

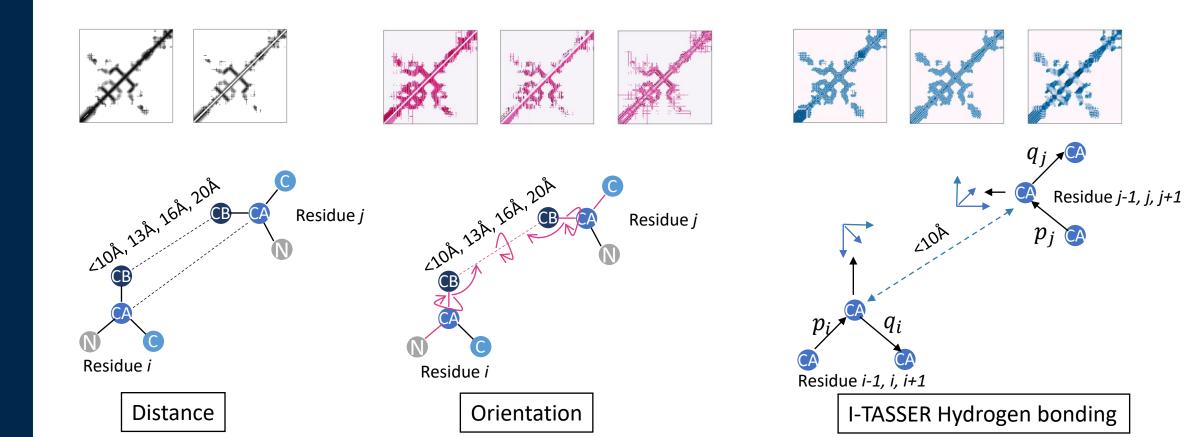
DeepPotential: Deep learning based inter-residue contact/distance prediction in CASP14

Yang Li, Chengxin Zhang, Wei Zheng, Xiaogen Zhou, Eric W. Bell, Dong-Jun Yu, and Yang Zhang

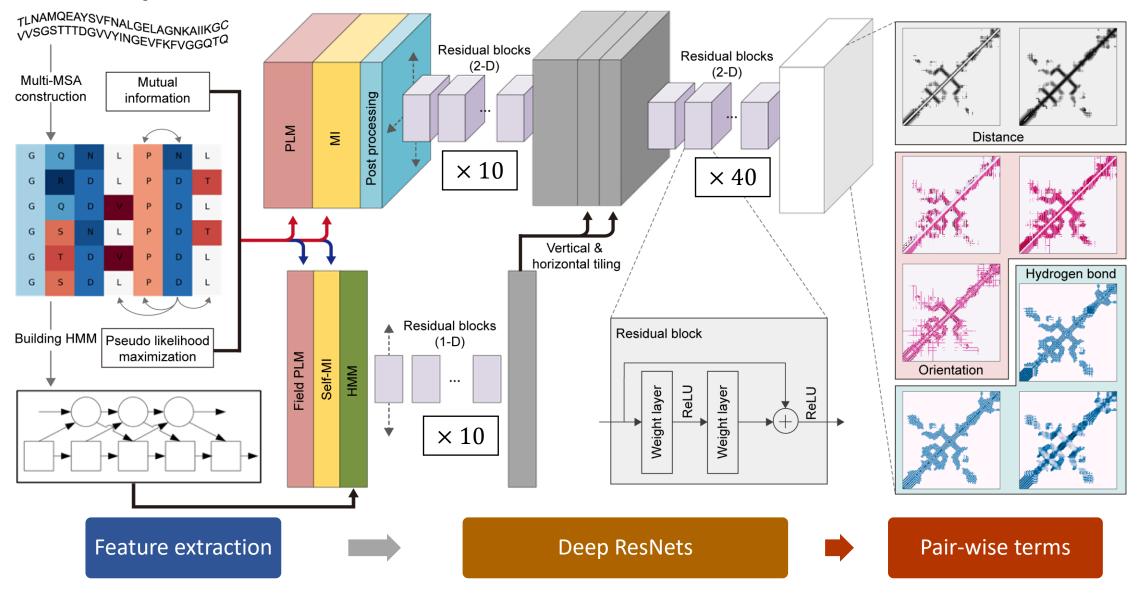
University of Michigan Nanjing University of Science and Technology

DeepPotential

Predicting (long-range) pair-wise **statistical potential terms** for protein structure prediction,

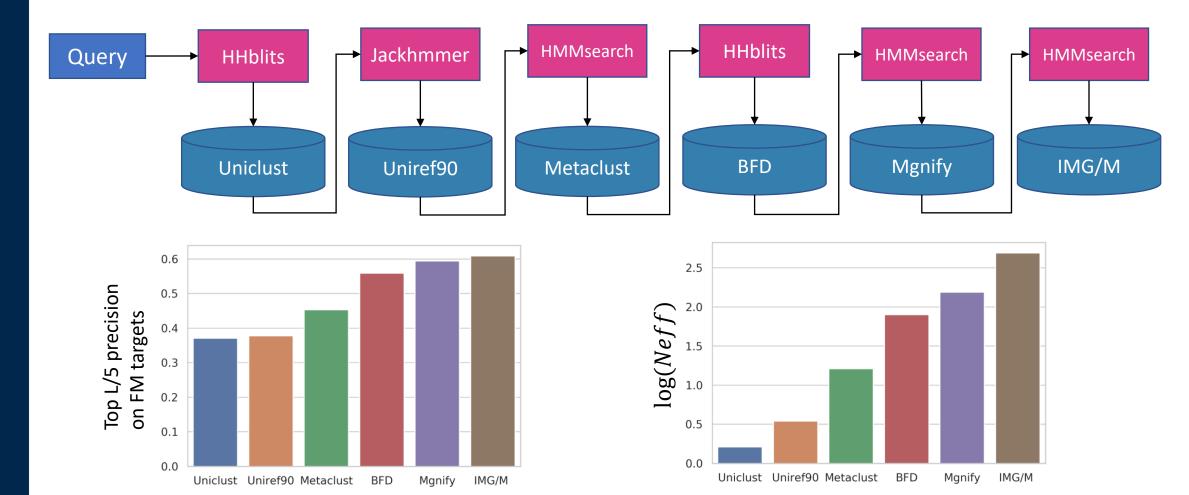


DeepPotential



MSA construction

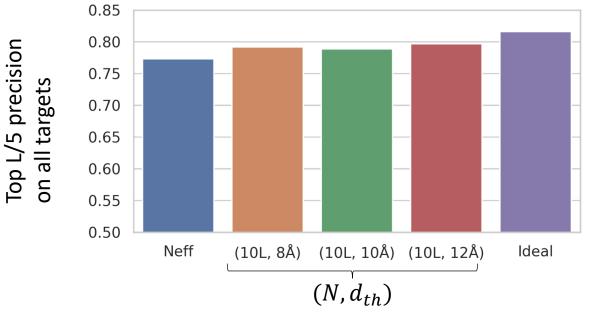
Progressive collection of MSA increasing accuracy of contact prediction



MSA selection

MSA selection based on confidence score outperforms based on Neff

- Select MSA based on mean of top-N DeepPotential contact probabilities (defined at the threshold of d_{th} , $p(x < d_{th})$)
- Use the prediction from the selected MSA



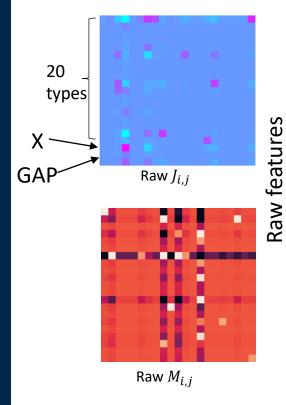
In CASP14, two confidence score configurations are considered:

- $(N = 10 \times L, d_{th} = 12\text{Å})$, Group name: TripletRes
- $(N = 10 \times L, d_{th} = 8\text{Å})$, Group name: DeepPotential

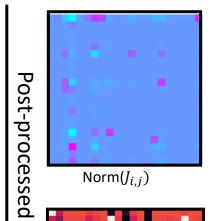
Feature extraction

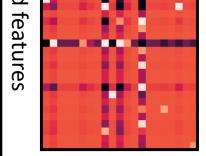
Co-evolutionary features:

- Couplings matrix I ($I \in \mathbb{R}^{L \times L \times 22 \times 22}$) of Pseudolikelihood maximization (PLM)
- Raw Mutual information matrix (MI): $M (M \in \mathbb{R}^{L \times L \times 22 \times 22})$; ۲
- And their post-processing. $(L \times L \times (4 + 4))$ ٠

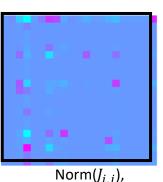


UNIVERSITY OF **MICHIGAN**





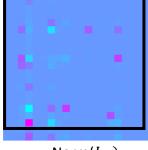
 $Norm(M_{i,i})$

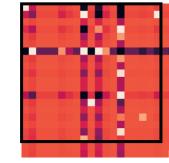


Excluding GAP

Norm $(M_{i,i})$,

Excluding GAP





Norm $(M_{i,i})$, Excluding GAP&X PLM

Residue i

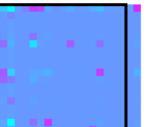
MI

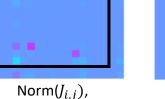
Residue *j*

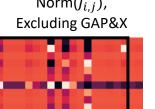
Query sequence Parameter in $J_{i,i}$

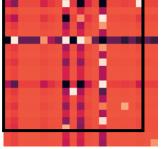


Query sequence Parameter in $M_{i,i}$









Training

Training data:

- 26,151 structures from PDB, by 11/12/2019
- Sequence identity cut-off of 35%
- Maximum length of 1000
- Training MSA: HHblits against Uniclust only

Loss function

- Discretizing prediction terms into bins
- Neg-log likelihood of all prediction terms
- Loss = $-\sum_{n=1}^{N}\sum_{i,j}\sum_{t\in T}w_t \log P(data_n^t(i,j)|\mathbf{J},\mathbf{M})$
 - *n*, *i*, *j* enumerates all residue pairs in the training set
 - $w_t = 1$ for all $t \in \{ distance \ terms; orientation \ terms; H bond \ terms \}$

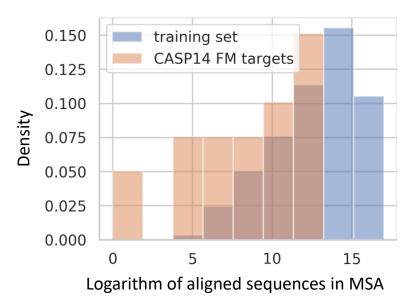
Approximations: Independent distributed in

• $p(data) = \prod_{n=1}^{N} p(data_n)$ • Samples = $\prod_{n=1}^{N} \prod_{t \in T} p(data_n^t)$ • Prediction terms = $\prod_{n=1}^{N} \prod_{t \in T} \prod_{i,i} p(data_n^t(i,j))$ • Residue pairs (pixels)

Training

Generalization ability of the model





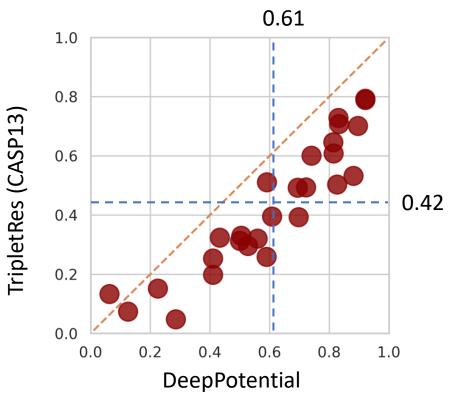
- Sub-sampling MSAs during the training
- Larger weights on shallow MSAs

The finale prediction is the ensemble of 15 diverse models, with different combination of terms and thresholds

Results

Results in contact prediction on CASP13 targets

 Head-to-head comparison of long-range top-L precision on 27 CASP13 FM targets



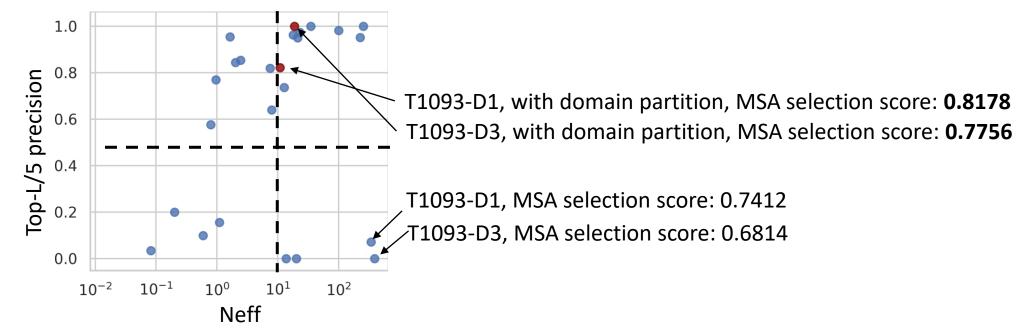
DeepPotential is over 40% higher than CASP13 version of TripletRes

Results

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |d_{expectation}^{i} - d_{experimental}^{i}|$$

Results of DeepPotential in CASP14

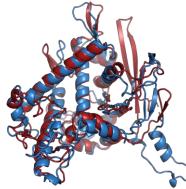
MSA selection	Contact precision (long range)				Mean Absolute Error (long range)		
	Top L/10	Top L/5	Top L/2	Top L	Top L	Top 2L	Top 5L
$N = 10 \times L$ $d_{th} = 8 \text{\AA}$	65.53	61.31	50.96	37.66	2.68	2.89	3.23
$N = 10 \times L$ $d_{th} = 12\text{\AA}$	62.67	59.01	48.16	36.59	2.69	2.87	3.25



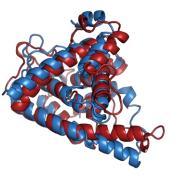
Results

DeepPotential is capable of folding high-accuracy protein structures

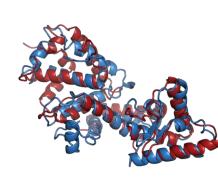
9 FM targets with contact precision over 0.8 and Zhang-Server has a TM-score over 0.5



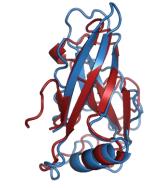
T1037-D1, MAE=0.948 TM-score=0.680

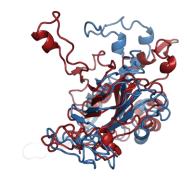


T1041-D1, MAE=0.760 TM-score=0.722

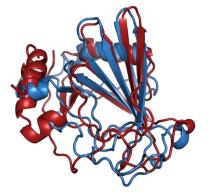


T1042-D1. MAE=1.344 TM-score=0.730

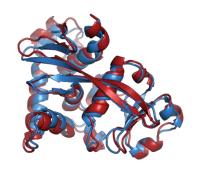




T1061-D2, MAE=1.109 TM-score=0.527



T1090-D1, MAE=1.157 TM-score=0.656



T1094-D2, MAE=1.062

TM-score=0.914

T1096-D1, MAE=1.189

TM-score=0.835

T1049-D1, MAE=1.561

TM-score=0.675

T1096-D2, MAE=1.454 TM-score=0.833

Native Zhang-Server (DeepPotential + I-TASSER)

MAE: Top-5L long range MAE

Summary

Extreme Science and Engineering Discovery Environment

What was working?

- More data help the training
- Constructing deeper MSA
- MSA selection by top-N contact scores
- Various prediction tasks
- Raw coevolution/multi-view feature fusion

What went wrong?

- Limited computational resources, trainable with single GPU (10GB)
 - RAW Precision matrix (PRE in TripletRes (CASP13)) was discarded
 - Deeper/wider neural networks was not considered
- Tuning weight of distance term should help distance/contact accuracy
- Overconservative domain partition.

Acknowledgements

Zhanglab members

Chengxin Zhang

Wei Zheng

Xiaogen Zhou

Eric W. Bell

Dong-Jun Yu Ya

Yang Zhang

Special thanks to

• The authors of *trRosetta* for insightful discussion

Thank you!

