Tertiary structure (TS) prediction and refinement from Baker groups

<u>Ivan Anishchenko</u>, Minkyung Baek, <u>Hahnbeom Park</u>, Justas Dauparas, Naozumi Hiranuma, Sanaa Mansoor, Ian Humphrey, and David Baker

1

UNIVERSITY of WASHINGTON

BAKER-ROSETTASERVER

binned predictions @ d<20Å

J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker, Improved protein structure prediction using predicted interresidue orientations, PNAS, 117: 1496-1503 (2020)

trRosetta with templates

input MSA	sequen PSSM, en coupling seq. separ	ce, 2 tropy gs, ration	D ResNet	→	φ
<i>hit example</i> =24 ate_Neff=1.300		featur fron templa	res n ates		
nfidence	conv2d	"pixel-wise"	attention	conv2d	-,
	template	template 2		template 25	d,ω,θ,φ, hhsearch stats

d

- too day

N

No 470		hhsearch hit example
Probab=5.04 E-val	lue='	<u>30+03</u> Score=26.24 Aligned_cols=24
Identities=33 < Si	imila	arity=0.667_Sum_probs=10.7 Template_Neff=1.300
Q ss_pred Q T1052 Q Consensus T Consensus T 1022_A T ss_dssp T ss_pred	809 809 110 110	ceecCcEECHHHHHHHHHHHCCCCC GLYIGAKVNADFIAQFIKSKGWGG 832 (832) ~l~~a~~a~~VNADFIAQFIKSKGWAG 832 (832) ~l~~a~~a~~VNADFIAQFIKSKGWAG 832 (832) -l+- + +-+ similarity vpyssvk~knr~e~v~etmkytteskgw~p 139 (149) VPYSSVKKKNRNELVEEFMKYFFESKGWNP 139 (149) EEGGGSTTCCHHHHHHHHHHHHHHHHHHHHHHCCG FEhHHCCCCC
Confidence		0011111 235666666666777741 confidence

- network with templates typically gives better predictions than the MSA-only net
- in low *Neff* regime unrelated templates may misguide predictions

merge predictions from both networks

Model rescoring and recombination

Recombining models with *trRefine* generally improves their quality

Submitted models are generally of better quality than the best selected *hhsearch* template ...

... but some good templates were missed

Prediction workflow by the example of T1079

Recombination of templates

Recombination of templates

GDT_TS =	75.60
best tmplt =	78.15

Recombination of templates

16

T1091: templates were missed

		D1	D2	D3	D4
network	best tmplt, top25	46.04	21.96	21.70	8.71
predictions	best tmplt, top500	46.04	61.92	72.41	78.57
	model1	76.08	77.34	65.80	43.97

could have been modeled better

FM/TBM and TBM targets

FM targets

 $Z_HA + (Z_SG + Z_IDDT + Z_CAD)/3 + Z_ASE$

(

 $Z_TS + Z_QCS$

Server Summary

- Joint use of templates and MSA worked well
- Templates could have been selected and used better
- No good reason for not using more sequences (metagenomes)
- *trRefine* does improve model quality but not dramatically

Human Tertiary structure prediction & Refinement (BAKER)

Human vs Server: Contribution from Additional Sequence search for trRosetta

Human modeling

26 domains: Submitted as server models67 domains: Remodeled with alternative MSAs (open circles: starting points for refinement)

Example 1: Sequence search & Modeling as a whole Protein

Refinement guided by DeepAccNet

Key idea of refinement in CASP14: To use EMA to guide Refinement search

Signed distance error predictions from DeepAccNet

N Hiranuma et al, Improved protein structure refinement guided by deep learning based accuracy estimation, bioRxiv.

Refinement protocol

Refinement results (colored by size)

What went wrong -- R1035 A(GDT-HA): -7

Xtal-structure

Starting/Refined as domain

T1035: Starting/ Refined together with T1033

What went wrong -- R1038-D2 Δ(GDT-HA): -6

Xtal-structure

Refined as domain

What went wrong -- R1078 Δ(GDT-HA): -15

Xtal-structure (homo-dimer)

Starting/Refined as monomer

Broken Disulfide bond

Dimer interface Bright side: EMA-guided refinement enables improving relatively larger proteins

R1067

R1085-D1

Still challenging -- R1068, R1056, etc.

Could not improve significantly when topologies were complicated & sizes were big

Take home messages

- EMA-guided refinement tested in CASP14; general challenge remains
- Refinement in a monomeric context fails; Information is often more critical than principles in real practice modeling scenarios

Acknowledgements

BAKER group CASP14 team

Ivan Anishchenko Minkyung Baek Hahnbeom Park David Kim Justas Dauparas Naozumi Hiranuma Sanaa Mansoor Ian Humphrey Luki Goldschmidt David Baker

trRosetta developers

Jianyi Yang Sergey Ovchinnikov

CASP organizers & participants