7Refine, which takes the outputs of
the above two networks as well as 2D-projected top scoring structure models from both pools and
their residue-pairwise Cp-Cp distance errors predicted by DeepAccNet-MSA* as inputs and
generates the refined predictions for residue-residue geometries. Based on these trRefine
predictions, the new pool of structure models was created by the trRosetta folding protocol.

Model refinement and selection: For BAKER-ROSETTASERVER, the #rRefine-derived

models were re-scored using DeepAccNet-MSA (see ‘BAKER-ROSETTASERVER, BAKER-
experimental (EMA)’ abstract for details), and three best scoring ones were picked for submissions
1-3. Submissions 4 and 5 were the top models from the original (MSA only) and modified
(MSA-+templates) trRosetta networks respectively. For human TS predictions, trRefine models
were additionally refined using the standard Rosetta all-atom refinement protocol* complemented
by DeepAccNet-MSA predictions (see ‘BAKER, BAKER-experimental (Refinement)’ abstract
for details).
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Deep learning (DL) has been successfully used in numerous methods that aim to estimate accuracy
of modeled protein structures. Recently, we developed a novel deep learning framework
(DeepAccNet!) that estimates per-residue accuracy (Cp local distance difference test; Cy 1-DDT)
and residue-residue distance signed error (histogram of error; estogram) of modeled protein
structures. In this CASP, we applied DeepAccNet and the variant of DeepAccNet (named
DeepAccNet-MSA) to the EMA category. The predictions of DeepAccNet were submitted for
“BAKER-experimental” group while those of DeepAccNet-MSA were submitted for “BAKER-
ROSETTASERVER” group.

Methods

We sought to develop model accuracy predictors that provide both global and local information.
We developed network architectures that simultaneously make the following three types of
predictions given a protein structure model: local measures of structure accuracy measured by per
residue Cp local distance difference test (I-DDT)? scores, a native Cy contact map thresholded at
15 A (referred to as mask), and per residue-pair distributions of signed Cp-Cj distance error against
corresponding native structures (referred to as estograms; histogram of errors); Cq is taken for
GLY. Rather than predicting single error values for each pair of positions, we instead predict
histograms of errors (analogous to the distance histograms employed in the structure prediction
networks of>#), which provide more detailed information about the distributions of possible
structures and better represent the uncertainties inherent to error prediction.

DeepAccNet: The predictions of DeepAccNet are based on 1D, 2D, and 3D features that
reflect accuracy at different levels. Defects in high resolution atomic packing are captured by 3D
convolution operations performed on 3D atomic grids around each residue defined in a rotationally
invariant local frame, similar to the Ornate method®. 2D features are defined for all residue pairs,
and they include Rosetta inter-residue interaction terms, which further report on the details of the
interatomic interactions, while residue-residue distance and angular orientation features provide
lower resolution structural information. At the 1D per residue level, the features are the amino acid
sequence, backbone torsion angles, and the Rosetta intra-residue energy terms. The network
architecture is based on the ResNet architecture!.

DeepAccNet-MSA: We also trained a predictor that additionally takes in predictions from
trRosetta, which give indirect access to the information from multiple sequence alignment. The
trRosettta predictions are included as additional 2D features.
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Both networks were trained on approximately one million alternative structures (“decoys")

with model quality ranging from 50% to 90% in GDT-TS (global distance test - tertiary structure)®
generated by homology modeling’, trRosetta®, and native structure perturbation.

Availability
The code is available through github at https://github.com/hiranumn/DeepAccNet.
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structure  refinement guided by deep learning based accuracy estimation.
doi:10.1101/2020.07.17.209643.
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Deep learning (DL) has been successfully applied in the last CASP to infer residue-pair distances
from sequence co-evolutionary information to guide de novo protein structure predictions. In this
CASP, we sought to apply DL to protein refinement problems by guiding search using predicted
errors in model structures.

Methods

We developed a deep learning framework (DeepAccNet) that estimates per-residue accuracy in I-
DDT and residue-residue distance signed error in protein models and uses these predictions to
guide Rosetta protein structure refinement!. The network uses 3D convolutions to evaluate local
atomic environments followed by 2D convolutions to provide their global contexts, and
outperforms other methods that similarly predict the accuracy of protein structure models
without template or evolutionary information (details can be found in BAKER-EMA abstract).
We made two refinement protocols integrating variants of DeepAccNet.

All-atom protocol : We integrated “DeepAccNet-MSA” into our standard Rosetta
refinement protocol® and used it i) for the final stage refinement of trRosetta® models in human
regular category predictions as well as ii) for refinement category predictions. DeepAccNet-
MSA is a variant that takes the trRosetta network prediction as an additional input for MSA
information. In both categories the models resulting from the protocol are submitted for the
“BAKER” group. DeepAccNet-MSA is incorporated into every iteration in the refinement
protocol at three levels. Estograms (histograms of residue-pair distance errors) were converted to
residue-residue interaction potentials, which were added to the Rosetta energy function as
restraints to guide sampling. Second, the per-residue 1-DDT predictions were used to decide
which regions to intensively sample or to recombine with other models. Third, global I-DDT
prediction was used as the objective function during the selection stages of the evolutionary
algorithm and to control the model diversity in the pool during iteration.

Coarse-grained protocol: We experimented with another refinement protocol with more
direct DL-guided conformational search using a coarse-grained variant of DeepAccNet. This
network variant, called DeepAccNet-cen, uses a coarse-grained local atomic environment
(instead of all-atomic) for efficiency. The network replaces the Rosetta centroid energy function
at the Monte Carlo search using fragment insertion and/or partial chunk rigid-body movements.
We used this DL-guided sampler as the basic unit in a simple evolutionary algorithm in which
total ~100 MC trajectories are sampled from 10 structures at every 5 iterations. The final models
are further refined by a rapid all-atom refinement protocol and are submitted as models for the
group “BAKER-experiment”.
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Availability
The all-atom protocol is available through github (https://github.com/hiranumn/DeepAccNet)
under “modeling” directory.
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2. Hiranuma, N.,Park, H., Anishchanka, 1., Baek, M., Baker, D. (2020). Improved protein
structure refinement guided by deep learning based accuracy estimation, bioRxiv, doi:
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S.A., 117, 1496-1503.
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The construction, optimization and docking of protein models remains challenging. All require
extensive sampling of the high dimensional conformational space, which is intractable with
methods based on exhaustive enumeration of all possible solutions. Moreover, the exact
contributions of the two recognized mechanisms for protein-protein complex formation,
‘conformational selection’ and ‘induced fit’, are not known for any specific interaction. In order to
address these problems, we have developed a series of heuristic methods based on Particle Swarm
Optimization (PSO).

Methods
Our general methodology for protein fold construction and docking can be described as follows:

i) Fold construction using our automatic server 3D-Jigsaw-SL: The protocol first
searches for homologous sequences to the query sequence using HHBits' against a sequence
profile database of known structures clustered at 70% sequence identity. A linear ab initio
polypeptide corresponding to the query sequence is constructed, taking into account the bond
lengths, angles and torsion angles accordingly to identified homologous fragments. All the coil
regions that are not matched with a structural template are automatically adjusted in torsion angle
space. The central core of the algorithm is a constricted PSO?, which searches for a minimal Dfire?
statistical pair potential energy. When distance information was available, either from PSICOV*
or from discontinuous templates, a hookean force was applied as a distance restraint mechanism.
Two strategies were applied for folding the structures, the first one adjusts all the torsion angles
between all the fragments at once, whereas the second one adjusts the torsion of each linker region
(i.e. regions between fragments from templates) one at a time, starting from the N-terminal. The
latter technique is computationally more expensive; however, it achieves to generate structures
with a smaller radius of gyration (i.e. the structures are more globular). This property allows to
generate better, i.e. biophysically sound, models. Finally, the top 10 ranking models from 100
replicates of the algorithm at 10000 iterations (according to Dfire) are then minimized with
CHARMM? (version 22) and the top structure, identified as having the best CHARMM energy
after minimization, is selected for subsequent submission to our protein docking server,
SwarmDock. For each section of a protein model different templates might have been chosen;
therefore, relating models to single templates is not always possible with this methodology.

ii) Docking using SwarmDock: For the modelling of all protein complexes we used a
modification to our binary protein-docking algorithm SwarmDock®. Our method uses the
principles of PSO to search the parameter docking space. The innovations added to our automated
binary server is, for homo-oligomers, to treat each particle within the swarm as an instance of a
packed homo-oligomer, constrained by the appropriate symmetry operators. The objective is to
optimize the particle space in order to find the most energetically favorable homo-oligomer.
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Particles move through a multi-parameter space by the optimization of two sets of parameters:
orientations and translations of each monomeric unit relative to the imposed symmetry and linear
combinations of normal modes that adjust the conformation of each monomer, in the presence of
the other monomers, in this simultaneous docking process. For hetero-oligomeric structures we
employed our standard SwarmDock (https://bmm.crick.ac.uk/~svc-bmm-swarmdock) protocol®.
This docking methodology isn’t template based. Moreover, additional information, such as
potential sequence conservation at the protein-protein interface, was not considered. The ranking
of docked poses was obtained using our ‘democratic’ scoring system, as previously described’. To
an extent, we considered both the principle of ‘conformational selection’ and ‘induced fit’ in our
docking procedure. Conformational selection, by using a variety of starting protein
conformations®, obtained either by our own protein modelling server, 3D-Jigsaw-SL, or protein
models taken from the CASP14 server tar file. Induced fit, is considered too since small
adjustments are made in both the backbones and side-chains of the interacting proteins upon
docking via the employment of our PSO procedure.

Availability
Our automated binary protein-protein docking server, SwarmDock, can be located at:
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
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We participated in the CASP14 tertiary structure prediction experiment as a human group
"Bhattacharya", which is the result of a system integration of our recently published quality
estimation and refinement methods with our newly developed unpublished works in low-
homology threading and de novo modeling.

Methods

Our pipeline exploited model selection from the CASP server pool using a combination of our
newly developed distance-based deep-learning-powered single-model method QDeep' and our
rapid multi-model structural consensus approach clustQ?. It also employed our newly developed
unpublished modeling protocols by hybridizing distance- and contact-based hierarchical de novo
modeling and threading. For each of the top selected models, we independently generated a pool
of 100 refined models using our recently published refineD® method and ranked them using the
method’s internal scoring scheme to submit five top-ranked models.

1. Shuvo MH, Bhattacharya S, Bhattacharya D. QDeep: distance-based protein model quality
estimation by residue-level ensemble error classifications using stacked deep residual neural
networks. Proceedings of the International Conference on Intelligent Systems for Molecular
Biology (ISMB). 2020; Bioinformatics 2020; 36(S1): 1285-1291.

2. Alapati R, Bhattacharya D. clustQ: Efficient Protein Decoy Clustering Using Superposition-
free Weighted Internal Distance Comparisons. Proceedings of the ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB).

2018, pp. 307-314.
3. Bhattacharya D. refineD: improved protein structure refinement using machine learning-based
restrained relaxation. Bioinformatics 2019; 35(18): 3320-3328.
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We participated in the CASP14 accuracy estimation category as a server group "Bhattacharya-
QDeep" to test our newly developed distance-based deep-learning-powered single-model method
QDeep'. We also tested a variant of the original QDeep method by separately participating as a
server group "Bhattacharya-QDeepU". Additionally, we participated as a server group
"Bhattacharya-Server" to test our rapid multi-model structural consensus approach clustQ?.

Methods

QDeep method!, tested in "Bhattacharya-QDeep" server, utilizes an ensemble of four deep residual
neural network (ResNet)* classifiers to estimate the likelihood of residue-level C, errors of a model
at four different error thresholds of 1, 2, 4, and 8A. Each of the four ResNet classifiers was
independently trained using sequence- and structure-derived features that include distance map
similarities. Ensemble averaging of the error likelihoods was then used for estimating the local and
global accuracy scores. In "Bhattacharya-QDeepU", we tested a variation of the original QDeep
method retrained using multiple sequence alignments generated by merging sequences from
whole-genome sequence databases with metagenome database.

In "Bhattacharya-Server", we tested our multi-model structural consensus approach clustQ?, which
performs superposition-free weighted internal distance comparisons to rapidly compute the
average pairwise similarity of a model with respect to other models in the model pool for
estimating its global accuracy score.

Availability
QDeep is freely available at https://github.com/Bhattacharya-Lab/QDeep/.
clustQ is freely available at http://watson.cse.eng.auburn.edu/clustQ/.

1. Shuvo MH, Bhattacharya S, Bhattacharya D. QDeep: distance-based protein model quality
estimation by residue-level ensemble error classifications using stacked deep residual neural
networks. Proceedings of the International Conference on Intelligent Systems for Molecular
Biology (ISMB). 2020; Bioinformatics 2020; 36(S1): 1285-1291.

2. Alapati R, Bhattacharya D. clustQ: Efficient Protein Decoy Clustering Using Superposition-
free Weighted Internal Distance Comparisons. Proceedings of the ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB).

2018, pp. 307-314.

39



Bhattacharya, Bhattacharya-Server
Protein structure refinement by Bhattacharya groups in CASP14
Md Hossain Shuvo' and Debswapna Bhattacharya'-?

!Department of Computer Science and Software Engineering and *Department of Biological Sciences, Auburn
University, Auburn, AL 36849, USA.
bhattacharyad@auburn.edu

Key: Auto:Y; CASP serv:N; Templ:N; MSA:Y; Fragm:N,; Cont:Y; Dist:Y; Tors:Y; DeepL.Y;
EMA:Y; MD:N

We participated in CASP14 refinement experiment both as a human group "Bhattacharya" to test
our newly developed unpublished refinement protocol, and as a server group "Bhattacharya-
Server" to test our recently-published structure refinement method refineD.

Methods

Our newly developed unpublished refinement protocol tested in "Bhattacharya" human group
starts by estimating residue-level C, errors of the starting structure at four different error thresholds
of 0.5, 1, 2, and 4A, predicted using an ensemble of four deep residual neural network (ResNet)?
classifiers trained on sequence- and structure-derived features®. These residue-level C errors are
subsequently converted to multi-resolution restraints to be integrated with Rosetta’s all-atom
energy function* as additional scoring terms during structure refinement. A pool of 300 refined
models was generated per target by iteratively employing Rosetta’s FastRelax protocol’. We then
combined the error estimation from the ensemble of deep ResNets to score the refined structures
in conjunction with our rapid multi-model structural consensus approach clustQ°® for selecting five
refined models per target for submission.

In "Bhattacharya-Server", we tested our published refineD! protocol by generating 100 refined
models per target and then selecting five refined models for submission following the above
scoring strategy.

Availability
refineD is freely available at http://watson.cse.eng.auburn.edu/refineD/.

1. Bhattacharya D. refineD: improved protein structure refinement using machine learning-based
restrained relaxation. Bioinformatics 2019, 35(18): 3320-3328.

2. HeK, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770-
778.

3. Shuvo MH, Bhattacharya S, Bhattacharya D. QDeep: distance-based protein model quality
estimation by residue-level ensemble error classifications using stacked deep residual neural
networks. Proceedings of the International Conference on Intelligent Systems for Molecular
Biology (ISMB). 2020, Bioinformatics 2020; 36(S1): i285-i291.

4. Alford RF, Leaver-Fay A, Jeliazkov JR, et al. The Rosetta all-atom energy function for
macromolecular modeling and design. J Chem Theory Comput 2017, 13: 3031-3048.

5. Khatib F, Cooper S, Tyka MD, et al. Algorithm discovery by protein folding game players.
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The relationship between protein structure and protein function is close and brought together under

the light of evolution!. Evolution tend to preserve energetically-favourable interactions between
selected protein residues that play an important role in the function or structure (or both) of
proteins. Thus, there is a certain degree of coevolution between those residues on the all members

that belong to the same protein ’family2 . We recently developed a novel approach named RADI,
for Reduced Alphabet Direct Information, that uses a modified version of the direct-coupling
analysis (DCA) algorithm and allows for fast computation of direct information values.
Coevolving residues are used to drive and restraint the folding of the sequence into a three-
dimensional (3D) structure. Along with this information we also used a library of super-secondary
structure motifs, named sMotifs, derived from our loop structure database ArchDB14. Our

algorithm ArchDBMap3 is use to retrieve the sMotifs best matching a query sequence that will
ultimately use as templated to model the 3D structure.

Methods
We used the following approach to model the structures of protein based on DI contact prediction
and sMotifs:

1. We map the secondary structure predicted with SABLE4 on the sequence of the target
and predict the type of super-secondary structures defined as sMotifs and classified in ArchDB14.

2. The sequence of the proteins is then used to compute the DI and select for each alphabet
the top 40 pairs of residues with the higher correlation.

3. The structure of sMotifs aligned to the target sequence are used as templates for
homology modelling with MODELLERS . We add distance restraints between the pair of amino
acids selected, constrain the secondary structure predicted with SABLE and generate 1000
structural models that are subsequently clustered and scored.

4. The protocol to run MODELLER is as follows:

a) we use as templates the structures of the predicted sMotifs

b) apply constraints at 8A using a Gaussian potential on the C 8-C S atoms of the selected

residue-pairs with highest correlation
c) we force the type of secondary structure as mapped by the prediction of secondary structure.
5. Finally, we rank the models with DOPE6 and cluster them by similar structure, evaluate
the quality of the models with Prosa20037 and select the best scored structures.
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If the search performed with ArchDBMap was to throw no results, the sMotifs were replace by a
single template built using the build_sequence function integrated in MODELLER.

Availability
RADI is available at: https://github.com/structuralbioinformatics/RADI
ArchDBMap is available at: https://github.com/structuralbioinformatics/archdbmap
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. Bonet, J., Planas-Iglesias, J., Garcia-Garcia, J., Marin-LOpez, M. A., Fernandez-Fuentes, N., &
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The identification of coevolved residue pairs in protein sequences is widely used to help the
prediction of three-dimensional (3D) structure in proteins'. Besides functional implication often
pairs of coevolved residues inform of the 3D closeness and thus it can be used to guide structural
prediction of proteins in the form of distance restraints?. Direct-coupling analysis (DCA) is used
currently to identify such pairs of residues but at a high computational cost®. We recently developed
a novel computational approach named RADI, for Reduced Alphabet Direct Information which
present novel ideas to improve the speed of calculation of direct information values*. By using a
simplified alphabet, i.e. grouping amino acids with similar physicochemical properties, RADI
achieved can achieved a reduction of the computational without loss of accuracy as proved on a
benchmark set. We have now applied RADI on a blind test using the sequences submitted to
CASP14 under residue-residue contact prediction section. Overall, we provided prediction for 66
submitted targets.

Methods
The protocol followed to computed DI values from RADI as follow:

1. Generation of multiple-sequence alignments (MSAs): MSAs were created using the
script “buildmsa.py” included in the RADI Git repository. First, the script builds a profile of the
query searching for similar sequences in the uniref50 database with MMseqs2°. Next, it uses the
query profile to find more sequence relatives in the uniref100 database. Then, the script builds a
MSA of the query and the identified sequences (up to 100,000) with FAMSAS. Finally, it removes
the columns of the MSA with insertions in the query. Note that MMseqs2 is executed with options
“-s 7.5” and “--max-seq-id 1.0” for a more sensitive search.

2. Secondary structure prediction: The secondary structures were predicted using
SABLE’ and a 3-state alphabet, namely: helix (H), beta(E) and coil (C).

3. Calculation of DI values. The calculation of DI values was done using the original DCA
algorithm as implemented in RADI utilizing four different alphabets, namely RAO, RA1, RA2,
and RA3 (for more information on the method please refer to original publication®.)

(1) RAO stand for an alphabet of size ¢ = 21 (i.e. 20 different amino acids plus the gap)
(11) RAL1 has a ¢ =9 represented by Positively charged: {Arg, His, Lys}. Negatively charged:

{Asp, Glu}. Polars: {Ser, Thr, Asn, GIn}. Aliphatics: {Ala, Ile, Leu, Met, Val}. Aromatics:

{Phe, Trp, Tyr}. Single groups: {Cys}, {Gly}, {Pro} and the gap;

(1i1) RAZ2 has a q = 5 represented by Polar: {Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys}.

Non-polar: {Ala, Ile, Leu, Met, Val, Phe, Trp, Tyr}. Single groups: {Gly}, {Pro} and the

gap; and
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(iv) RA3 has a q = 3 represented by Polar: {Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys,

Gly}. Non-polar: {Ala, Ile, Leu, Met, Val, Phe, Trp, Tyr, Pro}. Single groups: gap

For each of the alphabet, i.e. RA{0-3} DI values are acquire for pair of amino acid
belonging to two different secondary structures, i.e. pairs of residues within same secondary
structure were not considered.

4. Selection and submission of top DI values. The DI values were normalized using a
max-min normalization assuming 1 for the top DI value a 0 for the lowest.

Availability
RADI is available at: https://github.com/structuralbioinformatics/RADI
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Many scoring methods have been proposed to assess the quality of protein fold models'”.
Knowledge-based potentials are scoring functions derived from the analysis of empirical data’
often used to evaluate the quality of models of a protein structure using the frequencies of residue-
residue contacts per distance. Several computational methods have been implemented from
knowledge-based potentials!*® . Split-Statistical Potentials (SPs) are knowledge-based potentials
that consider the frequency of pairs of residues in contact and include their structural environment,
such as solvent accessibility and type of secondary structure. Previously, we demonstrated that
SPs can be used to: (i) identify near-native protein decoys in structure prediction!®; and (ii) rank
protein-protein docking poses'!. The scoring of the quality of a protein structure using the Split-
Statistical Potentials is available in an online server (SPserver).

Methods

Scoring: Scores are calculated using the description of a potential of mean force with the
frequencies of residue-residue contacts per distance. Residue-residue contacts need to consider the
amino acids type, the distance between them, and environmental features such as the type of
secondary structure or the degree of exposure of the amino acids. The SPServer has 6 types of SPs
available that differ on the environmental features considered for the contact definition. We use
one of them defined as PAIR, which considers solely amino acid frequencies along distances'’.
The score is defined by the description of a potential of mean force (PMF). Then we define the
PMF potentials as in equations 1:

P(a,b | dap)

PMFPAIR(CI, b) = —kBT lOg (m) (eq 1)

With kg the Boltzmann constant, T the standard temperature (300K) and das the distance between
both residues. The terms P(:) denote the probabilities of observing interacting pairs (with or
without conditions). For instance, P(a,b|dab) is the conditional probability that residues a,b interact
at distance smaller than or equal to dab, and P(dap) is the probability of finding any pair of residues
interacting at distance smaller than or equal to dab. The score PAIR is calculated as:

AIR = Y4, PMFpyr(a, b) (eq. 2)

Input: As input, users have to provide the structures of one or more proteins or protein
complexes. The server input is flexible; users can provide either PDB structures, mmCIF files or
compressed directories containing the structures to analyze.

Output for protein folds: For a set of protein folds, the SPServer outputs: (i) the global
scores (raw and normalized) of PAIR; and (ii) the scoring profile per residue (local scores) along
the protein sequence (by summing all the interactions specific for one residue). Global scores
account for the overall quality of structural models, while per-residue score plots pinpoint
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problematic regions of the models that likely have either a wrong conformation or contacts with a
wrongly modelled region. The normalization of the scores is obtained as a Z-score with respect to
the scores of 1000 random sequences folded with the same structure.

Availability
The program is available in http://sbi.upf.edu/spserver/. The user can use one or several proteins
as input and analyze both global and local scores.
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Our fully automated server uses a dense deep neural net to predict whether a residue pair in a
protein sequence will be in contact in the folded protein. This classifier is run for each residue pair
combination in the sequence to determine the set of contact pairs.

Methods

Our server makes use of a deep learning model that was trained on a data featurization of a subset
of the atomic coordinate data available from PDB (https://www.wwpdb.org/). For a residue pair
to be considered in contact (in both the training data as well as runtime predictions), the distance
needs to be less than 8 angstroms between the CB atoms in the two residues, except for Glycine,
where the CA atom is used.

The model is a dense DNN that’s 4 layers deep and consists of about 120K input
parameters. The protein files from PDB that were used to create the training data were scoped to
only protein files that:
= Are internally consistent (that is, where the SEQRES and the ATOMs sections are consistent)
= Were determined by X-ray diffraction
= Were <= 1700 residues in length (since that’s what the model can support)
= Don’t contain nucleotides

We didn’t have time to train with all such PDB protein files that met that criteria, but rather
a smaller fraction of them. Model training continued during the competition, and the model version
used for CASP14 predictions was updated periodically.

Predictions were ranked by the score the model assigned to each, ranging from 0 (least
likely) to 1 (most likely). Contact pairs with a score >= .5 were reported as predicted contact pairs.

The architecture of the DNN is as follows:
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DNN Architecture Diagram
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The feature inputs are as follows:
1) Index of the first amino acid being examined for being in contact.
2) Index of the second amino acid being examined for being in contact.
3) Inverse of the distance between the amino acids being examined, measured in the amino acid
count between them in the chain.
4-1701) (1698 categorical features) - An enum value representing which kind of amino acid is at
that position. If it's 0, then that position is padded. If it's 21, that represents a break between
chains. 1 through 20 represent the 20 different kinds of amino acids. If there are fewer than
1699 residues before the first residue being examined, the residues will be on the right, and the
values on the left will be padded (i.e. zeros).
1702) (Categorical feature) - An enum value representing which kind of amino acid the first
residue being checked for being in contact is.
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1703-3400) (1698 categorical features) - An enum value representing which kind of amino acid
is at that position. Ifit's 0, then that position is padded. Ifit's 21, that represents a break between
chains. 1 through 20 represent the 20 different kinds of amino acids. If there are fewer than
1698 residues between the two residues being examined, the residues will be on the left, and the
values on the right will be padded (i.e. zeros).

3401) (Categorical feature) - An enum value representing which kind of amino acid the second
residue being checked for being in contact is.

3402-5099) (1698 categorical features) - An enum value representing which kind of amino acid
is at that position. Ifit's 0, then that position is padded. Ifit's 21, that represents a break between
chains. 1 through 20 represent the 20 different kinds of amino acids. If there are fewer than
1698 residues after the second residue being examined, the residues will be on the left, and the
values on the right will be padded (i.e. zeros).

NOTE - Each categorical feature is input to the neural net as a one-hot vector. For padding
amino acids, that one-hot vector is all zeros.
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We tested our new pipeline that uses manual intervention for all Human Prediction targets in CASP
14. This has been a collaborative research project since the amount of computational resources on
our main server is limited and most contributors for this project are currently enrolled in
undergraduate programs. We blindly tested different modeling tools and prediction ranking
methods, but the general procedure of this pipeline stays roughly the same. Our pipeline utilized
contact prediction and deep learning techniques for model ranking, which demonstrated powerful
potential in the previous CASP !. In particular, the protein decoy pool is generated from both our
own de novo prediction method as well as server predictions from CASP participants. The highest-
ranking predictions are automatically refined and submitted by our server. Manual intervention is
used in the process of executing scripts, reviewing and modifying final predictions, and assembly
of large proteins that our servers cannot handle. In a few instances where our server could not meet
expiration deadlines, we hand-picked CASP-hosted server predictions and predictions from our
own de novo prediction method based on our prior knowledge about CASP and basic
understanding of protein structures.

Methods

Step 1, the tools MetaPSICOV2 2, CCMpred *, and FreeContact * were used to make
contact prediction from the protein sequence, and PSIPRED 3 was used to predict the secondary
structure from the protein sequence.

Step 2, secondary structure prediction and contact prediction from the previous step were
used in Unicon3D ¢ for de novo protein structure predictions. Predictions were submitted online
and collected by humans to send to the main server for quality assessment. CASP-hosted server
predictions were also collected by the main server for quality assessment.

Step 3, de novo predictions (in-house tool) and CASP-hosted server predictions (“server”
pool) were scored and ranked in their separate pools by a quality assessment tool. For the majority
of CASP, the deep learning tools DeepQA 7 and QDeep ® were used for this step. We also generated
2-5 structure predictions using DMPfold ° and added them to our pool for model selection.
DeepMSA !° using the UniClust30 !'!, UniRef90 '?, and MetaClust50 !* databases, generated
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multiple sequence alignments (MSA) for input to QDeep. We have also experimented with Ornate
14" AngularQA '°, TopQA !© and another in-house tool that uses a novel approach that we refer to
as a “hierarchical structure” machine learning technique for model selection.

Step 4, after the protein model quality assessment, our pipeline automatically selects the
top-3 highest scoring predictions from the server pool and the top-2 highest scoring predictions
from our own in-house de novo predictions. For the server pool, if more than one prediction comes
from the same group, then only the highest-scoring prediction from that group is chosen. The
pipeline skips down the ranked list until it finds a new group to which it selects the next model
from and proceeds until 3 total predictions have been selected from the server pool.

Step 5, once the final 5 predictions have been selected in the previous step, we refine those
models using a tool called ModRefiner !7. For a number of CASP 14 targets, the highest-ranking
prediction from the server pool is selected as the reference structure for refining the other four
predictions (the highest-ranking prediction would therefore be refined with itself as reference). We
have also experimented with refining each prediction with itself as reference to see how it affects
prediction accuracy and to limit the amount of changes made to the original pre-refined structure.

Step 6, the final five structure predictions are automatically submitted after the refinement
step before each expiration date. If there is enough time before the submission deadline, human
intervention is used by reviewing the final predictions in Chimera '® and deciding whether any
predictions need to be replaced. If so, then a different prediction from the server pool is selected,
refined (like in the previous step), and submitted to replace one of predictions that were
automatically submitted by the main server. Due to uncertainties in blindly testing QDeep and our
in-house tool, we decided partway through CASP 14 that predictions from Zhang-Server TSI ¥
will always replace the second-highest ranking model from our pool (thus meaning that 4 of our
predictions come from CASP-hosted server predictions, and only 1 from our own pool). If Zhang-
Server TSI was already among the top-3 in step 4, then the second-highest ranking model from
our pool was used or a different prediction was hand-selected to replace it.

For large sequences containing sub-units (name starting with an “H” instead of a “T”),
structures were either predicted using an in-house ab initio tool, or human intervention was used
to assemble the protein by hand. DMPfold predictions were also sometimes used. The sub-units
used for manual assembly were first selected as described in the steps above, and then put together
in Chimera. Contact predictions produced by DeepMSA and predictions made by the in-house ab
initio and DMPfold were sometimes used as reference for the manually assembled structure
prediction. Predictions made by the tools listed here did not go through a refinement step, but the
individual subunits selected by the QA tool were.

Availability
The software of our method is not ready for publishing yet, if you want to download the software,
please contact Dr. Cao (caora@plu.edu) for the updates.

1. Hou,J., Wu, T., Cao, R. & Cheng, J. (2019). Protein tertiary structure modeling driven by deep
learning and contact distance prediction in CASP13. Proteins 87, 1165—-1178

2. Buchan, D.W.A. & Jones, D.T. (2018). Improved protein contact predictions with the
MetaPSICOV?2 server in CASP12. Proteins 86 Suppl 1, 78-83
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Quality Assessment (QA) plays an important role in protein structure prediction. Traditional
multimodel QA method usually suffers from searching databases or comparing with other models
when making predictions, which usually fail when the poor quality models dominate the model
pool. We propose a novel protein single-model QA method AngularQA ! which is built on a new
representation that converts raw atom information into a series of carbon-alpha (Ca) atoms with
side-chain information, defined by their dihedral angles and bond lengths to the prior residue. An
LSTM network is used to predict the quality by treating each amino acid as a time-step and
consider the nal value returned by the LSTM cells. To the best of our knowledge, this is the first
time anyone has attempted to use an LSTM model on the QA problem; furthermore, we use a new
representation which has not been studied for QA. In addition to angles, we utilize sequence
properties like secondary structure parsed from protein structure at each time-step without using
any database, which is different from all existing QA methods. Our experiment points out new
directions for QA problems and our method could be widely used for protein structure prediction
problems.

Methods

For the initial data preparation part, all data used in training our LSTM network comes from
3DRobot decoys 2 and CASP 9, 10, and 11 *. These have 92,535, 36,083, 15,901, and 14,193
models respectively from which we draw for training. Validation occurs on the CASP12, of which
we use 6,790 models across 40 targets >. We begin by filtering all the models. During this process
we verify the residue sequences in the predicted structures line up correctly with the native
structure, and throw out any predicted models with gaps in the center. In addition, We throw out
any models for which we do not have the native structure. After filtering, we are left with a total
of 128,439 models with 121,875 training models and 6564 validation models.

After that, we calculate the angles and bond lengths along the backbone and side-chain as
was described by UniCon3D*. The result is a sequence of angle and bond length information
provided for each residue following along the carbon backbone. In addition, we also calculate the
proximity counts, which are also calculated by counting the number of Ca atoms within a set radius
of each residue’s Co atom. We perform this calculation for all radii in the discrete range [SA, 15A].
Moreover, the secondary structure is parsed by the program, DSSP, but no secondary structure
prediction is used in our method, which is different from a lot of traditional QA methods ¢'2. The
machine learning technique is applied to train a LSTM network on the processed feature vectors,
and each LSTM cell uses a hyperbolic tangent activation with a hard sigmoid recurrent activation.

Figure 1 demonstrates the flowchart of our AngularQA method.
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Figure 1. Flowchart of AngularQA method

Availability
The software is freely available at GitHub: https://github.com/caorenzhi/AngularQA.
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CAO-SERVER(Accuracy Estimation)

TopQA: a topological representation for single-model protein quality assessment with
machine learning
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Correctly predicting the complex three-dimensional structure of a protein from its sequence would
allow for a superior understanding of the function of specific proteins with many applications. We
propose a novel method, TopQA 1, which is aimed to tackle a crucial step in the protein prediction
problem: assessing the quality of generated predictions. Our method, to the best of our knowledge,
is the first type of method to analyse the topology of the predicted structure. We found that our
new representation provided accurate information regarding the location of the protein's backbone.
Using this information, we implemented a novel algorithm based on convolutional neural networks
(CNN) to predict GDT TS score for given protein models.

Methods

First, we prepared the training datasets for developing TopQA. We used a total of 176
target proteins from the CASP10 and CASPI11 datasets (These can be found at:
http://predictioncenter.org/download area/), including 15,901 CASP10 models and 14,139
CASPI11 models. Each protein structure model is in PDB format, and provides a standard
representation for macromolecular structure data. Traditional methods 2—8 normally use the 3D
structure of protein models (in PDB format) directly with help of other properties of the protein
sequence, but no method has tried to modify the representation of the 3D structure model. We
proposed a new representation of the 3D structure model and used that for training machine
learning models.

Second, we created our new representation for each PDB file. The 3D coordinates of each
carbon alpha atom were extracted, and the whole topology of this structure was kept while we
scale the structure into a cube with size 1. In addition, this representation systematically mapped
the mass of each carbon alpha atom in the backbone of the protein model to a three-dimensional
space in the cube. This 1x1x1 cube can be scaled to any size, although for our model we generally
used a 52x52x52 (see the results section for more information regarding varying dimensions).
Finally, rotations were applied to this new representation to generate a robust model. With this
approach, we were able to map each model numerous times, viewing the model from a slightly
different angle each time. Normally, it’s very costly to apply rotation to the model, but one rotation
of each model in our model representation only takes a second and would be used in our final
representation. Once we formatted the PDB files into this representation, we were left with a 3-
dimensional matrix in which every value represented the mass of a single atom in the protein's
backbone (several of these values were zero, as the matrix included the empty space of the cube
surrounding the protein structure as well as the empty space encapsulated by the structure)
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Finally, after transforming the pdb files into our new topologically-based representation,
we trained a convolutional neural network (CNN) model. This CNN was made of two
convolutional layers, a single pooling layer as well as two dense layers. The CNN was an
appealing choice of machine learning method as it lends itself to images and matrices quite well °.
We have also considered other types of machine learning methods such as an SVM, but found that
CNN performed the best in our experiments. Figure 1 shows the overall flowchart of our method.

The initial
model,
generated from
a PDB file

' From PDB to 3D matrix

0
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CNN outputs . . . .
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Figure 1. Flowchart of TopQA method
Availability

The software is freely available at GitHub: https://github.com/caorenzhi/TopQA.
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In CASP 14, we blindly tested our new de novo protein structure prediction pipeline. Instead of
randomly sampling protein conformation space, this method uses stepwise fragment sampling as
it is more efficient and accurate 2. Contact information is also incorporated in our pipeline, as
contact prediction played an important role in structure modeling in the recent CASP experiments
376 Finally, deep learning techniques are used for selecting 5 models as the final prediction of our
method 7.

Methods

Step 1, contact prediction is made for each protein sequence. We used the latest version of
MetaPSICOV2 ? to make contact prediction from the input protein sequence. We would like to
mention that MetaPSICOV2 may fail occasionally, in this case, we use the alternative contact
prediction from CCMpred and FreeContact %°.

Step 2, after the contact prediction was done, a request was sent to all connected computers
for united-residue conformational search via stepwise and probabilistic sampling with the help of
Unicon3D tool!. The secondary structure prediction and contact prediction from the previous step
was used in Unicon3D for de novo protein structure prediction.

Step 3, compared to random sampling like Monte-Carlo search, sequential search turned
out to be more efficient and accurate. Our server did sequential protein conformational search with
the help of SAINT?2 tool 2. The fragment used in this step was generated by a modified version of
FRAGSION tool '°, which is ultra-fast and accurate in fragment generation based on a Hidden
Markov Model. Because of computational resource limitations, we only generated fragments with
size 8 and 12. The contact prediction from the first step was also used to guide the protein structure
prediction process.

Step 4, model selection from thousands of protein decoys is crucial in protein structure
prediction. Qprob!! is a super-fast tool to rank all decoys based on the model quality, so we
selected the top 100 decoys based on Qprob’s ranking. After that, we use a deep learning-based
tool, DeepQA 7, with the help of clustering for diversity !% to select 5 models as our final prediction.

Availability

The Cao-server is available at the following link:
https://www.cs.plu.edu/~caora/index.php/Cao_server/
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The original ClusPro server performs rigid body docking using the PIPER program and clusters
the 1000 lowest energy structures. The models are ranked according to cluster size. In order to
deliver results to the user within 24 hours of submission, the current implementation of ClusPro
does not include refinement beyond minimizing the energy of structures to remove steric overlaps.
In spite of this limitation, the server has almost 7800 registered users, and run about 200,000 jobs
in the last 3 years. In the recent years we have enhanced ClusPro with capabilities of accounting
for additional information to restrain the search, including SAXS data and XL-MS cross-links.

In the latest rounds of the CASP-CAPRI experiment we have expanded the ClusPro server to use
template-based information when available. Based on the target sequence we identify structures
that can serve as templates for the complex, and perform homology modeling based on the
biological units of the templates. If no template is available, we perform free docking as described
above. The server has the option of accepting pre-selected templates as input. In addition, we
explore the option of further refining and validating template-based models with free docking.

Methods.

Model preparation. Based on the sequence of the target, we automatically detect available
templates using HHPred, and identify those that contain homologs of the interacting biological
unit to be predicted. If no template of the complex is found, we suggest to perform free docking.
Since free docking by ClusPro requires three-dimensional structures as the input, we either use the
HHPRED top template or in difficult cases build an “ab initio” model of the subunit using
TrRosetta. For each “easy” target most models had the same fold, with variations in loops and
tails. Removal of the uncertain regions resulted in reliable “consensus” models that were used for
docking.

Template based docking. 1f a template of the biological complex satisfying the requird
stoichiometry is found then we chose the best template for each unique monomer of the complex,
align multiple copies of this monomer template to the complex template and then model the whole
complex using Modeller. Per rules of CAPRI we generate up to 10 models.

Free Docking. Our free docking approach consists of two steps. The first step is running
PIPER, a docking program that performs systematic search of complex conformations on a grid
using the fast Fourier transform (FFT) correlation approach. The scoring function includes van der
Waals interaction energy, an electrostatic energy term, and desolvation contributions calculated
by a pairwise potential.
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The second step of the algorithm is clustering the top 1000 structures generated by PIPER
using pairwise RMSD as the distance measure. The radius used in clustering is defined in terms of
C, interface RMSD. For each docked conformation we select the residues of the ligand that have
any atom within 10 A of any receptor atom, and calculate the Co RMSD for these residues from
the same residues in all other 999 ligands. Thus, clustering 1000 docked conformations involves
computing a 1000 x 1000 matrix of pairwise Co RMSD values. Based on the number of structures
that a ligand has within a (default) cluster radius of 9 A RMSD, we select the largest cluster and
rank its cluster center as number one. The members of this cluster are removed from the matrix,
and we select the next largest cluster and rank its center as number two, and so on. After clustering
with this hierarchical approach, the ranked complexes are subjected to a straightforward (300 step
and fixed backbone) van der Waals minimization using the CHARMM potential to remove
potential side chain clashes. ClusPro outputs the centers of the 10 largest clusters, which were
submitted as predictions.
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EMAP_CLUST is a consensus-based QA method to predict local as well as global quality of
protein models. We submitted models in three categories(TS, QA, RR) of tertiary structure
prediction to CASP14.

Methods

1. QA Quality Assessment
All server models of a target protein submitted to CASP14 are ranked according to their EMAP
global scores(see our EMAP abstracts), and a reference model set is constructed from top-scoring
N models. Then, the pair-wise similarity score is computed between each model and all models of

the reference set using TMscore! to produce N GDT TS scores. The consensus-based global
quality score is the EMAP-weighted mean of N GDT TS scores. For local score, The N C,
distances (d) between the corresponding residues of a model and reference models, are computed

using TMscore!. The distance is converted to the S-score with distance threshold do=3.84A, S
=1/(1+(d/do)?). Next, the EMAP-weighted mean (S_Weight) of N S-scores is calculated. The per
residue distance deviation(A) is calculated from S Weight, L =min( do (1/ S_Weight - 1)'2, 15).
EMAP_CLUST was applied to the stagel and stage2 dataset of CASP14. The size of reference
model pool N, was set to 11 for stagel, and 21 for stage 2.

2. TS Regular targets for structure prediction
CASP14 stage 2 server models were evaluated by EMAP CLUST,and the top model was selected.
Scores in B-factor column were replaced by the residue CA errors from EMAP_ CLUST.

3. RR Contact Prediction
Our residue-residue contact prediction method is based on the consensus of CASP14 RR contact
prediction server models. First, CASP14 contact prediction server models are pre-processed(short-
range contact predictions are removed and top 3L predictions are selected). Then these models are

evaluated using DOOP residue-level contact pair potential2 and 20 top-scoring models are
selected. The probability scores of corresponding residue pairs in selected prediction models are
summed up and rescaled.

Results
We evaluated EMAP_CLUST on CASP13 QA dataset and proved that it achieves comparable
performance with the state-of- the-art QA methods.

1. Zhang,Y. & Skolnick,J. (2004) Scoring function for automated assessment of protein structure
template quality. Proteins. 57, 702-710.
2. Chae,M.H., Krull,F. & Knapp,E.W., (2015). Optimized distance-dependent atom-pair-based

potential DOOP for protein structure prediction, Proteins. 83, 881-890.
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Morphing semi-supervised protein structures predicted using distance and torsion
representations with deep graph ranking

L.Drori!, X.Ji', Z.Fan', A.G Kharkar'
1- Columbia University
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DeepL:Y; EMA:Y; MD:Y

CUTSP CASP14 submissions were all generated by morphing predicted structures and ranking
the results. We used the same methods for all predictions as well as protein docking for complexes.

Methods
We first generate multiple sequence alignments (MSAs) using HHblits! with UniRef?. Next, we
use both supervised and semi-supervised approaches based on distance and torsion angle
representations for predicting diverse protein structures>*>. We then morph between these
structures taking into account the energy of the conformation®. The morphing is non-linear and
allows to bypass high energy conformation barriers. We superimpose the structures’ onto a base
structure and select the top candidates.
Scoring

We rank the morphed structures using a deep neural network trained to predict quality
based on previous CASPs and a graph neural network predicting quality of full-atom graph protein
representations®”’.
Docking

We perform docking of proteins with multiple chains. First, we predict the conformation
of each chain and then use rigid-body protein docking!%!! to generate a candidate set of complexes.
Finally, we rank the complexes based on their energy score, and select the top candidates.

Availability
We will make our pipeline available upon publication.

1. Remmert, M., Biegert, A., Hauser, A. & Soding, J. (2012) HHblits: Lightning-fast iterative
protein sequence searching by HMM-HMM alignment. Nature methods 9(2), 173—-175.

2. Suzek, B., Wang, Y., Huang, H., McGarvey, P., & Wu, C. (2014) UniRef clusters: A
comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics 31(6), 926-932.

3. Rao, R. et al. (2019) Evaluating protein transfer learning with TAPE. In Advances in Neural
Information Processing Systems, 9689-9701.

4. Yang, J. et al. (2020) Improved protein structure prediction using predicted interresidue
orientations. Proceedings of the Notational Academy Sciences 117, 1496—1503.

5. Drori, L. et al. (2019) Accurate protein structure prediction by embeddings and deep learning
representations, Machine Learning in Computational Biology.

6. Weiss, D. R. & Levitt, M. (2009) Can morphing methods predict intermediate structures? J.
Molecular Biology 385, 665—674.
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7. DeLano, Warren L et al. (2002) PyMOL: An open-source molecular graphics tool, CCP4
Newsletter on protein crystallography 40(1), 82-92.

8. Hurtado, D. M., Uziela, K. & Elofsson, A. (2018) Deep transfer learning in the assessment of
the quality of protein models.

9. Sanyal, S., Anishchenko, 1., Dagar, A., Baker, D. & Talukdar, P. (2020) ProteinGCN: Protein
model quality assessment using graph convolutional networks.

10. Schindler, C.E.M., de Beauchéne, 1.C., de Vries, S., Zacharias, M. (2017) Protein-protein and
peptide-protein docking and refinement using ATTRACT in CAPRI. Proteins 85(3), 391-398.

11. Eismann, S., Townshend, R., Thomas, N., Jagota, M., Jing, B., Dror, R. (2020) Hierarchical,
rotation-equivariant neural networks to predict the structure of protein complexes.
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In CASP14, we used a multiple sequence alignment (MSA) generated by our method! as a seed
input for HHblits? to a perform profile—profile sequence search, and we also used the template
profile database created in a similar method. To construct 3D-models, we used template-based
structure prediction by MODELLER?, interresidue distances and orientations prediction-based
structure prediction by trRosetta*, and combined them in some targets. In addition, we predicted
quaternary structures that replicate experimental evidence based on a literature search.

Methods

To execute a sequence search of a target, we used SSearch® with MIQS® against the latest NCBI
nr database. Then we made an MSA by using MPI-parallelized MAFFT’# with homologous
sequences. With the MSA as input, we used HHblits to execute an iterative profile—profile
sequence search against the UniClust30° and BFD'? databases.

To execute a template search and acquire profile—profile alignment between target and
templates, we used HHsearch? against the latest PDB70 and an in-house profile database that was
made by three iterations of HHblits with MSAs as input. These MSAs were made with PDB98
against NCBI nr in a similar manner for target sequences. However, we made the MSAs partly by
stacking pairwise sequence alignments by SSearch instead of using MPI-parallelized MAFFT.

In our 3D-model construction step, we used MODELLER with the result of the profile—
profile alignment against PDBs and trRosetta with the result of the sequence search. We intervened
in the processes of trRosetta by partly substituting the input with the distances and orientations of
3D-models made by MODELLER in some targets that had good templates and made 3D-models
well.

In our model selection step, we used VoroMQA!! mainly, dDFire'?, ProQ4'3, and the rate
of fit with the servers’ distance predictions.

For multimeric targets, the stoichiometry of the template protein was considered to select
a model. Also, experimental evidence (e.g., the number of disulfide bonds by mass spectrometry
and interacting regions by pull-down assay) based on a literature search was heavily considered
and we tried to replicate the evidence in 3D-models by adding restraints manually. If we needed
to perform free-docking, we used Haddock'* and ZDOCK". If we considered that the target must
be coiled-coil but it was hard to construct a model, we used ISAMBARD!S.
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Quality Assesment of Protein Models using Graph Convolutional Networks

Soumyadip Royl, Asa Ben-Hur!
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Protein model quality assessment is an important problem. There have been many algorithms
proposed for this task, including deep learning methods that use 3D convolution'. This showed the
promise of deep learning architectures for this problem. We decided to go with Graph
Convolutional Networks? (GCNs) which have not been used for this task to the best of our
knowledge. Proteins can be considered as graphs with the atoms as nodes. GCNs are a very
powerful neural network architecture which can produce useful feature representations of nodes
in networks. Therefore, we hypothesize that GCNs can learn the features that help discriminate
decoys from near native models.

Methods
In our method we considered each protein as a graph with the atoms as nodes. We then applied
multiple layers of graph convolution over atom-level features, followed by a couple of dense
layers.

Our aim is to predict a score for the entire protein that reflects the Global Distance Test
Total Score (GDTTS) * of a model with respect to its native structure. In other words, we use
GDTTS scores as our ground truth labels. In later work we extended this approach to predict
residue level GDTTS training along with some residue level features which significantly improved
performance.

Results

We trained our model on CASP 11 and CASP 12 datasets which consisted of over 200 targets in
total and tested on CASP 13 datasets consisting of 143 targets. We obtained a Pearson rank
correlation of 0.61. Our more advanced models, which were not ready in time for CASP 14, yielded
improved accuracy with a rank correlation of 0.83.

1. Pages, G., Charmettant, B., and Grudinin, S., Protein model quality assessment using 3D

oriented convolutional neural network.
2. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A., Protein Interface Prediction using Graph
Convolutional Networks.

3. Yuanpeng H., Mao,B., Aramini, J., and Montelione, G., Assessment of template based protein
structure predictions in CASP10.
DeepMUSICS
A novel deep learning framework for protein structure prediction

Y. Zhang', F. Pan', C. Lo, X. Liu?, X. Pang’, and J. Zhang" "
'Department of Statistics, °’Department of Computer Science, Florida State University
3Insilicom LLC, Tallahassee, FL
jinfeng@stat.fsu.edu
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In this CASP competition, we participated in the protein refinement category using a deep learning
based method. We used two types of deep learning models for sampling conformations and
evaluating their qualities. To sample conformations, we used a cut-regrow scheme with sequential
importance sampling, where fragments of 3-10 residues are cut and regrown one torsion angle at
a time. The torsion angles at each step are predicted by deep learning based torsion angle prediction
models. After a fragment is regrown, the quality of the conformation is evaluated by a deep
learning based energy function model. The cut-regrow is done many times on low quality regions
of the conformation using Metropolis-Hastings algorithm. The resultant conformations are further
refined by Molecular Dynamics simulations and then ranked by another energy function model
before submission. The whole method is named DeepMUSICS (Deep learning powered MUIti-
scale Sequential Importance Conformation Sampling).

Methods

We designed a set of torsion prediction models categorized by the length of the fragment to be
grown and the type of torsion angles (phi/psi). The models consist of a series of residual neural
network (ResNet) blocks, and each ResNet block contains two layers of three-dimensional
convolutional neural networks (CNN). The input was two 3D gridded boxes, with the atomic
coordinates and types, around the growing site, as well as the sequence of the fragment. The boxes,
with different sizes and resolutions, were fed into the ResNet structure to capture the structural
environment of the fragment to be grown, and the sequences were fed into a set of dense layers.
The output layer consists of 360 SoftMax nodes representing the probability in each angle bins
(1°).

Two energy function models, MODEL E1 and MODEL E2, were trained to predict the
GDT_HA score of the fragments sampled by the cut-regrow approach. The input was the 3D
conformation of the fragments captured by a series of 3D gridded boxes centered at each residue
with the atomic coordinates and types. All the boxes were fed into four ResNet blocks, and each
block consists of two CNN layers. The output vectors were fed into a bidirectional long short-term
memory (LSTM) network to predict the GDT HA score. The GDT HA of the whole structure was
the average score of the fragments sliding through the whole sequence.

For the refinement process, we chose two regions from the initial conformations of target
proteins to refine by the cut-regrow scheme. The selections were decided by the averaged residue-
wised GDT HA score predicted by MODEL E1 and MODEL_E2, where two regions with lowest
GDT HA scores were chosen. The lengths of regions vary from 20 to 40 residues as different
targets.

The cut-regrow process took only phi/psi torsion angles as variables, which were sampled
based on probability distributions predicted by the torsion prediction models. The bond lengths
and bond angles were fixed, and omega torsion was sampled around 180 degrees (with only PRO
has a small chance to be 0°). Analytical closure was performed when the growth length was within
three residues. The start and end residues for one cut-regrow iteration were randomly chosen
within the two regions above, with length up to 10. After the torsion sampling and growth,
MODEL El was used to select the grown conformation with the highest GDT HA, and
acceptance was determined by standard Metropolis-Hastings criterion. A simulated annealing
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algorithm was also applied on top of Metropolis-Hastings algorithm to increase the chance of
finding structures with better energies (scores from the deep learning models).

For one single target, five independent refinement runs were carried out, with each one
having up to 2000 iterations. From each run, we extracted one conformation with lowest GDT _HA
score predicted by MODEL E1 and MODEL E2. Using AMBER18! package, the side chains
were added and modeled by Molecular Dynamics simulations with FF99SB? forcefield, including
minimization, heating, and equilibrium runs. Restraint was added to the backbone atoms
throughout the simulations. Finally, the five resulting conformations after MD were ranked by
MODEL E2 for submission.

Availability
The source codes and models are not publicly available at the moment.

1. D.A. Case, 1.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham III, V.W.D. Cruzeiro,
T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.-W. Goetz, D. Greene, R.
Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin,
J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H.
Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-
Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J.
Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, P.A. Kollman. (2018) AMBER 2018.
University of California, San Francisco.
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Comparison of multiple Amber force fields and development of improved protein backbone
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DeepPotential makes use of deep learning based predictions as statistical potentials for protein
folding. A multi-threshold strategy is applied to those prediction terms to capture folding
knowledge at different levels.

Methods

The input features contain two-dimensional and one-dimensional features extracted from Multiple
Sequence Alignments (MSAs). Here, two-dimensional features are mainly raw coevolutionary
features, i.e., pseudolikelihood maximation of Potts model and Mutual information matrix, and
their post-processing additionally; one-dimensional features are the single-site features, including
one-hot sequence representation, HMM features and single-body parameters of Potts model and
Mutual information matrix. DeepPotential neural networks are trained to predict terms that are
critical for protein folding, i.e., Ca-Ca and CB-CP distances, inter-residue torsion angles and H-
bond related geometry descriptors.

Given a query sequence, s set of candidates MSAs are built by searching against different
sequence databases (Uniclust30, UniRef90, BFD, Mgnify and IMG/M) with different searching
tools (HHblits, Jackhmmer and HMMsearch). Optimal MSAs are selected by the summation of
the cumulative probability under 8A (12A for TripletRes server group) of top 10*L predicted Cp-
Cp distance distributions for all residue pairs. DeepPotential predicts distance distribution with
multiple thresholds (from 2A to 10A, 13A, 16A and 20A). The final contact/distance prediction of
DeepPotential combines distributions for all thresholds.

The distance distribution with threshold equaling to 20A will be considered as the base
distribution. A sequential combination strategy is used by replacing specific distance regions 2-tA
in base distribution with the corresponding distance distributions at thresholds of 16A, 13A and
10A sequentially, if P(@>tA) < 0.5. Here d is the distance of a residue pair and # is the corresponding
threshold. At each iteration over thresholds, the distance distribution will be normalized to
guarantee that the summation of probabilities equals to 1. The negative log of multi-threshold
distance distribution and orientation distribution will be smoothed by a cubic spline to smooth
potentials so that it can be optimized by gradient-descent based methods, e.g., L-BFGS
implemented by the PyRosetta package!. The tertiary structure construction for a query sequence
starts with a random structure and is optimized by repeated L-BFGS. At each iteration,
DeepPotential adds random noises in torsion angles space to the structure from the previous
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iteration and continue the optimization. The decoy with lower energy value will be kept. FASPR?
and FG-MD? are used for side-chain packing and local structure refinement after the optimization.
The predicted terms are also used for the estimation of model accuracy (EMA) by deep
residual neural networks. In addition to the distance and torsion-angle terms used for differentiable
decoy scoring, DeepPotential also feeds the neural networks with H-bond geometry terms*. For a
query decoy, the Ca-Ca and CB-Cp distance maps, torsional angle maps, H-bond geometry map,
and their corresponding predicted probability likelihood maps together with the negative log of
probability likelihood maps are also used as input features. The neural network outputs 3 types of
error estimations, i.e., residue-pair distance error estimation (2D), residue-wise alignment error
estimation (1D) and GDT-TS score estimation (scalar). The two-dimensional signals are reduced
to one-dimension by mean operation in multiple ranges. The one-dimensional signals are averaged
along the sequence length dimension and fed into a set of fully connected layers to predict the
GDT-TS score. The 3 types of error estimation are trained jointly. The EMA prediction model was
trained during the CASP14 season, so it was not used in tertiary structure prediction or selection.

1. Chaudhury, Sidhartha, Sergey Lyskov, and Jeffrey J. Gray. "PyRosetta: a script-based interface
for implementing molecular modeling algorithms using Rosetta." Bioinformatics 26, no. 5
(2010): 689-691.

2. Huang, Xiaoqgiang, Robin Pearce, and Yang Zhang. "FASPR: an open-source tool for fast and
accurate protein side-chain packing." Bioinformatics (2020).

3. Feig, Michael. "Local protein structure refinement via molecular dynamics simulations with
locPREFMD." Journal of chemical information and modeling 56, no. 7 (2016): 1304-1312.

4. Yang, Jianyi, Renxiang Yan, Ambrish Roy, Dong Xu, Jonathan Poisson, and Yang Zhang. "The
I-TASSER Suite: protein structure and function prediction." Nature methods 12, no. 1 (2015):
7-8.
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Our group has been involved in the development of several basic algorithms for the prediction of
the secondary, tertiary and quaternary structures of bio-macromolecules including oligopeptides,
proteins, and RNA’s!?. To predict the structure of proteins in past rounds of CASP we have
combined classical homology methods with our genuine method based on spectral analysis of the
sequences of the amino acids represented by their physicochemical properties. The methodology
resulted in high accuracy of the prediction of folding patterns namely in the so-called twilight zone
of sequence homology (20&#8764;30% of similarity), where the prediction of protein 3D structure
based only on sequence homology methodologies are frequently of limited success. In CASP13
this methodology proved effective for several targets, namely in the prediction of particular
domains that characterized those molecules. Furthermore, to improve the structure of loops in
protein structures we have developed a new automatic system based on a genuine idea about
protein stability.

Protein quaternary structure has been handled using our system for the assessment of complex
structures MIAX*, the main characteristics of which consist of the prediction of binding sites and
a new protocol for the evaluation of the plausibility of contact regions.

In CASP14 we have constructed a multi-platform system based on all these methodologies and
treated each problem in a systematic way that has enhanced the predictability of the tertiary
structure of CASP targets and their quaternary structure when required.

Methods

The multi-platform automatic system proposed starts with the selection of the best homologs for
the sequence in question with orthodox methodologies. When no homologs are found for the
target, the process shifts to the spectral analysis of the sequences and homologs from this point of
view are output that is analyzed in a piece-wise manner with the target sequence. Then the required
3D sequence for the target structure is built by the platform. Loop and structural stability analysis
is then carried out with our system for protein stability analysis. Molecular dynamics and other
minimization processes are then applied to the most plausible candidate structures which are then
ranked according to the energetic characteristics.

On the other hand, protein assemblies are predicted using the system MIAX? for protein
interaction assessment, which consists of protein interaction region prediction and docking of the
structures. For hetero multimer structure prediction, prediction of the binding sites was performed
based on a new way to assess the order of interaction of the subunits®.

Results

Loop flexibility analysis and the consideration of the order of interaction of complexes, extensively
used in CASP14, has led to a deeper insight into the way protein folding as well as complex
formation occurs and the appropriate computational methodology to deal with the problem.

74



1. Del Carpio, C. A. & Yoshimori, A. (2002). Fully automated protein tertiary structure
prediction using Fourier transform spectral methods. Protein Structure Prediction:
Bioinformatics, University of California, International University Line.

2. Del Carpio, C. A. & Carbajal, J. C. (2002). Folding pattern recognition in proteins using spectral
analysis methods. Genome Inform 13, 163-72.

3. Del Carpio, C.A., Ichiishi E. (2017). Inference of Protein Multimeric Complex Dynamic Order
of Formation: An Active Region Recognition Based Approach. International Journal of
Genomics and Data Mining 2017, 1.

4. Del Carpio, C. A., Ichiishi, E., Yoshimori, A. & Yoshikawa, T. (2002). A new paradigm for
modeling biomacromolecular interactions and complex formation in condensed pahses.
Proteins: Structure, Function, and Genetics 48, 696-732.

75



DellaCorteLab

Refinement with Improved Restrained Molecular Dynamics

Connor J Morris, Wendy M Billings, Dennis Della Corte
Dept. of Physics and Astronomy, Brigham Young University
dennis.dellacorte@byu.edu

Key: Auto:N; CASP _serv:N; Templ:N; MSA:N; Fragm:N; Cont:N, Dist:N; Tors:N, DeepL:N;
EMA:Y; MD:Y.

A team of undergraduate students at DellaCorte Lab built a refinement protocol based on previous
MD (molecular dynamics)-based protocols, particularly the one used by Feig Lab in CASP13. We
used physiological salt concentrations, additional equilibrations, and a larger radius of flat-bottom
restraints to improve refinement while using fewer iterations of MD simulation.

Methods

Targets were subjected to five 100 ns MD simulations using flat-bottom harmonic restraints on the
C-alpha atoms. The flat-bottom harmonic restraint allowed unrestrained movement of each C-
alpha atom in a radius of 5 A before restraints restricted further deviation from the starting
conformation. RWPlus' was used to score frames extracted every 20 ps from all trajectories.
Frames were then ranked according to RWPlus score and averaged structures were generated from
the top 1%, 5%, 15%, and 40% of the trajectory frames. SCWRL4? was used to optimize the side
chains of the averaged structures, then each was subjected to an energy minimization with
harmonic restraints on all heavy atoms. Model 1 was the 15% averaged structure, followed by 5%,
40%, and 1% averaged structures. The initial target structure was submitted as model 5. Residue-
wise error was estimated by calculating root mean square fluctuation (RMSF) values on C-alpha
atoms in the MD trajectories.

The only deviation from this protocol was when a low GDT-HA score or other factor
suggested the experimental structure deviated by > 5 A from the start structure. In this case, either
unrestrained MD or an additional iteration of restrained MD was added and averaged structures
from those trajectories were included in the submitted models. This was done on only 6 of 50
targets we submitted models for.

Differences between our protocol and the Feig Lab protocol in CASP13 include:
physiological salt concentrations in MD, NPT equilibration before MD simulation, larger radius
before flat-bottom restraints begin (5 A vs. 4 A), and maintaining normal hydrogen masses. Since
Heo et al®, found after CASP13 that multiple iterations of MD and the specific choice of scoring
function had little effect on results, we removed the iterative rounds of MD simulation to reduce
simulation time and eliminate the need to build Markov-state models and replaced Rosetta energy
scoring* with RWPlus.

MD was performed with OpenMM?® using explicit solvent and physiological salt
concentrations. An energy minimization and NPT equilibration preceded MD simulations.
GROMACS6 was used to add hydrogen atoms to the target structure prior to MD simulations, to
generate an averaged structure from the top scoring MD frames, and to calculate RMSF values
from MD trajectories for residue-wise error estimation.
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DellaCorte Lab — a team of undergraduate students — combined deep learning inter-residue
distance prediction, gradient descent protein reconstruction, and molecular mechanics-based
structure refinement for all submissions of CASP14 structure prediction. Heteromeric targets were
assembled with protein-protein docking tools.

Methods

All submissions followed the same protocol, independent of availability of homology models. We
first generated distance predictions from multiple sequence alignments (generated with HHBlits'),
using our ProSPr distance prediction network” and trRosetta®. After manual investigation of the
distance predictions, we used pyRosetta-based structure optimization to fold 100 models of an
alanine chain according to the distance predictions. We mutated the final sequence using the
Dunbrack rotamer library* to match the target sequence and performed local optimizations with
pyRosetta minmover. The final structures were ranked by the Rosetta Energy Function and the top
10 were manually investigated.

Based on the similarity and quality of the models we selected one or two of the top 3 models
for molecular dynamics-based refinement simulation, according to the same protocol that we
describe in the refinement abstract. The differences in the protocol used on refinement targets and
the protocol employed here are a reduced number of MD simulations (3 instead of 5) to reduce
simulation time and an altered model submission order (5% averaged structures, 15%, 40%, 1%,
pre-MD model) to put a more aggressive trajectory average as model 1. In cases of multiple
comparably scored, but structurally different (RMSD > 5 A) reconstructions, we started additional
refinement simulations from different start structures and adjusted the submission order to also
contain models derived from the other trajectories.

For heteromeric targets, we deviated from the protocol based on availability of homology
models or solved structures. Each protein chain was folded separately and afterwards subjected to
protein-protein docking with Interevdock®. Multiple targets required manual intervention to
achieve reasonable poses.
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A team of undergraduates in the Della Corte lab implemented and trained a deep convolutional
neural network (ProSPr) to predict inter-residue distance probabilities for all residue pairs.
Several data augmentation strategies were employed to increase the effective training set size,
and predictions were made directly into the 10 distance bin ranges specified for CASP14.

Methods

Training data were collected from the CATH s35 database,! resulting in sequences and structure
labels for about 27k nonredundant protein domains. Multiple sequence alignments (MSAs) were
generated for each sequence using both PSIBLAST? on the nr database, as well as HHBIits*
with the Unliclust30 database.’ The PSIBLAST PSSM contributed 2D features to the input
vector. HHBlits-aligned sequences were randomly subsampled during each training epoch,
which subset was then used to calculate HHM profile 2D features and 3D pair coupling
information using the inverse of the shrunk covariance matrix as described previously.® These
MSA features were combined with layers for one-hot residue encodings as well as sequence
position indicators to give the full input vector.

The bulk of the ProSPr architecture was a series of 220 ResNet’ blocks each containing
projections, batchnorms, elu activations, and a 3x3 convolution with varying dilation. The final
network convolutions resulted in differently shaped predictions for five simultaneous objectives:
inter-residue distance predictions over 10 bins (see CASP14 format for specifications),
secondary structure predictions (9 classes), backbone phi and psi torsion angles (37 bins each),
and accessible surface area (11 bins). During training the loss was weighted to give preference to
the quality of distance predictions, with the others acting as auxiliaries.

To augment the 27k training domains, ProSPr was trained to predict 64x64 residue crops
of full LxL distance matrices. Dividing the domains in this way resulted in over 3 million
training instances per epoch; using random offsets to select crops also helped increase the variety
of training instances. During inference, predictions for 10 different grids of crops covering the
entire domain were assembled and averaged to give the final LxLx10 distance prediction matrix.

In following with the new CASP14 contact format RMODE 2, the distance probabilities
for each i,j residue pair were reported in each of the 10 distance bins ranging from 0-20A;
training ProSPr on those same bin definitions eliminated any need to aggregate probabilities
across different distance ranges. The contact probability of residue-pair CBs being within 8A
was reported as the sum of probabilities over the first three distance bins. All pairs were then
ranked by contact probability and — if necessary — only the 50k most probable pairs were
submitted.
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All targets were processed using this procedure. However, ProSPr as described here was
still being trained while the experiment progressed, so different models were used across the
course of the experiment. Predictions for any given target were typically made by ensembling the
most recent versions of the four independent ProSPr networks being trained in parallel. After
training converged, the same ensemble of four models was used to make predictions for the
remaining targets (beginning with T1087).
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Availability

A previous version of ProSPr has been made available both as source code and a Docker
container [https://github.com/dellacortelab/prospr]. An updated version in alignment with this
description (reflecting significant changes) will be made available shortly.
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In CASP13, we introduced DESTINI!, a contact-driven folding algorithm that takes advantage of
deep convolutional neural networks designed to recognize residue-residue contact patterns. For
CASP14, in DESTINI2 we extended the approach from being contact-driven to distance-matrix
driven and devised a new template selection and refinement protocol. In addition, a novel deep-
learning based sequence alignment algorithm, SAJLSAZ?, was trained from deep-learning
structural alignments to assist remote template identification and a distance-matrix alignment
algorithm was used to rank templates from various sources.

Methods
The major improvements in DESTINI2 include: (1) predicting both C4-Cyand Cp-Cp distance bins
up to 20 A using a dilated convolutional neural network composed of 40 to 50 residual blocks. (2)
A new folding protocol implemented to take advantage of the distance-matrix prediction from
deep-learning. (3) UniClust30°, a large sequence library, was employed to obtain a multiple
sequence alignment, which is then employed to derive input features to the deep-learning neural
networks. We consider both PSI-BLAST profiles* and HMM profiles from HHblits®. Three 2D
features are employed: co-evolutionary coupling scores®, a statistical potential’, and mutual
information for pairs of residues®. (4) A new structural refinement component based on the
TASSERYMT approach’® was adopted. Multiple models were generated by DESTINI2 with different
starting templates from SP3!°, SAdLSA? and their 3D-jury top templates. For each set of starting
templates, the top 5 models were selected based on their cluster size after SPICKER!! clustering
on the low energy trajectories from the TASSER simulation’. We developed a distance matrix
based alignment method to align the predicted distance matrix to these models as well as models
downloaded from other CASP servers serving as initial templates. All were aligned to the
DESTINI2 distance matrix and selected based on their alignment scores. The selected top 10
models were subsequently refined with similar approach as in TASSERYMT? that uses a variable
number of templates to build up to 50 multiple template based models using Modeller program'2.
For submission, the GOAP energy function’ was employed to select the top 5 models from the 50
generated models.

Human intervention was applied to multiple domain targets, which was partitioned into
individual domains according to the contact prediction of the full sequence and template threading
results. Each domain was then modeled separately using DESTINI2 and subsequent refinement.

Results

DESTINI2 was benchmarked on a data set composed of 362 “glass-ceiling” targets. This set is the
same as the previous benchmark data set, but here we removed targets whose structures were
determined by NMR. Only considering the top1 model, DESTINI2 is capable of predicting native-
like folds for 69% of targets, compared to 41% by DESTINI and only 9% by the classic TASSER.
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The mean TM-score is 0.52 by DESTINI2, indicating a highly likely correct fold, versus 0.39 by
DESTINI. Even when there is no improvement in middle/long range contact predictions, we obtain
an average TM-score improvement of 0.10, demonstrating that the distance matrix greatly
improved model quality overall.

For the full, very hard “glass-ceiling” data set of 606 targets, only considering the top 1 hit,
SAdLSA? detects a significant template with TM-score > 0.4 in a template library of about 7,000
structures for 123 targets, versus 66 by HHsearch'®. Note that SAdLSA is not a threading algorithm
because it does not use the coordinate data from the template structures for its sequence alignment;
rather it is designed to predict the structural alignment of a target to a template without have the
structures of either the target or template proteins.

Availability

Benchmark data sets and the DESTINI2 webserver are available at
http://sites.gatech.edu/cssb/destini.

SAdLSA is available at http://sites.gatech.edu/cssb/sadlsa.
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In CASP14, we tested new versions of our DMPfold method1 for tertiary structure prediction.
DMPfold2 retains many of the features of DMPfold v1, including the use of iterative restraint
prediction and structure generation. Developments include using an embedding of the sequence
alignment as the only input to the neural nets and a variety of methods for generating models from
predicted constraints. The DMP2 group acted as an automated entry, i.e. one that could have been
implemented as a server.

Methods

Multiple sequence alignments (MSAs) were built using HHblits searches against the latest
UniRef30 databases available at the time of target release. Where HHblits retrieved fewer than
2000 hits, deeper MSAs were built using one iteration of our deep MSA building procedure? which
searched the UniRef100, EBI MGnify, NCBI Transcriptome shotgun assembly (TSA), MetaEuk
and IMG sequence databases, each time building a list of putative hits and using these as a custom
database for a further HHblits search.

The MSA was used as input to a new generation of neural network models, which used a
one-hot encoding of the MSA, and the precision matrix derived from the MSA as the only input
features. The precision matrix was calculated on the fly using the fast dca approach’®. The
DMPfold2 neural net model jointly predicts distance distributions, torsion angle probability
distributions and backbone hydrogen bonds, which are used as restraints for tertiary structure
building. Structural models were built using 3 methods: Distance geometry and simulated
annealing (DGSA) using CNS (as implemented in DMPfold v1); DGSA using XPLOR-NIH with
newer parameter sets and energy functions; and an in-house folding pipeline called Force-directed
Folding (FDF) beginning from an extended chain. The DGSA-based modelling pipelines used 10
rounds of the iterated restraint generation and model building procedure, which is similar to that
previously described'.

One model was selected from each of the 3 modelling methods, and each was refined using
dual-space refinement as implemented in Rosetta. Refined and unrefined models were scored and
ranked using a prototype neural net operating on Ca coordinates.

Results

The new architecture of the DMPfold2 neural nets makes it considerably faster to run than those
in DMPfold v1. This is because only one model has to be run to get all the predicted features, and
because input feature generation takes significantly less time than in DMPfold v1. Because the
neural net model uses only a precision matrix and a one-hot encoding of the MSA as input, the list
of software dependencies is also greatly reduced. Initial benchmarking showed that the new
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approach produced significantly more native-like models than DMPfold v1 on the CASP13 FM
domains.

Availability

DMPfold2 will be made  available on the PSIPRED  GitHub  page
(https://www.github.com/psipred) under a permissive licence, and also via the PSIPRED
Workbench? (http://bioinf.cs.ucl.ac.uk/psipred).
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Many algorithms and pipelines have been developed that go from sequence to structure,
however, a full end-to-end model remains a challenge. Here we present our initial efforts
towards a fully differentiable set of modules that go from sequences to distance/dihedral matrices
to 3D coordinates.

Methods

For the end to end protocol, we tested two different approaches: (A) modification of the last
layer of the TrRosetta NN (neural network) model' to return a full alpha-carbon distance matrix
and backbone dihedrals, (B) conversion of the binned distribution to a full distance matrix and
dihedrals via path tracing. Finally, to recover the 3D coordinates, we experimented with two
approaches: (1) decomposition of the distance matrix, (2) iterative approach that would place
atoms one at a time conditioned on both distances and dihedrals. Prior work used only dihedrals
to place atoms?. The NN models were trained and validated on the TrRosetta benchmark set.
Proteins larger than 300 residues were cut into chunks of 300 residues, predicted separately, and
recombined.

Most of the predictions are from the same method, some of the early predictions were
based on work-in-progress NN models. For the purposes of comparison and validation, the five
models are ranked by method instead of quality. For model 1, we used method A2, for model 5
we used method B2. For models 2 and 3, we tried different combinations of the experimental
approaches. For a couple of targets, we submitted server models that matched our distance
predictions best. As a control, for model 4, we submitted the results from the default TrRosetta
protocol, using the same multiple sequence alignment as model 1 and 5. To reconstruct the
sidechains, the final submitted models were relaxed with Rosetta ref2015°, except for the first
couple targets.

Results

We demonstrate this approach returns structures of comparable quality to those generated by the
TrRosetta protocol that requires a very expensive minimization step. Going forward, we think
these modules can be easily incorporated into any deep learning protocol for a full end-to-end
training.

Availability

86



github.com/sokrypton/e2e

1. Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations.
Proceedings of the National Academy of Sciences 117, 1496-1503 (2020).

2. AlQuraishi, M. End-to-end differentiable learning of protein structure. Cell systems, 8(4), 292-
301 (2019).

3. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and
design. Journal of chemical theory and computation 13, 3031-3048 (2017).

87



edmc pf
Protein folding from contact maps using Euclidean distance matrix completion

A. Lafita
European Bioinformatics Institute (EMBL-EBI)
aleixlafita@ebi.ac.uk

Key: Auto:N; CASP serv:Y; Templ:N; MSA:N; Fragm:N; Cont:Y,; Dist:N; Tors:N, DeepL:N;
EMA:N; MD:N

The aim of the edmc_pf group was to improve the accuracy of contact map predictions and convert
them into atomic coordinates using Euclidean distance matrices (EDMs). Protein distance matrices
are low-rank EDMs, in a 3D embedding space, so their structure can be exploited together with
protein geometry to complete missing entries and correct erroneous distances. Only a small
number of contact (31) and tertiary structure (18) predictions were submitted due to time
limitations.

Methods

The target sequence, contact map prediction and secondary structure prediction were used as input.
The secondary structure of targets was predicted using the PSIPRED server!. Binary C-beta
contact map predictions by RaptorX? were downloaded from the Prediction Center website, as
provided by CASP. An empty distance matrix of all backbone atoms in the target was created and
completed using the dissimilarity parameterization formulation (DPF) algorithm?, using distance
constraints from the contact map, secondary structure and protein geometry. More details on the
matrix completion step can be found in a recent publication®. Very few contacts were needed as
constraints to complete the matrix, so only the top k residues in contact to each residue in the target
were selected. The value of k varied among targets, depending on the accuracy of the original
contact matrix prediction, and was selected manually by looking at the error of the completion
convergence. Distance matrix predictions were submitted in the CASP14 RR2 format using the
CB-CB distances of the completed matrix including a confidence interval based on distance errors
of each residue. Completed distance matrices were converted into atomic coordinates of the target
protein backbone using multidimensional scaling. Mirror images were inverted manually.

Availability
Code to model protein structures using EDMs is openly available on GitHub at
https://github.com/lafita/protein-edm-demo
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We participated in the quality assessment (QA) category of CASP14 with a single-model, deep-
learning method. Our method only uses the 3D atomic structure to assess the quality of individual
protein models.

Methods

Our method builds on a novel neural network architecture that is specifically designed to learn
from 3D atomic structures!?. Given just the atomic coordinates of a protein model, the network
learns to predict a global quality score. Due to inherent symmetry properties of the network, the
orientation in which models are provided to the network thereby does not matter.

A second aspect of our network is its hierarchical learning approach: The network first
considers the local neighborhood around each atom, then aggregates this information at the level
of alpha carbons, and finally outputs a global score for the entire protein model. In combination,
the symmetry properties and the hierarchical approach allow the network to recognize structural
motifs at different scales, and independent of spatial orientation, and also enable the network to
learn end-to-end from all atoms at once.

We trained our method on candidate models submitted to CASP5-10 with the goal to
predict GDT_TS for each model. For training, we relaxed each model using SCWRL?. We omitted
this step when making our predictions for the CASP14 models. Our method uses no physics-
inspired energy terms, templates or multiple-sequence alignments. We used the same method for
all predictions, performed no manual intervention and did not target a specific set of proteins.

Availability
A webserver is available at http://drorlab.stanford.edu/edn.html.

1. Thomas,N., Smidt,T., Kearnes,S., Yang,L., Li,L., Kohlhoff,K., Riley,P. (2018). Tensor field
networks: Rotation- and translation-equivariant neural networks for 3D point clouds.
arXiv:1802.08219.

2. Eismann,S., Townshend,R.J.L., Thomas,N., Jagota,M., Jing,B., Dror,R. (2020). Hierarchical,
rotation-equivariant neural networks to predict the structure of protein complexes. arXiv:
2006:09275.

3. Krivov,G.G., Shapovalov,M.V., Dunbrack,R.L. (2009). Improved prediction of protein side-
chain conformations with SCWRLA4. Proteins.
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Methods

Our pipeline for multimeric CASP targets starts with the identification of the best monomeric
subunit(s) from the CASP server models. The selection was carried on using Pcons1 and ProQ42.
The top-scoring models were inspected manually and used for the protein-protein docking.

A search for multimeric PDB templates was performed for each multimeric target using
HHsearch3. For homomeric targets, were prioritized templates matching the oligomeric state of
identified templates, while for heteromeric targets hits for whom different sequences have
homologous in the same PDB. All the identified targets were used to create a customized template
library specific for each target.

We then run TMDOCK4 with the selected server models of the target versus the
customized template library. For each run, we generated 5 models that were subsequently filtered
removing the models forming backbone clashes, and relaxed using the Rosetta package5. If the
relaxed protein maintained the protein-protein interaction, the target was submitted.

In the case of trimer and bigger complexes or for specific dimers, the monomeric modes were
aligned manually on the selected templates using the align command of Pymol6.

When no templates were available, we obtained the docked structure using the contact
prediction as constraints. By HHblits7 we generate the multiple sequence alignment that was used
as input for DeepMetaPsicov8 to predict the contacts. We use as restraints the predicted contacts
between the monomers or in the case of homomers between residues further than 12A in the model.
In both cases, we select only the predicted contacts with a score higher than 0.5. The contacts were
finally used as restraints in Haddock9.

In one case for (T1032) we used the Swissmodel web server!®.
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Results

At the current date, two of the multimers we modelled have a resolved structure. Our best models

are shown in Fig 1. Both targets were modelled by template-based docking.

The area of interaction was predicted correctly in both the cases but still, major differences
between the models and the structures are present at the interface. These differences are reflected
in the low DockQ!! score Table 1. In T1032 different methods were used, in this case, it appears
that the docking based on HHpred template search and the manual alignment with Pymol and

Swissmodel perform better than the TMdock pipeline.

Target Method DockQ
T1032 4 Manual HHpred/Pymol 0.039
Docking
T1032 1 Swissmodel 0.039
T1032 3 TMdock 0.012
T1032 2 TMdock 0.008
T1099_1 Manual HHpred/Pymol 0.064
(Interface A) Docking
T1099 1 Manual HHpred/Pymol 0.047
(Interface B) Docking

Tablel Methods and DockQ for submitted targets. In bold the models shown in Figure 1.
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T1032 T1099
(Template 4W7Z) (Template 5T2P)

6n64

Figure 1 In red, orange, dark orange the predicted model, in blue, dark blue and light blue the
corresponding resolved structure.
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Nowadays it is very important to follow up protein structure prediction methods with a quality
assessment (QA) step, able to verify modelled structures’ reliability. For the 14th CASP edition,
we submitted quality estimates derived from two Deep Learning-based predictors, ProQ4! and
GraphQA?. Here, we present a brief description of these methods, as well as a preview of such
methods’ performance, calculated on 14th CASP edition targets for which the crystal structures
are already available.

Methods

ProQ4 is a deep learning predictor which uses as input a multiple sequence alignment (MSA), as
well as a coarse representation of the protein models to be evaluated. This predictor is trained to
extrapolate the Local Distance Difference Test (LDDT), a metric which allows both local and
global model QA. ProQ4's neural network is composed of a complex architecture based on a
comparison between pairs of protein models. The predictor ability to discriminate which one of
the models in each pair is better is proven to confer a significant boost in the absolute scoring. In
order to generate the input MSA, one iteration of JackHMMer has been run for each CASP target,
using uniref90 as a search database. The resulting MSA in Stockholm format has been converted
to fasta format using the esl-reformat tool from the HMMer package (version 3.1b2). Finally, the
QA scores have been obtained by running ProQ4, after providing the fasta MSA and the list of
models resulting from the different stages of each CASP target.

GraphQA estimates protein quality using a graph-based representation of protein structure
and a Graph Convolutional Network. Overall, GraphQA employs input features similar to ProQ4
but achieves better performances on past CASP editions thanks to a better representation of the
spatial structure, which is based on graphs rather than sequences. Specifically, the input to
GraphQA is a graph whose nodes represent amino-acids and whose edges represent contacts
between residues. For each node, we provide an embedding of the amino-acid type, features from
an MSA computed against Uniref50, and secondary structure features from DSSP. By
construction, edges are placed between nodes that are neighbours in the sequence, i.e. the
corresponding residues appear close in the primary structure, or that are neighbours in space, i.e.
they are within a certain distance in the tertiary structure. A single GraphQA model is trained to
output many quality assessment scores, at both the residue and protein level. Namely, for each
residue, LDDT and CAD scores are predicted. Also, at the protein level GraphQA predicts GDT-
TS, GDT-HA, TM-score, LDDT and CAD.
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Results
Currently, 18 targets from the 14th CASP edition have been linked to an available PDB structure.

Comparison of the submitted QA scores with models’ LDDT is summarized in Fig 1. GraphQA
achieved much better performances than ProQ4, reaching on average a correlation of 0.52 (against
average 0.31 correlation of ProQ4).
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Figure 1: Comparison of ProQ4 (Blue) and GraphQA (Orange) predictions with modelled
structures LDDT scores. Each subplot refers to the target reported on top of it. Single target
Pearson Correlation Coefficients are also indicated for both predictors, in 14/16 targets the
correlation is higher in Graph-QA than in ProQ4.

Performance on single targets displays very wide variation. In most cases, performances of
the two methods are comparable, spacing from almost-perfect predictions (T1024, T1049) to
completely-inaccurate estimates (T1037, T1039, T1040, T1042, T1043).

In general, GraphQA performs better than ProQ4, but there are few cases (T1049, T1064) where
ProQ4 reaches higher correlation values.
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Protein model Quality Assessment is an important topic both in protein structure prediction and in
practical applications of structure models. We developed a new method EMAP to predict the
residue-specific and global quality of individual protein models. The main component of EMAP

is statistical potentials such as DOOP! and GOAP2. DOOP potential is a distance-dependent
atomic potential based on optimization method for the protein structure prediction. To generate
decoy structures for optimization of potential, the protein structures in the training set are
successively broken into two rigid regions, hypothetical receptor and ligand. These pairs of
receptor and ligand are docked by a docking decoy generation program to generate a large number
of evenly sampled docking decoys. In EMAP we used two versions of DOOP potential, DOOP-
CB which incorporates main-chain atoms and CB atoms, and DOOP-CBCG which incorporates
main-chain atoms, CB, and CG atoms.

Methods
To predict residue-specific deviations of a protein model, EMAP uses the following features as
input.

1. Per-residue DOOP-CB, DOOP-CBCG potentials averaged on residues within 8.5-, 12-
, and 15- A spatial sphere of a specific residue.

2. Per-residue GOAP potentials (in-house implemented) averaged on residues within 8.5-,
12-, and 15- A spatial sphere of a specific residue.

3. Secondary structure and solvent accessibility agreements and relative accessibility
within 5-, 11-residue sequence window and 12-A spatial window of a specific residue.

4. Torsion potential, fraction of buried residue and correlation coefficient between
predicted and real solvent accessibilities within 11-residue sequence window.

Three-layer perceptron was trained using above 21 features as input to predict the S-score
for each residue in the model in the training set (CASP9 and CASP11 data set). The global accuracy
score of a model is derived by averaging the predicted local S-scores of residues.

Results
We evaluated EMAP on CASP13 dataset and proved that it achieves the state-of- the-art
performance among single-model QA methods.

1. Chae,M.H., Krull,F. & Knapp,E.W., (2015). Optimized distance-dependent atom-pair-based
potential DOOP for protein structure prediction, Proteins. 83, 881-890.

2. Zhou,H. and Skolnick,J. (2011) GOAP: A Generalized orientation-dependent, all-atom
statistical potential for protein structure prediction. Biophysical Journal, 101, 2043-2052.
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Accurate prediction of protein tertiary structures relies heavily on understanding the fine details of
the inter-residue distances. Direct coupling analysis (DCA) could identify residue co-evolution
and has become the primary technique for estimating inter-residue distance. Multiple sequence
alignment (MSA) contains abundance information of residue co-evolution; however, the existing
DCA-based approaches exploit the co-variance matrix rather than the original multiple sequence
alignment (MSA), which causes considerable information loss at the very beginning. Actually, we
have observed that two proteins differ greatly in both MSAs and residue contact maps; however,
the co-variance matrices derived from the two MSAs are completely identical. This clearly
demonstrates the considerable information loss in converting co-variance from MSAs.

Protein Multiple sequence Cavariance Distribution of (R1, R2)

alignment matrix conditioned on R2
R1 R2 R3
R1 st AAA
Pretein, Msa, 582 A C C
_ R2 s« CAC
" 55 CC A
Ra st AAC
s2s ACA
Prateing A1 msa, sz A C C
sa CAA
s CCC

R2

) (b} ] @@

Figure 1. The limitation of covariance-based method. (a) Two structures with different contact
pattern for residue R1 and R2. (b) Corresponding MSAs of the two proteins. (c) The two MSAs
have identical covariance matrix (denote each symbol at each column as a random variable). (d)
Distribution of (R1, R2) conditioned on R3. R1 and R2 have stronger direct correlation in MSA1;
however, this cannot be distinguished by covariance matrix.

We have established an approach (called ProFOLD) to learn residue co-evolution directly from
MSA. For this aim, we designed a novel CopulaNet architecture to model residue correlation and
thereafter predict inter-residue distance. CopulaNet uses an MSA-encoder to extract context-
specific mutation information for each homologous sequence independently, and then obtains
high-order coevolutionary couplings by aggregating these MSA embeddings.
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Methods
For a query protein, ProFOLD predicts the inter-residue distance as follows:

1. Multiple sequence alignment (MSA) generation and representation. We take multiple
sequence alignment as the only input to train the neural network. For each query sequence, we first
generate MSA using DeepMSA searching against uniclust30, uniref90, and metaclust.

Next, we convert the generated MSA to fixed representations and feed them into the deep
neural network CopulaNet. Here, we represent MSA as a set of sequence pairs: for each aligned
sequence, we construct two equal-length strings by adding gaps in aligned sequences so that
matching characters are aligned in successive positions.

Finally, we encode each position with a binary vector of 41 elements, including 20 elements
(corresponding to 20 amino acid types) for residue in query protein and 21 elements
(corresponding to 20 amino acid types and gap) for residue in homology protein.

2. Distance distribution prediction. Our CopulaNet predicts the inter-residue distances
through modeling residue correlation. The main architecture of CopulaNet consists of a deep one-
dimensional convolutional residual network and a deep two-dimensional dilated convolutional
residual network, which consists of 8 one-dimensional residual blocks and 72 two-dimensional
residual blocks with dilated convolutions, respectively. To aggregate the residue correlation
extracted from all homology proteins, we insert an average pooling layer into the above-mentioned
blocks.

After residual networks, we use a fully-connected layer to predict the discretized distance
between C_b atoms of the residues (or C_a for glycine). The distance range (2 to 20 angstrom) is
divided equally into 36 bins. We also added an auxiliary bin to indicate residues without any
contact.

3. Structure determination based on distance potential. We build the tertiary structure of
query protein using the predicted inter-residue distance in a way similar to AlphaFold and
trRosetta. Specifically, we first convert the predicted inter-residue distances to smooth energy
potential, and then use optimization technique to build structural models with minimal energy.

Availability
https://github.com/fusong-ju/ProFOLD
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Understanding the fine details of inter-residue distances play important roles in protein structure

predictionl. After acquiring accurate inter-residue distances, the protein tertiary structure can be

easily restored using optimization technique to maximize the fitness of the structure with the

distance constraints2. However, the predicted inter-residue distances always contain considerable

inconsistency, i.e., arbitrarily selecting three residues Rj, Rj, Rk as anchors, the coordinates of
residues Ra and Rp can be readily calculated by their distances to the anchors; however, the
distance between calculated coordinates of Rg and Rp is usually inconsistent with the predicted

distance. These inconsistencies will significantly damage the quality of the constructed protein
tertiary structure. How to identify and remove these inconsistency from the predicted inter-residue
distance remains a great challenge.
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Methods

We designed a novel method for reducing inconsistency from the predicted inter-residue distance
and further construct the whole protein tertiary structure. Our method works on the inter-residue
distances predicted using ProFOLD (in-house work). The basic idea of our approach is sampling
and optimal seeking". First, we randomly sample three residues as anchors, and then calculate
coordinates of the rest residues. After repeating the sampling procedure N times (N = 200 in this
study), we acquire N estimation of the distance between all residue pairs. Next, we fit these
estimated distances using Gaussian mixture model (GMM), and then select the most probable
distance estimation from this model. Finally, we use the alternating direction method of multipliers

(ADMM)3 technique to build protein tertiary structure that best satisfies the distance constraints.

Availability
http://protein.ict.ac.cn/FALCON-geom

1. Sheng Wang, Siqi Sun, Zhen Li, Renyu Zhang, and Jinbo Xu. Accurate de novo prediction of
protein contact map by ultra-deep learning model. PLoS computational biology,
13(1):e1005324, 2017.

2. Namrata Anand and Possu Huang. Generative modeling for protein structures. In Advances in

Neural Information Processing Systems, pages 74947505, 2018.

3. Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.
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Building accurate alignment between query protein and templates (known as threading) has
become the primary method for protein structure prediction. The ideal alignment of two proteins
can be readily calculated when their structures are already known. That is, we superimpose
(including rotation and translation) one structure onto the other, and then identify the matched
residues with distance less than a pre-defined threshold. These matched residues form the ideal
alignment between the two proteins.

The ideal alignment calculated from optimal structure superimposition usually shows a
clear pattern of dashed line, where the dashes come from the matches of corresponding secondary
structure elements. This dashed line pattern of alignment, however, have never been systematically
exploited in the existing threading approaches for protein structure prediction. Deep learning has
been shown to be extremely powerful in learning specific patterns for a variety of types of data
especially for images. By treating superimposition matrix as an image, we train a deep neural
network model to learn the dashed line pattern existing in superimposition matrix of proteins with
known structures, and then apply the trained model to predict the superimposition matrix for query
protein and template. By tracing within the predicted superimposition matrix, we finally construct
the alignment between query protein and template.

Methods
As shown in the figure (below), our approach (called ProALIGN) consists of three main steps:

1. Calculating features for query protein and template. For both query protein and
template, we calculate a collection of sequence and structure features, including secondary
structure, sequence profile (PSSM) and solvent accessibility. We also predict the inter-residue
distance for these proteins using ProFOLD (an in-house work). Next, these features extracted from
the two proteins are merged, yielding 2D features as results.

2. Predicting superimposition matrix of query protein and template. Next, we feed the
merged 2D feature into the trained neural network to predict the superimposition matrix between
the query protein and template. The neural network model was trained on proteins with known
structures to learn the dashed line pattern of the corresponding superimposition matrix. Using the
traditional Needleman-Wunsch algorithm, we trace with the predicted superimposition matrix to
identify the path with the largest sum score and construct the alignment accordingly.

3. Model generating. Based on the query-template alignments quality, we extract distance
restraints from selected templates. For low score region of alignments or inconsistent region of
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distance constraints among multiple templates, we combine the extracted distance restraints and

the distance distribution predicted by ProFOLD, and then use PyRosetta1 to build model. For

several CASP14 targets, we simply run HHpred2 and CNFpred3 to calculate sequence-template
alignment and then build models using Modeller.

Predicted DistanceMapJ\ \\ -
R
MR 1 R.MMFMLI\‘Y 1D Features i 1 \\
MMR].KKM LL@vVY f \
MARI MSKLLGVY 5 o

Template
Structure

| X
- CF
PSSM,SSreal ACCreal : \
>Template
MTRISREMMKELLSVY f Neural
- 2D Network [ Predicted Structure
Pairwise ‘ Superimposition Matrix
Merge Features
>Query
MANLTEKFLRIFARRGKSI 4
Predicted Distancel\/lap)\ Template - - - MR 1 SIREMVKEL LBV Y
Query MAMLTEKFLRIFARREBKE!

Quer_y maliL KFLRIFARREEE 1D Features
Protein MAIL!KFLK\’FARRIRII
- - L HS |

KFKS 1 FARR

PSSM,SSpred, ACCpred

Availability
http://protein.ict.ac.cn/FALCON-TBM
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Based on the same protocol as in FEIG-S (TS), we operated four automated meta servers that used
structure prediction results from other selected server groups. We chose RaptorX!, Zhang-server?,
and BAKER-ROSETTASERVER? for FEIG-R1, -R2, and -R3, respectively. We applied the same
MD simulation-based refinement method, FEIG-S (refinement), except that we did not use
multiple alternative initial models. For targets where we manually intervened to account for ligand
binding, oligomerization, and membrane environments for the FEIG-S prediction, we used the
same information during the refinement of the selected server models.

For FEIG predictions, we aggregated all of the generated MD simulation trajectories during
the refinement step. We generated another set of refined models by using the trajectories. A set of
structures was selected by using RWplus and RMSD to the reference structure®’, and it was
averaged to the refined model. The initial models of the FEIG-S prediction were used as the
reference structures. Also, the sampled conformations were clustered and averaged to obtain other
refined models. For multiple domain targets, a subset of atoms that correspond to each domain
were used to generate refined models for the corresponding domains.

1. Xu,J. & Wang,S. (2019). Analysis of distance-based protein structure prediction by deep
learning in CASP13. Proteins 87, 1069-1081.

2.Zheng,W., L1,Y., Zhang,C., Pearce,R., Mortuza,S.M. & Zhang,Y. (2019). Deep-learning contact-
map guided protein structure prediction in CASP13. Proteins 87, 1149-1164.

3. Yang,J., Anishchenko,l., Park,H., Peng,Z., Ovchinnikov,S. & Baker,D. (2020). Improved protein
structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117,
1496-1503.

4. Heo,L. & Feig,M. (2018). What makes it difficult to refine protein models further via molecular
dynamics simulations? Proteins 86 Suppl 1, 177-188.

5. Mirjalili,V. & Feig,M. (2013). Protein Structure Refinement through Structure Selection and
Averaging from Molecular Dynamics Ensembles. J Chem Theory Comput 9, 1294-1303.

FEIG-S (refinement)

Protein Model Refinement via Molecular Dynamics Simulations with an Improved
Structure Sampling Protocol and Multiple Alternative Models

Lim Heo! and Michael Feig1
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Protein model refinement has become one of the important steps in the endgame of protein
structure prediction. Molecular dynamics simulation-based methods have shown encouraging
results not only for template-based models', but also machine learning-based models.> In the
previous CASP experiment, a few refinement initial models could be improved to have highly
similar structures to their experimental structures with Co-RMSD of around 1 A or better.>* We
performed MD simulations with flat-bottom harmonic restraints on Ca atoms, which limited
conformational sampling in the vicinity of the initial model. Conformational sampling was carried
out with three iterations, and MD simulations were carried out for 2 pus in total for each target.
From the post-CASP analysis, the new type of restraints for MD simulation was the most effective
change for the progress, while the iterative sampling scheme merely contributed. As refinement
performance highly depends on conformational sampling, efficient sampling methods are
essential.

We operated an automatic refinement server, FEIG-S, during CASP14. The server is based
on a new refinement protocol based on MD simulations that is augmented by template-based
models. The protocol mainly consisted of two parts: (1) generation of template-based models using
the original initial model and additional template structures, (2) MD simulation-based
conformational sampling and followed ensemble averaging of the sampled structures. MD
simulations were performed starting from the original initial model and additional multiple
alternative models if they were available. All the sampled structures were considered together to
create an ensemble-averaged model. locPREFMD" and was applied as the final step to improve
stereochemical properties. Finally, residue-wise model quality was predicted by an MD-based
method.?

Methods

The refinement protocol for FEIG-S includes two main components. First, multiple alternative
initial models were generated using the original initial model and additional template structures.
The template structures were searched by HHblits and HHsearch® and selected using structure
similarity to the original initial model (TM-score > 0.6). Single template-based models were built
by MODELLER’ with sequence alignment produced by HHalign. These models were optimized
further by hybridizing between them and the original initial model using Rosetta.® The initial pool
of structures was selected using similarity to the original initial model with a cutoff, either a TM-
score of 0.6 or the best TM-score among the built models minus 0.2, whichever is greater. If there
were less than two models available, we did not use multiple initial models. Up to nine models
were selected to construct the initial pool with the original initial model. If there were less than ten
models, the selected models were replicated. After ten iterations of hybridization, the four lowest
Rosetta score structures were selected as additional alternative initial models for the further
conformational sampling.

Second, MD simulations were carried out with the initial models after application of
locPREFMD. For each initial model, 5 independent simulations were performed for 100 ns at 360
K. MD simulations were performed with a modified CHARMM force field to facilitate barrier
crossings and in the presence of explicit water molecules. We used hydrogen mass repartitioning,
which re-distributed masses to make hydrogen atoms heavier (3 a.m.u.), so that a 4-fs integration
time step could be used with the SHAKE algorithm. During the simulations, conformations were
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restrained with respect to each initial model by Cartesian and distance restraints on Ca of the
proteins. Both restraints were based on a flat-bottom harmonic function. The Cartesian restraints
were applied for Cartesian coordinates of every Co atom with a force constant of 0.025
kcal/mol/A? and a bottom width of 4 A. The distance restraints were applied for distances between
Co atoms that had distances lower than 10 A in the initial model and sequence separation was
greater than 3 residues. We set 0.05 kcal/mol/A? and 2 A for the force constant and bottom width
of the flat-bottom harmonic function, respectively. The restraints were gradually switched from
Cartesian restraints to the distance restraints during a simulation.

All the sampled conformations were aggregated and selected to generate an ensemble
averaged structure. The scheme for ensemble structure selection depended on the number of initial
models. For targets where we refined only based on the original initial model, 25% of the lowest
RWplus score models were selected for averaging. For targets with additional multiple initial
models, the RMSD to the original initial model was additionally considered as in the scheme used
during CASP12.!° We applied SCWRL4!! and locPREFMD to the ensemble averaged structure
to obtain a final model. Finally, residue-wise errors were predicted by an MD-based method
described earlier.’

The protocol was fully automated except for a few targets, which had putative binding
ligands, extensive inter-protein contacts, or were assumed to be membrane proteins. Putative
binding ligands were inferred from homologous structures and modeled using CGenFF parameters
during the MD simulations. Externsive inter-protein contacts due to oligomerization were
accounted for by simulating the oligomer species instead of monomers. The relative orientation
between protein subunits was inferred from homologous structures. Refinement of membrane
proteins were prepared by using CHARMM-GUI'? with POPC lipid bilayers in order to reflect the
membrane environment.

Results

When the refinement protocol was benchmarked on CASP11-13 refinement targets, it
outperformed our previous protocol used during the last CASP. Model qualities were improved by
4.72 and 3.81 on average in terms of GDT-HA for protocols with multiple and single initial models,
respectively, while the improvement was 2.34 for CASP13 protocol without iterations.

Among the 38 regular refinement targets, we could build additional alternative models only
for 6 targets. In contrast, during the benchmark, 65 out of 103 refinement targets were available
for alternative initial model building. It is probably because regular structure prediction (TS)
targets were harder than before, so that most of the refinement initial models were built by contact-
based methods.

1. Heo,L. & Feig,M. (2018). Experimental accuracy in protein structure refinement via molecular
dynamics simulations. Proc Natl Acad Sci U S A 115, 13276-13281.

2. Heo,L. & Feig,M. (2020). High-accuracy protein structures by combining machine-learning
with physics-based refinement. Proteins 88, 637-642.

3. Heo,L., Arbour,C.F. & Feig,M. (2019). Driven to near-experimental accuracy by refinement via
molecular dynamics simulations. Proteins 87, 1263-1275.

4. Read,R.J., Sammito,M.D., Kryshtafovych,A. & Croll,T.I. (2019). Evaluation of model
refinement in CASP13. Proteins 87, 1249-1262.
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6. Steinegger,M., Meier,M., Mirdita,M., Vohringer,H., Haunsberger,S.J. & Soding,J. (2019). HH-
suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics
20, 473.

7. Sali,A. & Blundell,T.L. (1993). Comparative protein modelling by satisfaction of spatial
restraints. J Mol Biol 234, 779-815.

8. Park,H., Ovchinnikov,S., Kim,D.E., DiMaio,F. & Baker,D. (2018). Protein homology model
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Averaging from Molecular Dynamics Ensembles. J Chem Theory Comput 9, 1294-1303.

10. Heo,L. & Feig,M. (2018). What makes it difficult to refine protein models further via molecular
dynamics simulations? Proteins 86 Suppl 1, 177-188.

11. Krivov,G.G., Shapovalov,M.V. & Dunbrack,R.L.,Jr. (2009). Improved prediction of protein
side-chain conformations with SCWRL4. Proteins 77, 778-795.

12. Wu,E.L., Cheng,X., Jo,S., Rui,H., Song,K.C., Davila-Contreras,E.M., Qi,Y., Lee,J., Monje-
Galvan,V., Venable,R.M., Klauda,J.B. & Im,W. (2014). CHARMM-GUI Membrane Builder
toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004.
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Previouisly, protein structures could be predicted at reasonable accuracy in atomistic detail via
template-based modeling, followed by model refinement, e.g. via MD simulation-based methods.
With recent advances in machine learning techniques and growing protein sequence databases,
reliable structure prediction has become possible without explicit template structures, but based
on predicted inter-residue contacts.!” As in the refinement of template-based models, MD
simulation-based refinement methods have also led to remarkable improvements in model qualities
for machine learning-based models.> MD-based refinement of machine-learning models was
especially effective for refining moderate-to-high accuracy machine learning-based models. There
were improvements in loop, terminal regions and local structure packing.

We operated an automatic prediction server, FEIG-S, during CASP14. The server is based
on a combined method of a distogram-prediction method?, template-based modeling, and an
improved refinement protocol (see FEIG-S (refinement) for details). An initial model was
predicted by the distogram-based structure prediction method and template-based modeling. The
model was split into domains, and each domain structure was subjected to our refinement protocol.
After refinement, the models were joined by superimposing onto the initial model. Finally,
locPREFMD' was applied to the joined model to recover correct stereochemistries at domain
boundaries.

Methods

Our structure prediction method performed distogram-based structure prediction and MD
simulation-based refinement, sequentially. The distogram-based structure prediction was based on
trRosetta?, but with some modifications. For a target sequence, signal peptides and expression tags
at terminals were trimmed before multiple sequence alignment generation. Homologous sequences
were iteratively searched against the UniClust30 database using HHblits> with gradually relaxing
E-value cutoffs from 1e-80 to le-4 until enough sequences were searched. The criteria of how
many sequences were considered ‘enough’ was set as in the original method. If there were still not
enough sequences in the MSA, sequences were searched again against UniRef100 using HMMERS
with the MSA as an input. The searched sequences were filtered using hhfilter with a sequence
identity cutoff of 90%. If there were more than 100,000 sequences in the resulting MSA, we
lowered the sequence identity cutoff by 10% until the number of sequences became lower than
100,000. Inter-residue distances and orientations were predicted by trRosetta with the filtered
MSA. In the meantime, template-based models were predicted for the sequence. Modeling
templates were searched by using BLAST’, HHsearch®, and HMMERS. For template selection, we
used an E-value cutoff of 0.001 and a sequence identity cutoff of 30%, 20%, and 20% for BLAST,
HHsearch, and HMMER, respectively. For each template search method, up to ten templates were
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selected to build a model using MODELLER.® Distograms were generated from the template-
based models and combined with with the trRosetta predictions using weights according to the
sequence similarity of the homologs.

From the distogram prediction by trRosetta, protein domains were inferred along with a
secondary structure prediction using PSIPRED.? Protein sequences were segmented with the
secondary structure prediction into up to four consecutive residues. The segments were clustered
by community detection with the predicted contacts as edges of graphs. Domains were defined
based on the clustering; a sequence was split into two domains at a time. If one of the domains had
less than 30 residues, we did not split. Also, if it was possible to build a template-based models,
we did not split it. The domain boundary was extended for seven residues toward each terminal
direction. With a sequence for the new domain definition, MSA generation and following trRosetta
runs were conducted until the domain could not be split further. Predicted contacts from the
iterative trRosetta runs then replaced submatrices in the contact distograms in the order of the runs.
A contact map for a domain was replaced if the contact map for the subregion had a higher mean
contact probability of top L pairs with sequence separation of greater or equal than twelve residues.
Protein models were built by PyRosetta!® from the replaced contacts map. We generated 16 models
for a target and took the lowest Rosetta score model as an initial model for the followed refinement.

We applied our refinement protocol as described in another abstract, FEIG-S
(refinement), to the model. After refinement, refined models for domains were superimposed onto
the initial model. Domains were joined at a residue, which had the minimum Ca deviation between
domains, among the overlapped residues. Finally, locPREFMD' was applied to improve local bond
geometry at the domain boundaries.

Results

We benchmarked the protocol on CASP13 targets. As a result, in terms of GDT-HA, the model of
trRosetta showed comparable performance with 45.14 to AlphaFold!’s 45.19 on average for 109
human targets domains. After refinement, the refined models had a GDT-HA score of48.52 (+3.38)
on average, which was significantly better than AlphaFold (p=4.8e-4).

1. Senior,A.W., Evans,R., JumperJ., Kirkpatrick,J., Sifre,L., Green,T., Qin,C., Zidek,A.,
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Jones,D.T., Silver,D., Kavukcuoglu,K. & Hassabis,D. (2020). Improved protein structure
prediction using potentials from deep learning. Nature 577, 706-710.

2.Yang,J., Anishchenko,l., Park,H., Peng,Z., Ovchinnikov,S. & Baker,D. (2020). Improved protein
structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117,
1496-1503.
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In the past 3™ common CASP-CAPRI Assembly Prediction challenge, our modeling approach,
integrating ab initio docking, template-based modeling, distance-based restraints, low-resolution
structural data and symmetry constraints, yielded excellent performance, ranking 2" among

CAPRI predictors, and 1% among CAPRI scorers!. Here we describe our participation in the
CASP14 Assembly category, as part of the 4" common CASP-CAPRI Assembly Prediction
challenge (CAPRI Round 50). We have participated as human predictors, human scorers, and
server scorers, in all the 18 proposed targets, consisting in four hetero-dimers (A1B1), six homo-
dimers (A2), two homo-trimers (A3), two homo-tetramers (A4), one hetero-nonamer (A3B3C3),
one homo-20mer (A20), one hetero-27mer (A6B3C12D6), and one homo-240mer (A240).

Methods
For each assembly, the models of the individual subunits were taken from the ZHANG, RaptorX,
and QUARK CASP-hosted servers (only the best prediction for each server was used). In CAPRI
target ID T170 (CASP target ID H1060), the experimental structures of two of the subunits were
available (see more details in Results section). In two other cases (T165/H1036 and T177/H1081),
there were not available models at the CASP-hosted servers for some of the subunits, so we
modelled them with MODELLERvV9.19.

Using the available structural models of the individual subunits as above described, we
modelled all or some binary interactions in the assembly by ab initio docking (usually docking one

pair of models from each CASP-host server). As human group we applied our pyDock2 docking
and scoring pipeline, in which we used FTDock (electrostatics on; 0.7 A grid resolution) and
ZDOCK 2.1 to generate 10,000 and 2,000 rigid-body docking poses, respectively, which were
merged in a single pool for subsequent pyDock energy-based scoring. We also participated with

our pyDockWEB servers. In homo-oligomers, docking poses not satisfying the expected
symmetry (e.g. C> for homo-dimers, Cs for homo-timers, etc.) were removed.

Additionally, we checked if there were available templates for all or part of the assembly
interfaces. First, we used BLAST for this. In parallel, for each complex we searched for oligomeric
templates from the top five released predictions from the ZHANG, QUARK, RaptorX,
MULTICOM-CONSTRUCTand ROSETTA CASP-hosted servers. These monomeric models were
superimposed onto the corresponding subunits of each selected template and minimized with
AMBER 12.

Finally, all the generated models (either ab initio or template-based) were scored with
pyDock, and sorted according to the summation of the binding energy of all possible interfaces.
The number of available templates and their reliability determined the percentage of template-

111



based complex models included in the top 5 and 10 submitted models. Finally, we eliminated the
redundant predictions and minimized the top ten submitted models.

In the scorers experiment, we first removed models with more than 250 clashes (i.e.,
intermolecular pairs of atoms closer than 3 A). Then, we applied pyDock scoring and used the
same criteria to rank the docking models as in predictors (i.e. in case of reliable templates we
favored models similar to such templates, we checked for symmetry, we applied ad-hoc distance
restraints for specific targets, etc., more details in the Results section). As human scorers we
introduced more human intervention than as server scorers, i.e., removing loops with non-realistic
conformations, and re-scoring some of these models afterwards.

Results

We submitted models generated only by ab initio docking in those targets for which we could not
find available templates (T169/T1054, T172/H1066, T173/H1069, T174/T1070, T178/T1083,
T179/T1087, and T181/H1103). In the case of T174/T1070, all the template-based models we built
had clashes, so as predictors only ab initio docking models were submitted, but as scorers we
favored models similar to the available templates. In the case of T181/H1103, additional restraints
were applied to remove poses clashing with the membrane regions.

But for the majority of targets, we could find potentially suitable templates for all or some
of the predicted interfaces. In many cases, we generated models by ab initio docking and by
template-based modeling independently, and the final proportion of models derived from these
two approaches was determined by pyDock scoring and/or by the reliability of the available
templates. Thus, ab initio docking was favored in targets T164/T1032 and T176/T1078, while
template-based modeling was favored in targets T166/H1045, T167/T1050, and T168/T1052.

On the other side, in target T180/T1099, consisting in the assembly of a virus capsid with
icosahedral symmetry, only template-based modeling was used.

In the remaining targets, in order to build the full assembly we combined template-based
docking for some interfaces and ab initio docking for the other ones. This is the case of
T177/H1081 (A20), in which the homo-decamer (A10) was modelled based on available templates
followed by pyDock scoring, and the final assembly was built by docking two decamers. Similarly,
in homo-tetrameric targets T171/T1063 and T175/T1073 (A4), one of the dimeric interfaces was
modelled based on available templates and then the modelled dimers were docked to built the full
assembly. In the homo-nonameric target T165/H1036 (A3B3C3), the first homo-trimer (A3) and
one hetero-dimer (BC) were built based on available templates. Then, they were docked to form
partial complexes (A3BC) and the full assembly was finally built by symmetry.

In the same line, target T170/H1060 was a challenging hetero-27mer, in which we applied
an ad-hoc modeling procedure, also combining ab initio docking and template-based modeling.
This assembly was formed by three rings with different composition and stoichiometry. The first
ring was a homo-hexamer arranged as a dimer of trimers (2xA3) and was modelled by fitting two
copies of the homo-trimeric x-ray structure (PDB 5NGJ) to available Cryo-EM data (EMDB ID:
EMD-3689), followed by minimization. The second ring was formed by three subunits of one
protein and twelve subunits of a second protein (B3C12) and was modelled using available
monomeric models from CASP-host servers. Basically, the homo-trimer (B3) was modelled by
building dimers (B2) with ab initio docking and generating the trimer by symmetry, followed by
minimization and re-scoring by pyDock. The homo-trimer (B3) was docked to monomeric models
of the second protein (C) obtained from CASP-hosted servers, and then B3C3 models were built
by symmetry. In parallel, tetramers of the second protein (C4) were modelled by building dimers
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(C2) with ab initio docking and superimposing them on a tetrameric template (PDB 4BEG). The
hetero-15meric ring (B3C12) was finally built by superimposing the homo-tetrameric models of
the second protein (C4) onto each C subunit in the docking models (B3C3). The third homo-
hexameric ring (D6) was modelled by superimposing the x-ray structure of the monomer (PDB
4JMQ) on available templates (PDB 4DIV and 2X8K), followed by minimization and pyDock
scoring. The final assembly of the modelled rings was done with the help of ab initio docking,
selecting only models in which the symmetry axes of the rings were aligned. The same criteria was
used in the scorers experiment.

Availability

The pyDock 3.0 program is available for academic use as a GNU/Linux binary and as a web server
(https://life.bsc.es/pid/pydock/).

1. Lensink,M.F., Brysbaert,G., Nadzirin,N., et al. (2019). Blind prediction of homo- and hetero-
protein complexes: The CASP13-CAPRI experiment. Proteins. 87, 1200-1221.

2. Cheng,T.M.-K., Blundell. T.L. & Fernandez-Recio,J. (2007) pyDock: electrostatics and
desolvation for effective rigid-body protein-protein docking. Proteins. 68, 503-515.

3. Jimenez-Garcia,B., Pons,C. & Fernandez-Recio,J. (2013) pyDockWEB: a web server for rigid-

body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics. 29,
1698-1699.
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proteins by residual neural networks
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DeepHelicon is specialized for predicting inter-helical residue contacts in transmembrane proteins
in CASP14. DeepHelicon only takes as input a protein sequence in FASTA format. Residues
located in the transmembrane regions are detected by the TMHMM2.0 algorithm!.

Methods

Accurate prediction of amino acid residue contacts is an important prerequisite for generating high-
quality 3D models of transmembrane (TM) proteins>>. While a large number of compositional,
evolutionary, and structural properties of proteins can be used to train contact prediction methods,
recent research suggests that coevolution between residues provides the strongest indication of
their spatial proximity>. We have developed a deep learning approach, DeepHelicon®, to predict
inter-helical residue contacts in TM proteins by considering only coevolutionary features.
DeepHelicon comprises a two-stage supervised learning process by residual neural networks® for
a gradual refinement of contact maps, followed by variance reduction by an ensemble of models*.

Results

We present a benchmark study of 12 contact predictors and conclude that DeepHelicon together
with the two other state-of-the-art methods DeepMetaPSICOV® and Membrain2? outperforms the
10 remaining algorithms on all datasets and at all settings*. On a set of 44 TM proteins with an
average length of 388 residues DeepHelicon achieves the best performance among all
benchmarked methods in predicting the top L/5 and L/2 inter-helical contacts, with the mean
precision of 87.42% and 77.84%, respectively. On a set of 57 relatively small TM proteins with an
average length of 298 residues DeepHelicon ranks second best after DeepMetaPSICOV.
DeepHelicon produces the most accurate predictions for large proteins with more than 10
transmembrane helices. Coevolutionary features alone allow to predict inter-helical residue
contacts with an accuracy sufficient for generating acceptable 3D models for up to 30% of proteins
using a fully automated modeling method such as CONFOLD2’. DeepHelicon is specialized for
transmembrane proteins in CASP14. The multiple sequence alignments (MSAs) of transmembrane
proteins were generated using HHblits®.

Availability
The standalone DeepHelicon software is available at https://github.com/2003100127/deephelicon.
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GAPF_LNCC_SERVER: an automated template based de novo protein structure
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This is exactly the same method as GAPF _LNCC _ SERVER, but some targets required longer
conformation runs and could not be completed in the allotted server time. This occurred specially
at the beginning of the prediction season.

We built a fully automated template based de novo PSP method that can be easily integrated into
a web server, (GAPF_LNCC SERVER workflow). At the time of CASP14 we had limited
hardware to host a server, therefore some targets, of the server-only category, could not be
completed in time. The workflow is based on three ideas: (i) the use of experimental information
available, in the form of templates, residue-residue contact prediction, distances histogram
prediction, secondary structure prediction, and fragments; (i1) a multiple minima genetic algorithm
for conformational search; and a (iii) knowledge based/physics based scoring function.

We employ a coarse-grained representation where all backbone atoms are explicit, with the side
chains modeled as a single superatom. The scoring function combines some physically realistic
potential with knowledge-based terms to promote hydrogen bonding, secondary structure
organization and inter-residues distance restrictions. Global optimization is carried out by the
multiple-minima genetic algorithm (GA) and no further refinement is performed. Selection of the
models is then done by means of structural redundancy filtering and energy pruning. The
GAPF _LNCC SERVER workflow was applied to all targets. Because we were limited to a
desktop with a single GPU to host the server, inter-residues distance histograms were used only on
targets with less than 260 residues. A “template-based de novo” strategy was used when suitable
templates were found.

Methods

All accessory programs and tools are run locally on a desktop PC. The conformational search step
runs at the Santos Dumont cluster (https://sdumont.Incc.br). Our workflow starts with (1)
secondary structure prediction by PSIPRED! followed by (2) templates search with HHBIits?. (3)
Residue-residue (RR) contacts prediction, and distances histogram, are made by an pytorch
alphafold implementation and for targets larger than 260 residues DeepCov* is executed locally
for RR contacts prediction. (4) Fragment libraries are created with Profrager’
(https://www.Incc.br/sinapad/Profrager/), and fragments are selected using the secondary structure
prediction, in addition to the local sequence similarities from a culled database of 34,750 chains
from experimental structures.

The (5) conformational search carried out by GAPF® employs a genetic algorithm (GA)
with seven genetic operators including Ramachandran based mutations’ and fragment insertion.
The GA methodology uses a scoring function with a proper dihedral, steric repulsion, hydrophobic
compaction, hydrogen bonding formation®, cooperative hydrogen bonding’, RR contacts'® and

116



distance histograms, when available. GAPF employs a phenotype-based crowding mechanism for
the maintenance of useful diversity within the populations, which has been shown to result in
increased performance and to grant the algorithm multiple solution capabilities. For each target, at
most 100 independent runs of the GA ware performed (dependant on time restraints) and each
population contains 200 individuals, resulting in 20,000 structures. These results undergo a (6)
structural redundancy filter and the overall top five structures, ranked by energy, proceeded to the
next steps. (7) Side chains of the select structures are reconstructed using SCWRL4!!. And finally,
the files are (9) formatted according to CASP guidelines, including (10) filling the temperature
column of the PDB files with the confidence in the prediction (0-1, where 0 is the worst). Templates
were sought using HHblits'? and those found with probabilities larger than 70% are used to seed
the initial populations of the genetic algorithm.

Availability

All tools are freely available from their authors. Some steps in the protocol were carried out with
experimental versions of our software that will be made available by contacting the authors. The
fully functional web server should open by mid-2021. Acknowledgment: FAPERJ grant E-
26/210.935/2019, Santos Dumont supercomputer (http://www.sdumont.Incc.br/). We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for
this research.
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Molecular dynamics simulations are well-known as a reliable method for protein structure
refinements. Here, we shift the focus of protein structure refinement on specific regions of the
protein that are likely to have variable structures as compared to their native structure, namely the
ligand binding sites. We have shown previously that by performing MD guided refinement on

protein's binding site, the overall protein structures were also refined.! Motivated by the structure
refinement results in that paper, we apply the same method to this CASP14 blind refinement
targets.

Methods

We performed physics-based all-atom MD simulations in explicit solvents for the target proteins
with restraints derived from binding site templates. We used our computational tool, G-LoSA
(https://compbio.lehigh.edu/GLoSA/toolkit.html). Using G-LoSA we align all available binding
site templates from the PDB library onto each target protein. G-LoSA search aligns local structures
onto a target protein in a sequence-independent manner and calculate their similarity using GA-
score. Top templates with high GA-scores are selected. From the selected templates, we identified
aligned residues on the target protein as the equivalent residues. We then calculate the distance
matrix between C-alpha atoms of the selected residues and derive a harmonic distance restraint
potential. For our MD simulations, we apply force constants of 1.5 kcal/(molA?) for distance
restraints and additionally we apply a weak positional restraint of 0.1 kcal/(molA?) to all the

remaining alpha carbons, based on the same protocol we applied in our previous refinement work. !
For each target we perform 3 x 50 ns production run, each started from the same initial structure
but using different initial velocity random seeds. Simulations are carried out using OpenMM and
CHARMM36m force fields. The refined structure is the average of the three final conformations
from the simulations. For targets that allow extended simulation runs, we extended simulation time
to 1 microseconds each.

Availability
G-LoSA (Graph-based Local Structure Alignment) is a computational tool for binding site

predictions and similarity measurement that is freely available on
https://compbio.lehigh.edu/GLoSA/toolkit.html.

1. Guterres,G., Lee,H., Im,W. (2019). Ligand-binding-site structure refinement using molecular
dynamics with restraints derived from predicted binding site templates. J Chem Theory
Comput. 15, 6524-6535.
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The graph-sh server is built upon the spherical graph convolutional network (S-GCN)I. S-GCN is
a single-model QA method based on a deep neural network that processes protein molecules
represented as unordered graphs. S-GCN operates on geometric information retrieved from 3D
Voronoi tessellation of a protein model. The key idea of the proposed method is the ability to
construct rotation-equivariant local coordinate systems associated with each residue in a protein.

Methods
Our method operates on three-dimensional protein graphs. In these graphs, the nodes correspond
to the protein residues, and the edges correspond to the contact surface areas between the residues,

which are computed using the Voronota? framework. Each node is associated with several
geometric features, such as the type of the residue, the volume of the corresponding Voronoi cell,
the solvent-accessible surface area of the corresponding residue, and the buriedness, which is the
graph distance to the nearest solvent-accessible residue. Also, for each node u and all of its
neighbours v, we computed spherical coordinates of a projection of the neighbour v onto a unit
sphere with the center at u. These spherical coordinates are calculated in a local coordinate system
associated with the node u. We unambiguously construct these local coordinate systems for all the
residues in a protein model using the topology of the protein backbone, following our previous

model Ornatte3 .

To process such graphs, we constructed a graph neural network and trained it on local

CAD-scores”. Our network consists of spherical convolution layers, batch normalization, and
dropout layers. The spherical convolution layer performs a convolution operation in each node
over all its neighbours. A convolution operation is constructed using precomputed relative
coordinates and spherical harmonics as the basis functions. The essential component of the
spherical convolution layer is a trainable filter, a spherical function that is represented as a
combination of spherical harmonics up to the 5th order and trainable matrices (expansion
coefficients). To obtain a prediction of a model’s global CAD-score, we average local scores
predicted by the network.

We trained S-GCN on the CASP®!? datasets and validated it on the CASP13 dataset. For
training, the data from CASP®!? was preliminarily refined: we removed excessive models’ parts

and filtered out targets of low quality (based on VoroMQA5 predictions). To enrich the data with

more near-native examples, we generated additional near-native conformations using the NOLB®
library.
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Results

For the CASP14 predictions, we implemented the graph-sh method as an automatic server with
the following workflow. First of all, a graph is built using the Voronota framework. Then, the
spherical harmonics up to the 5th order are computed for all the residues and their neighbours
using an in-house C++ library and the code derived from our previous method Ornate. Finally, the
pre-trained PyTorch model is applied, which predicts local CAD-scores.

In our paper1 we show that the S-GCN model outperforms the current state-of-the-art
single-model methods on the CASP13 dataset in several metrics. We also mention that S-GCN
uses only geometric information, and does not take into account any biological, chemo-physical,
and evolution descriptors. We also compared S-GCN with a baseline message-passing graph neural
network without spherical filters and observed a huge performance gap that can not be eliminated
via fine-tuning. This fact can be considered as a proof of concept for a spherical convolution filter
we propose in our work.

Availability
More details about S-GCN can be found at https://team.inria.fr/nano-d/software/sgcn/.
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A novel version of the Recurrent Geometrical Network (RGN') algorithm, which geometrically
reasons over protein conformations, is used to predict protein structures. Two options are
considered for inputs: (i) the raw amino acid sequence and position-specific scoring matrix
(PSSM) of each protein and (ii) a context-based encoding of amino acid residues — AminoBert —
derived strictly from raw amino acid sequences without making explicit use of any evolutionary
information. Raw RGN structure predictions are subsequently refined using an energy-
minimization protocol subject to dihedral constraints computed from family sequence alignments.

Methods

One-dimensional curves, in differential geometry, are described by the Frenet-Serret geometries
(FSG). We use an improved version of the previously reported RGN, which parameterized protein
backbones (C, atoms) using dihedral angles, that leverages the fact that protein backbones are
intrinsically discrete one-dimensional curves. The improved version implements a transfer matrix
formalism which enables reasoning over protein backbones using a discrete version of Frenet-
Serret geometries (AFSG?).

Inputs: dFSG-based RGNs are used with two different possible inputs to predict protein
backbones:

(1) Raw amino acid sequences and PSSMs, as previously described !

(i)  AminoBert: a reformulated version of the BERT language model? is used to train a
transformer* over protein sequences to predict missing amino acids conditioned on
the flanking sequence. Amino acid residues are thus mapped onto a higher-
dimensional representation.

Refinement: Raw structure predictions from dFSG-based RGNs, trained with
sequence+PSSM (HMSCasper-PSSM) or AminoBERT representations (HMSCasper-Seq) are
refined using a Rosetta-based protocol that first builds the remaining atoms and then alleviates
steric clashes and fine-tunes folded domains. As an additional possibility, constraints coming from
an orientogram populated with pairwise angular dependencies between residues, derived from a
family sequence alignment and trRosetta, are imposed during energy minimization of the structure
(HMSCasper-MSA).

Training: For training we used (a) the dFSG-based RGN model trained on ProteinNet12
dataset (comprising UniParc + JGI metagenomes and PDB) with sequence+PSSM inputs for
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making predictions under the HMSCasper-PSSM group and (b) AminoBERT models trained on
SCOPe datasets for making predictions under the HMSCasper-Seq group.

Availability
Source code for training dFSG-based RGN models as well as trained models, including PSSM and
AminoBert based versions as used for the CASP14 experiment, will be available on GitHub.
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Protein-protein interactions play a fundamental role in all cellular processes. Therefore,
determining the structure of protein-protein complexes is crucial to understand their molecular
mechanisms and develop drugs targeting the protein-protein interactions. Although template-based
docking has been well developed and demonstrated high accuracy in recent CASP-CAPRI

challenges for those targets that have a template 1 , it is still difficult to predict the structure of those
protein-protein complexes that do not have a good template. A major portion of protein-protein
interactions are formed by homo-oligomers. Recently, we have proposed a deep learning model to
predict inter-protein residue-residue contacts across homo-oligomeric protein interfaces, named as

DeepHomo2 , by integrating evolutionary coupling, sequence conservation, distance map, docking
pattern, and physic-chemical information of monomers. In CASP 14, we have tested both our
template-based docking method and contact-assisted docking approach on those homo-oligomeric
targets.

Methods

For a given monomer sequence, we first used the HHblits program3 to search the PDB database.
It there was a homo-oligomer protein complex that has a sequence identity of 20% and a sequence
coverage of 80% with the target sequence, we would use the complex as a template to construct
the homo-oligomeric complex structure for the target through homology modeling using

MODELLER?. The constructed complex structure was further refined to remove sever atom
clashes through a short MD minimization using AMBER®. More homo-oligomeric complex

structures would be created by our HSYMDOCK symmetric docking method® based on the
monomer structure.

If there was no appropriate template available for a target, we would use our contact-assisted
docking protocol to predicted the homo-oligomeric complex structure of monomers using the

contacts predicted by our DeepHomo model?. The following figure shows the workflow of our
deep learning-based inter-protein contact prediction for homo-oligomeric complexes. DeepHomo
is designed to take full advantage of both the structure and sequence information of monomers,
which can also be grouped into 1D sequential and 2D pairwise features. On one hand, the 1D
sequential features, including the secondary structure (SS), hydrophobicity, and position-specific
scoring matrix (PSSM) information, are first extracted from the monomer structure/sequence.
Next, the 1D ResNet CNN is used to learn the high-dimensional features from the 1D sequential
features. Then, a 2D pairwise matrix is constructed by outer concatenation from the high-
dimensional sequential features. On the other hand, the 2D features, including the intra-residue
distance map, docking map, and direct coupling analysis (DCA) scores are obtained from the
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structure and MSA of the monomer. Then, these 2D matrices plus the previously converted 2D
map from sequential features are fed into a 2D ResNet CNN for training, resulting in the final
matrix of predicted contacts. Finally, the predicted contacts by DeepHomo were integrated into

our ab initio HSYMDOCK symmetric docking program6

complex structure from monomers.

to predicted the homo-oligomeric
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Results

Our DeepHomo model was extensively tested on both experimentally determined structures and
realistic CASP-CAPRI targets. It was shown that DeepHomo achieved a high accuracy of >60%
for the top predicted contact and outperformed state-of-the-art direct-coupling analysis (DCA) and
machine learning (ML)-based approaches. Integrating predicted contacts into protein docking with
blindly predicted monomer structures also significantly improved the success rate from 42.9% to
64.3% on 28 realistic CASP-CAPRI targets when the top five binding modes were considered.

Availability
HSYMDOCK is freely available for academic use at http://huanglab.phys.hust.edu.cn/hsymdock/.
DeepHomo is freely available for academic use through

http://huanglab.phys.hust.edu.cn/DeepHomo/.
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Nat Protoc. 2020;15(5):1829-1852.
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3. Remmert M, Biegert A, Hauser A, Sooding J. HHblits: lightning-fast iterative protein sequence
searching by HMM-HMM alignment. Nat Methods. 2011;9(2):173-175.
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Improving the accuracy of protein contact predictions has remained a key objective within
bioinformatics within the past years. The biggest improvement to this was observed within
CASP13 where deep learning models greatly outperformed all other models, though these models
are still not sufficiently accurate to replace direct measuring procedures such as X-ray
crystallography. The usefulness of protein contact maps in protein structure determination has
motivated this research to further optimise prediction accuracy.

Methods

Our method uses a fully convolutional deep residual neural network architecture. Our neural
network architecture uses a 1x1 2D convolutional layer to carry out a dimensionality reduction
from an initial 256 features down to 64. These features are then passed through 12 residual blocks
each consisting of two 2D convolutional layers with filter widths of 5 and 3, the number of features
remains fixed at 64 throughout these blocks. The first seven residual blocks use increasingly large
dilation factors that doubles with each block and both layers in each block use the same dilation
factor — the first block has a dilation factor of 1, the second uses a factor of 2, up to the seventh

which uses 64, the final 5 residual blocks have a dilation factor of 1. There is group normalization !
used following each layer in these blocks as well as the initial dimensionality reduction layer with
4 groups total (16 channels per group). The final layer in the architecture is a 1x1 2D convolutional
layer that performs a dimensionality reduction from 64 down to 1 and is followed by an Instance

normalization? layer. ReLU is used as an activation function for all neural layers except the final
layer and the network is trained with binary cross-entropy with a built in sigmoid calculation as a

loss function and Adam?> as the optimizer.
The models were trained on an extended dataset by including chains with missing residues.

An initial list of protein chains was obtained using the PISCES? sequence culling server with a
percentage identity cut-off of 30%, a resolution of less than 2.5A, and an R-factor less than 1.
Chains with less than 30 residues or greater than 700 residues were filtered along with chains that
have more than 35 missing residues or have more than 15% of their residues missing. The positions
of missing residues within these chains were predicted using an energy-based optimization
algorithm resulting in a dataset size of 11627 chains. This was done to allow our models to attempt
to capture the evolutionary information in the additional chains that other models may have missed.

The input features for the models were generated through the use of multiple sequence
alignments to produce a pairwise information matrix to allow the models to capture the coevolution
between each pair of residues. The multiple sequence alignments were generated using PSI-

BLAST? against the Uniref90° database, HHBlits’ against the Uniclust308 database, and
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Jackhmmer” against the Uniref90 database. The input features include coevolutionary couplings

410 11

generated using CCMpred™ -, contact scores and mutual information scores from Freecontact™ °,

various statistical information from alnstats (MetaPSICOVlz), and solvent accessibility
predictions, secondary structure predictions, torsion angle predictions, and contact density

predictions generated using Brewery13 . The PSSM from PSI-BLAST and the HHM from HHBlits
multiple sequence alignment searches were also included as input features.

Results
On CASP13 targets our best performing model achieved a long-range L/5 precision of 0.88 as

opposed to the leading CASP13 models TripletRES14 and RaptorX-Contact15 having precisions
of 0.74 and 0.77 respectively.

It was also observed that once a neural network had a sufficient receptive field, it was
difficult to further improve the performance of that model even with extreme changes to the
architecture which suggests that the bottleneck to our models contact map prediction performance
existed within the data rather than the arrangement of convolutional layers within the networks.
However, both the depth of our neural network models and the batch size was limited by the
amount of RAM available on the GPU (12 GB) that the models were trained on which also
potentially limited the performance of our models.

Availability
A paper on this method will be submitted for publication soon. A web interface and source code
for our method will be made public at that point.
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The IntFOLD server! integrates our latest methods for: tertiary structure (TS) prediction, domain
boundary prediction, prediction of intrinsically disordered regions, prediction of protein-ligand
interactions and the global and local quality assessment (QA) of predicted 3D models of proteins.
Following the successes of our previous IntFOLD servers®?, which used ModFOLD variants* to
rank models, our primary focus for the IntFOLD6 server at CASP14 was the further improvement

of global model ranking and local model quality scoring, using our newly improved
ModFOLDS rank method.

Methods

For CASP14, a bespoke version of the IntFOLDG6 server was developed in order to return
appropriately formatted results for just the tertiary structure (TS) prediction category. Additionally,
the local quality assessment predictions (QMODE3) were returned as scores in the B-factor
column of each TS model file. (Predictions in the QMODE1 & QMODE2 QA categories were
also returned by our separate servers (see our ModFOLDS8 and ModFOLDclust2 abstracts for
details.)

Our TS method was developed with the aim of fixing local errors, identified in an initial
pool of single template models, through iterative multi-template modeling. The method attempts
to exploit our previous CASP successes in accurately predicting local errors in our models® by
taking the global and local per-residue errors into consideration during the multiple template
selection stage®.

For the initial fold recognition stage, 14 different methods were installed and run in-house
to generate up to 10 sequence-to-structure alignments each - resulting in up to 140 alternative
single-template based models being generated for each CASP target. The following fold
recognition methods were used: SP3’, SPARKS2’, HHsearch®, COMA°’, SPARKSX!',
CNFsearch!! and the 8 alternative threading methods that are integrated into the current LOMETS
package'? (PPA, dPPA, dPPA2, sPPA, MUSTER, wPPA, wdPPA and wMUSTER).

In the first stage of the IntFOLD6 TS method, all single-template models were assessed
using ModFOLDclust2'? in order to assign global and local model quality scores. Using the single
template model quality scores, and other criteria involving template coverage, the corresponding
alignments were then selected from each fold recognition method and used to build multiple-
template models, with the aim of minimizing local errors in the final models. The alternative multi-
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template modelling alignment selection methods resulted in the generation of a new population of
up to 124 multi-template models for each target. Additionally, I-TASSER light'* (for sequence
<500 residues; run in “light mode” with wall-time restricted to Sh), HHpred!®> and DMPfold'® were
used to generate up to 5 models each, which were then added to the final pool of alternative multi-
template models for ranking. In the final stage of the method, the models in the final reference set
were then evaluated using our new ModFOLDS8 rank QA method and the top 5 ranked models
were submitted as the final IntFOLD6 TS predictions (see our ModFOLDS abstract from more
details about our ModFOLDS8 rank method).

Results

The IntFOLDG6 server is continuously benchmarked using the CAMEO resource!” (identified as
server 90). According to the CAMEO results, IntFOLD6 has shown improved performance over
our last three methods (IntFOLD3, IntFOLD4 & IntFOLDS) and it is outperformed by just one
public server in the benchmark.

Availability
The IntFOLD6 server is available at:
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6 form.html.

1. McGuffin,L.J., Adiyaman,R., Maghrabi,A.H.A., Shuid,A.N., Brackenridge,D.A., Nealon,J.O.
& Philomina,L.S. (2019) IntFOLD: an integrated web resource for high performance protein
structure and function prediction. Nucleic Acids Res. 47, W408-W413, doi:
10.1093/nar/gkz322

2. Kryshtafovych,A., Monastyrskyy,B., Fidelis,K., Moult,J., Schwede,T., Tramontano,A. (2018)
Evaluation of the template-based modeling in CASP12. Proteins. 86 S1, 321-334. doi:
10.1002/prot.25425.

3. McGuffin, L.J., Shuid, A.N., Kempster, R., Maghrabi, A.H.A., Nealon J.O., Salehe, B.R.,
Atkins, J.D. & Roche, D.B. (2018) Accurate Template Based Modelling in CASP12 using the
IntFOLD4-TS, ModFOLD6 and ReFOLD methods. Proteins. 86 S1, 335-344. doi:
10.1002/prot.25360.

4. Cheng,J., Choe,M.H., Elofsson,A., Han,K.S., Hou,J., Maghrabi,A.H.A., McGuffin,L.J.,

Menéndez-Hurtado,D., Olechnovi¢,K., Schwede,T., Studer,G., Uziela,K., Venclovas,é.,

Wallner, B. (2019) Estimation of model accuracy in CASP13. Proteins. 87, 1361-137. doi:
10.1002/prot.25767

5. McGuffin,L.J., Roche,D.B. (2011) Automated tertiary structure prediction with accurate local
model quality assessment using the IntFOLD-TS method. Proteins. 79 S10, 137-46.

6. Buenavista,M.T., Roche,D.B., McGuffin,L. J. (2012) Improvement of 3D protein models using
multiple templates guided by single-template model quality assessment. Bioinformatics. 28,
1851-1857.

7. Zhou,H., Zhou,Y. (2005) SPARKS?2 and SP3 servers in CASP6. Proteins. 61 S7, 152-156.

8. Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics.
21, 951-96.

131


http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html
http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD6_form.html

10.

11.

12.

13.

14.

15.

16.

17.

MargeleviCius,M., Venclovas,C. (2010) Detection of distant evolutionary relationships

between protein families using theory of sequence profile-profile comparisons. BMC
Bioinformatics. 11, 89.

Yang,Y., Faraggi,E., Zhao,H., Zhou,Y. (2011) Improving protein fold recognition and template-
based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of query and corresponding native properties of templates.
Bioinformatics. 27, 2076-2082.

Ma,J., Wang,S., Zhao,F., Xu,J. (2013) Protein threading using context-specific alignment
potential. Bioinformatics. 29, 1257-65.

Wu,S. and Zhang,Y. (2007) LOMETS: A local meta-threading-server for protein structure
prediction. Nucleic Acids Research. 35, 3375-3382.

McGuffin,L.J. & Roche,D.B. (2010) Rapid model quality assessment for protein structure
predictions using the comparison of multiple models without structural alignments.
Bioinformatics. 26, 182-188.

Roy,A., Kucukural,A., Zhang,Y. (2010) I-TASSER: a unified platform for automated protein
structure and function prediction. Nature Protocols. 5, 725-738.

Meier,A., SOding,J. (2015) Automatic Prediction of Protein 3D Structures by Probabilistic

Multi-template Homology Modeling. PLoS Comput Biol. 11, e1004343.

Greener,J.G., Kandathil,S.M. & Jones,D.T. (2019) Deep learning extends de novo protein
modelling coverage of genomes using iteratively predicted structural constraints. Nat
Commun. 10, 3977. doi: 10.1038/s41467-019-11994-0

Haas, J., Barbato, A., Behringer, D., Studer, G., Roth, S., Bertoni, M., Mostaguir, K.,
Gumienny, R., Schwede, T. (2018) Continuous Automated Model EvaluatiOn (CAMEO)
complementing the critical assessment of structure prediction in CASP12. Proteins. 86 S1,
387-398. doi: 10.1002/prot.25431.

132



JLU Comp_Struct Bio

Molecular free energy optimization on a computational graph

Xiaoyong Cao' and Pu Tian'*
'~ School of Life Sciences, Jilin University, Changchun, China 130012, - School of Artificial Intelligence, Jilin
University, Changchun, China 130012
tianpu@jlu.edu.cn

Key: Free energy, computational graph, auto differentiation, coordinates transformation

Free energy is arguably the most important property of molecular systems. Despite great progress
in both its efficient estimation by scoring functions/potentials and more rigorous computation
based on molecular simulations, we remain far from accurately predicting and manipulating
biomolecular structures and their interactions. There are fundamental limitations, including
accuracy of interaction description and difficulty of sampling in high dimensional space, to be
tackled. Computational graph underlies major artificial intelligence platforms and is proved to
facilitate training, optimization and learning. This new framework greatly improves efficiency by
replacing local sampling with differentiation and is demonstrated in protein structure refinement.

We introduce an new refinement protocol combining auto differentiation, coordinates
transformation and generalized solvation free energy theory(GSFE)!. we construct a computational
graph infrastructure to realize seamless integration of fully trainable molecular interaction
description with end to end differentiable free energy optimization.

Methods

The GSFE-refinement? is a fast refinement protocol. As Figurel show, Schematic representation
of GSFE-refinement contain: (A) The neural network implementation of GSFE, Amino acid
identity is used as labels for training; LMLA(local maximum likelihood approximation) is utilized
for assessment of structural models. (B) major present protein structure prediction schemes based
on NN(Neural Networks). All networks provide a map from sequence information (or contacts
predicted from which) to structure. (C) Flowchart of the GSFE-refinement protocol, with Feature
extraction and NN Model being the same as that of A). This scheme provides a map between
structure and free energy. Through iterative minimization of free energy by differentiation with
respect to structure with the NN model fixed, we realize differentiable structure optimization. In
caspl4, five iterations are made for each starting structure to generate five structures as the final
result.

Results

We test our protocol in 31 proteins of CASP12 dataset(We remove the 8 start models don’t have
native structure and 3 start models lack amino acids). In the best of top 5 models, the average
GDT-HA increase 0.27% and 64.5%(20/31) start models improved. The average improvement of
RMSD value is -0.02, and 100% (31/31) start models is successes. All structures are optimized
within 170 seconds on a desktop computer , and each structure takes 5.5 seconds on average.
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The Jones-UCL group used pipelines similar to those used in the DMP2 group submissions (see
abstract for group DMP2) with manual intervention. Additional procedures included manual
domain parsing, assembly of multi-domain models and the use of alternative multiple sequence
alignments (MSAs).

Methods

The iterative MSA generation procedure was run for 5 iterations. Alternative MSAs were scored
using a novel neural net which predicts expected model quality using only the MSA as input. This
net was also used in a procedure that attempts to optimise an initial MSA by identifying a subset
of sequences which give rise to an improved predicted model quality score. Where MSA
optimisation resulted in significant improvements in predicted model quality, additional structure
models were built using the optimised MSA. All models produced by the DMP2 group were also
considered. Structure models were also built using alternative versions of the DMPfold2 pipeline,
most notably including different sets of neural network weights, and procedures for automatically
determining optimal threshold parameters for converting distance distributions to NOE distance
ranges for CNS and Xplor NIH.

Domain boundaries were determined using one or a combination of: HHsearch scans
against the PDB70 database; HHsearch against Pfam; or visual inspection of initial full-chain
models. Where domain segmentation was deemed necessary, per-domain models were built using
the methods described above. Models for each domain were scored using a combination of
MODCHECK and MODELLER DOPE scores!, and assembled into a full-chain model using
MODELLER.

Submissions in the MQA category used a neural net that predicts per-residue and full-chain
scores using the Ca coordinates of the query model. Refinement submissions used the iterated
restraint generation and structure prediction section of the DMPfold2 pipeline, with Bayesian
optimization used to sample bounds from the distance distributions, and the MODCHECK+DOPE
score function used as the overall objective for minimization.

Results
Alignment optimization produced significant improvements in predicted MSA quality in a few
cases. Automatic threshold parameter determination for distance predictions produced much more

robust tertiary structure predictions at the expense of additional compute time (as evaluated on the
CASP13 FM domains).
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Availability

DMPfold2 will be made  available on the PSIPRED  GitHub  page
(https://www.github.com/psipred) under a permissive licence, and also via the PSIPRED
Workbench? (http://bioinf.cs.ucl.ac.uk/psipred).

1. Greener,J.G., Kandathil,S.M. & Jones,D.T. (2019). Deep learning extends de novo protein
modelling coverage of genomes using iteratively predicted structural constraints. Nat.
Commun. 10, 3977.
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Our KiharalLab group participated in the six prediction categories, TS (Tertiary Structure), TR
(Refinement), QA (Quality Assessment), RR (Inter-residue distance prediction), H (assembly,
connected with our CAPRI human group and server group (Kiharalab Assembly)), and Data
assisted targets.

Methods

Inter-residue Distance Prediction: Distance maps are predicted using a deep residual
network that uses features from four different Multiple Sequence Alignments (MSA) with an
attention mechanism to predict the importance of each MSA based feature. Providing multiple
MSA’s based feature increases the co-evolutionary information provided to the network leading to
better performance than since MSA based features. We use four MSA’s with different e-values
cutoffs of 0.001, 0.1, 1, and 10. The input features are first fed into the feature encoding layers
consisting of few ResNet blocks. Next, soft attention is applied to the encoded features from all
the MSA’s. Finally, the attended features are passed through a deep ResNet. The MSA’s were
generated using DeepMSA! pipeline. Input features include one hot encoding of amino acid type,
PSI-BLAST position specific scoring matrix, HMM profile, secondary structure and solvent
accessible surface area predicted by SPOT-1D?, CCMPRED?, mutual information, and statistical
pairwise content potential.

Along with distance, the model also predicts the backbone phi-psi angles and the
orientation angles. For training, the orientation , 6 and ¢ angles were computed as mentioned in
trRosetta*. Additionally, we trained two separate ResNet models to predict the sidechain center
(SCE) distance and H-bond of backbone atoms. The SCE distance represents the distance between
the center of the sidechain for a pair of residues in a protein. The H-bond prediction is the distance
between the N atom of residue a and O atom of residue b where the N and O atoms form a hydrogen
bond.

Tertiary Structure Prediction: For protein structure prediction, we used Rosetta’s protein
folding and energy minimization protocol with customized constraints. The constraints were
computed from our prediction of distance distributions (CB-Cp, SCE-SCE and backbone N-O) and
angle distributions (backbone-phi, psi, inter-residue orientations) by normalizing with predicted
reference distributions. We generated 2,000-4,000 decoy models with different folding paths and
parameters. All decoy models were ranked by the sum of the ranks of multiple scoring functions.
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To explore better conformation from our models, top ranked models were further refined by
Rosetta large-scale energy optimization protocol®. For oligomeric targets, we searched for
oligomer templates by HHsearch®. If appropriate template structures were not found, we used our
protein-protein docking protocols, LzerD” and Multi-LzerD?, with our model or top-ranked server
models. In some oligomer targets, we performed literature searches. We manually selected the top
5 models based on our scoring and literature search.

Refinement: For refinement targets, we used our MD-based refinement protocol developed
during the past CASP rounds’. We performed sixty 1.2 nanosecond MD simulations with Ca atom
position restraints of increasing strength. The protocol uses an implicit solvent model, FACTS,
with the CHARMM force field, and a dialectic constant of 2.0. For the first eight targets, our
submissions were the same as Kiharalab Refine partially because the MD-based protocol was not
ready.

Quality Assessment: We used our QA method that combined a new single-model QA
method PRESCO2 and a machine learning method. PRESCO2 searches similar residue
environments observed in a query model in a reference database of representative native protein
structures. The search results are subject to final quality prediction using machine learning method
that was trained to distinguish near-native structures from other decoy structures. For the training
datasets, we used the same dataset as our distance prediction.

Protein Docking: We submitted protein docking models through CAPRI. Top 5 models of
our CAPRI human and server submissions were automatically passed to CASP submissions of
Kiharalab and Kiharalab Assembly groups, respectively. In principle, we followed our protocol
reported for earlier rounds of CAPRI'® !'. As described for TS above, we used template-based
modeling and de novo docking with our LzerD suite. Decoys were ranked by the sum of the ranks
of multiple scoring functions.

Data Assisted Targets: In a SAXS data assisted target (S1063), we used traditional
molecular dynamics flexible fitting (MDFF)!? method to refine the protein structure. During
MDFF, the force applied on each atom is the gradient of the potential energy function derived from
the density map. We performed independent MDFF simulations in implicit (using GBIS model)
and explicit solvents.

For NMR data assisted targets (N1077 and N1088), our MD based method applies
restraints to selected group of atoms (protons) based on the NOE-measured distances. This is
implemented using distancelnv colvar'® in NAMD', First, we minimize the protein structure and
then apply regular harmonic restraints to protein backbone by gradually lowering the force
constant while equilibrating the structure. Next, harmonic wall restraints based on NOE-measured
distances are applied during the MD simulations, with an upper-bound set at SA. We also applied
Rosetta relaxation protocol to our TS models with ambiguous NMR contact data and dihedral
angle data.
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We submitted models to distance/contact prediction category (RR) in CASP14. Our method is
composed of two deep learning networks. The first network is a ResNet model that predicts
distance distribution based on sequences features from four different Multiple Sequence
Alignments (MSA). Distance prediction is converted to contact prediction and passed to the second
network. The second network is a GAN model that refines the predicted noisy contacts and
generates an improved contact map.

Methods

The first model is a deep residual network that predicts the protein distance along with backbone
and orientation angles from multiple different MSA. Deep learning based distance prediction relies
heavily on the input MSA as it contains information about evolutionary conserved positions and
motifs. To provide more information to the model we use features from 4 MSA with e-value cutoffs
0f 0.001, 0.1, 1, and 10. We add an attention layer over the different MSA encoded features to let
the model choose for every pair of residue which MSA to focus on. The input features are first fed
into the feature encoding layers consisting of few ResNet blocks. Next, soft attention is applied to
the encoded features from all the MSA’s. Finally, the attended features are passed through a deep
ResNet.

We used 8 sequence-based input features. The MSA was generated using DeepMSA!
pipeline. The 1D features include one hot encoding of amino acid type, PSI-BLAST position
specific scoring matrix, HMM profile, and secondary structure and solvent accessible surface area
predicted by SPOT-1D. The 2D pairwise features includes CCMPRED, mutual information, and
statistical pairwise content potential.

The predictions from the above network are then passed to ContactGAN? model.
ContactGAN is a novel contact map denoising and refinement method using Generative
Adversarial Networks (GAN)?. ContactGAN takes a contact map predicted by existing methods,
which is considered as an imperfect, noisy input, and outputs an improved map that better captures
correct residue-residue contacts compared to the original map. ContactGAN was trained with
predicted noisy contact maps coupled with corresponding native contact maps, which the networks
were guided to generate. Figure 1 outlines the architecture of ContactGAN.
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Figure 1. The architecture of ContactGAN showing overall structure that connects the generator
and the discriminator networks. The generator network takes a noisy predicted contact map and
outputs a refined map. The discriminator network is to discriminate a generated map by the
generator network and the native map, so that the generator is trained to produce indistinguishable
maps from native maps by the discriminator.
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Proteins are important biomolecules that are responsible for different biological function. Over the
years, several experimental methods like X-ray crystallography (X-ray), Nuclear Magnetic
Resonance (NMR), Small Angle X-ray Scattering (SAXS) and cryo-electron microscopy (cryo-
EM) have been developed to determine protein structure. With advancement in technology, it is
becoming very common now to solve high resolution protein structure and complex. However, the
sparse nature of the experimental data, often requires deep learning! and physics-based using
molecular dynamics (MD)>* computational approach, to model and refine protein structures.
Here, our group used a physics-based approach using MD to refine protein structures released
during the ongoing CASP-14 season.

Methods
In this section, we outline the MD and enhanced sampling procedure adopted by our protein
structure refinement group for the regular and extended refinement targets in CASP-14.

MD using flat-bottom harmonic restraints: Based on the success reported by Heo et al®
to refine protein structures near experimental accuracy, we adopt a similar approach for this CASP
experiment. Our method uses both harmonic restraints and flat-bottom harmonic restraints to refine
protein structures. This combined approach showed refinement of several protein structures during
our benchmark of the CASP-13 refinement targets. Specifically, in our MD based refinement
approach, we initially minimize the protein structure, subsequently applying regular harmonic
restraints to protein backbone by gradually lowering the force constant over a simulation time of
10 nanoseconds (ns). So far, the motivation here is to initially have a conservative approach of
refinement from the starting structure. Next, we switch to flat-bottom harmonic restraints with a 4
A width, applied to the C-a atoms in protein structure and perform MD simulation for an additional
100 ns. The total simulation time of a single MD trajectory is 110 ns. We perform 3 such cycles
for a total time of 330 ns. The flat-bottom harmonic restraints are implemented using the Colvars®
module in NAMD’ and VMD?. All-atom MD simulations are performed using NAMD 2.13 with
CHARMM36m’ force-field in explicit solvent. Additionally, we use the hydrogen mass
repartitioning'® method to be able to use a longer timestep of 4 femtoseconds (fs) with flat-bottom
harmonic restraints, instead of usual 1-2 fs.

Extended refinement: During CASP-14, for some refinement targets (8 out of 51) the
organizers requested running longer MD simulations of earlier refined models to see if additional

142



refinement is possible by further sampling the protein conformational space. The choice of the
extended refinement targets provided by organizers included initial models with very high (R1034)
and low (R1029) GDT HA values, 70 and 28 respectively. For such extended refinement, we
performed longer MD simulations, continuing for another 100 ns per trajectory using flat-bottom
harmonic restraints. The total time for a refinement target under this category is 0.62 ps. As a
parallel approach to our flat-bottom harmonic restraint MD, we implemented MD with enhanced
sampling, specifically using metadynamics'!. Here, we start from a refined model using flat-
bottom harmonic restraints and perform enhanced sampling using metadynamics with a harmonic
wall biased potential as implement in NAMD colvars. A two-dimensional potential of mean force
(PMF) with appropriate thermodynamic weighting is constructed using root mean square deviation
(RMSD) and radius of gyration (Rg) as our choice of the collective variables (or reaction
coordinate). Finally, clustering is performed to identify ensemble of protein structures that are
occupying low energy states.

Rosetta-Iterative Hybridize: Several (7 out of 51) of the extended refinement targets were
also refined in our implementation of the Rosetta Iterative Hybridize!? protein refinement protocol.
The protocol first creates a diverse set of 50 models which are derived from the input structure by
identifying and removing the flexible regions via MD and rebuilding them with Rosetta
Comparative Modeling. These 50 models are then subjected to 50 iterations of the genetic
algorithm-based refinement protocol, of which the top 5 scoring models (via the Rosetta Energy
Function'?) are forwarded to the pool for manual selection. Each iteration of the algorithm consists
of 10 "parent structures" or seeds in which fragments of these structures undergo mutations from
a fragment library or crossovers with other structures. Using the Rosetta Energy Function as
selection criteria, 50 models are selected for the next iteration.

Results
In this section, we discuss how final models were selected based on the above refinement
methodology using different MD and enhanced sampling methods.

MD using flat-bottom_harmonic_restraints: First, we calculated the DFIRE!* energy
potential and GDT-HA'" from the starting model across 3 independent MD simulations per target.
Based on our success in CASP-12, we use the same clustering'® algorithm to structurally average
protein structure. The resultant structure from their representative cluster was minimized for 1000
steps to refine the protein sidechains. Additionally, we ranked the models based on DFIRE energy
function. Finally, from the five selected models we rank the models based on their MolProbity'’
score after visual inspection using PyMOL.

Extended refinement: Similar approach was adopted here as the MD using flat-bottom
harmonic restraint method. Additionally, for our enhanced sampling MD simulations using
metadynamics, each trajectory was clustered into five clusters representing the low energy states.
The RMSD cutoff for clustering was set in the range 5 — 12 A as necessary to obtain five clusters
for any given target. Based on this, 15 models were selected, 5 each from regular flat-bottom
harmonic restraint MD, metadynamics and ROSETTA iterative hybridize methods. Later, we
ranked all 15 models by their MolProbity scores and selected the top five models after visual
inspection using PyMOL.
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We used a fully automatic protein structure prediction pipeline to submit to the TS and RR
categories as a server predictor in CASP14. Our server predicts protein structures entirely without
any templates or fragment libraries, relying on multiple sequence alignment (MSA) features and
deep learning to predict a residue-residue distance distribution. After structures are extracted from
the distance distributions using an energy minimization procedure, they are ranked by multiple
scoring functions. The rankings are then aggregated to select the five models for submission.

Methods

The first stage of our pipeline generates four MSAs with e-value cutoffs of 0.001, 0.1, 1, and 10
using the DeepMSA! pipeline, which uses HH-suite and HMMER programs to generate
alignments from the UniClust30?, UniRef90%, and Metaclust* databases. Eight sequence-based
input features were fed into the neural network stage to generate a predicted residue-residue
distance distribution. The 1D features include one-hot encoding of amino acid type, PSI-BLAST?
position specific scoring matrix, HMM profile, and secondary structure and solvent accessible
surface area predicted by SPOT-1D®. The 2D pairwise features include CCMPRED’, mutual
information, and statistical pairwise content potential. The distance distributions from this stage
were submitted for the RR category.

Once generated, the predicted distance distribution is converted into full-atom structure
models by L-BFGS minimization of predicted short-, medium-, and long- range distance restraints
in sequence using PyRosetta®. Rankings of the model pool are then calculated using the
knowledge-based scoring functions GOAP’, DFIRE!, and ITScorePro!!, as well as Rosetta’s
REF2015'? score. These rankings are then aggregated using the ranksum method!*!>, where the
ranks of a given model by each of the component scores are added to produce a new ordering. The
top five models by ranksum were submitted for the TS category.

For the QA category, we combined template search with a single-model QA method
PRESCO2 and machine learning. PRESCO2 searches similar residue environments observed in a
query model in a reference database of representative native protein structures. The PRESCO2
search results are subjected to final quality prediction using machine learning method that was
trained to distinguish near-native structures from other decoy structures. For targets where no
template was detected, the output of this neural network was used to rank the models. For targets
with a detected template, the models were instead ranked by TM-score from TM-align'® to the
template.
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Flowchart of our automated prediction pipeline. All structure predictions are derived from
information from sequence databases, processed by machine learning models and restraint
minimization. QA predictions refer to a template when available.
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