Protein Assembly by Server and Human

Taeyong Park, Hyeonuk Woo, Jinsol Yang, Sohee Kwon, Jonghun Won and Chaok Seok

Contents

- 1. Seok assembly pipeline
- 2. Server vs. Human
- 3. What went right (four targets)
- 4. Deep learning (DL) and protein assembly

Seok assembly pipeline

Server pipeline on An target

GalaxyHomomer2

Server pipeline on A₁B₁ target

Sequences of A & B Template search for A & B CASP14 TS protocol using HHsearch Common templates of Hetero-dimer template Monomer structures of A and B search A & B Hetero-dimer Monomer Homo-oligomer templates templates templates Ab initio docking by Modeling AB by superposition on the found templates GalaxyTongDock A **Oligomer models** ULR modeling by GalaxyLoop (Model1) Refinement by GalaxyRefineComplex (Model1) 5 models

GalaxyHeteromer

Server pipeline on A₁B₁ target

Server prediction on the targets of more complicated stoichiometry (A_IB_mC_n...)

• Individual interfaces were predicted by GalaxyHeteromer and GalaxyHomomer2.

✓ In the case of H1072 (A₂B₂), A₂ and B₂ interfaces were predicted by *GalaxyHomomer2*. AB interface was predicted by *GalaxyHeteromer*.

Human

1. Available information from the literature and human insight were employed for model generation and selection.

2. Monomer models from other servers were also utilized to predict oligomer structures.

Server vs. Human

Server vs. Human

What went right (four targets)

1. T1070 (Ab initio docking)

T1070 (A₃) Manually separated into 4 domains based on server models for monomer.

The crystal structure also can be divided into similar 4 domains

domain 4: 265-335 (264-335)

domain 3: 181-256 (190-249)

domain 2: 80-180 (80-165)

domain 1: 1-76 (1-76)

Domain 4 Domain 3 Domain 2 Domain 1

The crystal structure also can be divided into similar 4 domains

domain 4: 265-335 (264-335)

domain 3: 181-256 (190-249)

domain 2: 80-180 (80-165)

domain 1: 1-76 (1-76)

Domain 4 Domain 3 Domain 2 Domain 1

T1070 (A₃) domain 2 (80-180)

Model 5: little bit closer each other because of lack of 166-180 due to mis-spliting of the domain

T1070 (A₃) domain 2 (80-180)

Model 5: little bit closer each other because of lack of 166-180 due to mis-spliting of the domain

Model 5

F_{nat}: 0.18 IRMSD: 5.26Å LRMSD: 5.31Å

"Acceptable quality"

T1070 (A₃) domain 2 (80-180)

Model 5: little bit closer each other because of lack of 166-180 due to mis-spliting of the domain

Model 5

F_{nat}: 0.18 IRMSD: 5.26Å LRMSD: 5.31Å

"Acceptable quality"

GalaxyTongDock <u>top 1 prediction</u> by using Seok-server_TS1 monomer structure

Scoring based on human intuition didn't work

Crystal Model

T1070 (A₃) domain 4 (265-335) Domain-split was successful 265-335 vs. 266-335.

Model 1

F_{nat}: 0.42 IRMSD: 3.22Å LRMSD: 4.06Å

"Medium quality"

GalaxyTongDock top <u>16 prediction</u> by using Zhang-CEthreader_TS1 (The best docking pose generated)

Scoring based on human intuition worked well

Crystal Model

2. T1078 (Ab initio docking)

Model 3 is one of the four acceptable quality models.

Crystal s1 Model s1 Crystal s2 Model s2

Model 3 is one of the four acceptable quality models.

F_{nat}: 0.18 IRMSD: 4.28Å LRMSD: 6.95Å

> Crystal s1 Model s1 Crystal s2 Model s2

Model 7 has right orientation, but is of lower quality.

F_{nat}: 0.15 IRMSD: 5.50Å LRMSD: 7.80Å

"Acceptable quality"

Crystal s1 Model s1 Crystal s2 Model s2

The two termini affected the model quality.

Model 7 has right orientation, but is of lower quality.

N-terminal

F_{nat}: 0.15 IRMSD: 5.50Å LRMSD: 7.80Å

"Acceptable quality"

Crystal s1 Model s1 Crystal s2 Model s2

The two termini affected the model quality.

Unsuccessful N-terminal modeling (1-14)

F_{nat}: 0.15 IRMSD: 5.50Å LRMSD: 7.80Å

GalaxyTongDock was used with only 15-128 region.

Crystal s1 Model s1 Crystal s2 Model s2

Unsuccessful N-terminal modeling (1-14)

F_{nat}: 0.15 IRMSD: 5.50Å LRMSD: 7.80Å

Evaluation without N-terminal (1-14) F_{nat}: 0.25 IRMSD: 1.72Å LRMSD: 3.65Å

GalaxyTongDock was used with only 15-128 region.

Crystal s1 Model s1 Crystal s2 Model s2

T1078 (A₂) Hexahistidine tag (LPLEHHHHHH, 129-138)

Evaluation without N-terminal (1-14)

F_{nat}: 0.25 IRMSD: 1.72Å LRMSD: 3.65Å

> Crystal s1 Model s1 Crystal s2 Model s2

Part of the exp tag forms strong interaction.

T1078 (A₂) Hexahistidine tag (LPLEHHHHHH, 129-138)

We didn't model the expression tag.

Evaluation without N-terminal (1-14) *F_{nat}: 0.25 IRMSD: 1.72Å LRMSD: 3.65Å*

Also without exp tag (129-138) *F_{nat}: 0.43 IRMSD: 1.72Å LRMSD: 3.69Å*

"Medium quality"

Monomer quality (FEIG) RMSD: 1.63Å

> Crystal s1 Model s1 Crystal s2 Model s2

3. T1083 (Template-based docking and refinement)

Model 1 F_{nat}: 0.6078 IRMSD: 2.51Å LRMSD: 4.83Å

The only "Medium quality" model by server

Monomer quality (Seok_assembly) RMSD: 2.82Å

Structure-based **Monomer model Relaxed structure** template

Monomer quality (Seok_assembly) RMSD: 2.82Å

Superposed model s1 Superposed model s2

Relaxed model s1 Relaxed model s2

T1083 (A₂) GalaxyRefineComplex **Crystal Before refinement After refinement** Model s1 *F_{nat}: 0.3922 F_{nat}: 0.6078* Model s2 IRMSD: 4.09Å IRMSD: 2.51Å Model s1 LRMSD: 10.147Å LRMSD: 4.83Å Model s2

"Incorrect quality"

"Medium quality"

4. T1099 (Template-based docking and data-assisted refinement)

T1099v1 (A₂)

Model 2 *F_{nat}: 0.3398 IRMSD: 3.90Å LRMSD: 8.04Å*

The only "Acceptable quality"

Monomer modeling starts from (FALCON-TBM TS1) RMSD: 9.5Å

T1099v1 (A₂)

Relative orientation & insertion region for DHBc.

Template (PDB ID:3J2V) is available. seqID*coverage = 12.1.

Template(HBV) vs Crystal(DHBc)

Long insertion region at DHBC
Different relative orientation of main helix.

From literature search, information about the role and binding mode of insertion region for assembly was obtained.

T1099v1 (A₂) Insertion region for DHBc.

F_{nat}: 0.3398 IRMSD: 3.90Å LRMSD: 8.04Å

"Acceptable quality"

Monomer modeling starts from (FALCON-TBM TS1) RMSD: 9.5Å

Crystal s1 Crystal s2 Model s1 Model s2

Crystal structure

Our model

A preliminary study of applying deep learning to ab initio docking

Re-scoring docking poses by deep learning

• GalaxyTongDock, a grid-based rigid-body docking, has limited scoring power.

• Deep learning-based re-scoring method has been developed.

Simple interface scoring by deep learning

Deep learning-based re-scoring improves performance of *ab initio* docking

Non-redundant 1,568 hetero-dimers

> 1,156 (training set) and 412 (test set)

Performance on 412 hetero-dimers in test set

TongDock	***	**	*
Top 1	0.49	6.1	11.2
Top 10	1.70	12.9	23.5
Top 100	2.91	22.8	50.5
Top 1,000	3.40	38.6	81.1

DL	***	**	*
Top 1	0.73	10.9	25.5
Top 10	1.70	22.3	41.0
Top 100	2.91	36.4	60.9
Top 1,000	4.37	49.0	85.2

Take-home message

- 1. Improved monomer quality improved performance of ab initio docking.
- 2. Interface refinement can improve oligomer model quality.
- 3. Advent of deep learning is changing everything.

Thank you for listening

