Zhang Groups: Integration of threading and deeplearning for protein structure prediction

Wei Zheng, Yang Li, Chengxin Zhang, Xiaogen Zhou, Xiaoqiang Huang, Robin Pearce, Eric Bell, Yang Zhang

Department of Computational Medicine and Bioinformatics Department of Biological Chemistry University of Michigan

Methods

DeepMSA2 for MSA construction

DeepPotential for contact/distance/HB-network prediction

Hydrogen-bond potential in D-I-TASSER

$$= \frac{\overline{U_{i-1}} + \overline{U_{i}}}{|\overline{U_{i-1}} + \overline{U_{i}}|}$$

$$= \frac{\overline{U_{i-1}} + \overline{U_{i}}|}{|\overline{U_{i-1}} \times \overline{U_{i}}|}$$

$$= \frac{\overline{U_{i-1}} \times \overline{U_{i}}|}{|\overline{U_{i-1}} - \overline{U_{i}}|}$$

$$= \frac{\overline{U_{i-1}} - \overline{U_{i}}}{|\overline{U_{i-1}} - \overline{U_{i}}|}$$

$$AA = \arccos(\overline{A_{i}} * \overline{A_{j}})$$

$$BB = \arccos(\overline{B_{i}} * \overline{B_{j}})$$

$$CC = \arccos(\overline{C_{i}} * \overline{C_{j}})$$

 $\overrightarrow{A_i}$

 $\overrightarrow{B_i}$

 $\overrightarrow{C_i}$

Zhang-Server pipeline built from D-I-TASSER

Results

Summary of FM targets folded by Zhang group

23 FM targets and 14 FM/TBM targets are classified as "FM" targets in the following analysis

76% targets are foldable based on best server models from Zhang group in CASP14

Impact of different energy components on D-I-TASSER for FM targets

Impact of distance prediction on D-I-TASSER for FM targets

Impact of DeepMSA2 on the D-I-TASSER for FM targets

T1039-D1 by Zhang-Server and Zhang-CEthreader

Zhang-Server model1 TM-score=0.31

Zhang-CEthreader model1 TM-score=0.68

Experimental structure (red) Models (blue, cyan, yellow, green)

TM-score=0.681

TM-score=0.683

TM-score=0.52

Impact of domain partition

Experimental structure (red), Models (blue, yellow, cyan)

Summary

• What works

- Distance and hydrogen-bond prediction by DeepPotential
- Advanced structure assembly simulations by I-TASSER/QUARK
- DeepMSA2 for deeper MSA generation

• What needs to be improved

- Modeling oligomers
- Selecting good MSA
- Partitioning domains

Acknowledgements

Yang Zhang

Yang Li

Chengxin Zhang

Xiaogen Zhou

National Institutes of Health

POWERED BY XSEDE Extreme Science and Engineering Discovery Environment

Xiaoqiang Huang

Robin Pearce

Eric W. Bell

Jonathan Poisson

- CASP Organizers
- Experimentalists that shared their structures

Thank you!

QUARK pipeline built from D-QUARK

Zhang-CEthreader pipeline built from DEthreader and D-I-TASSER simulation

