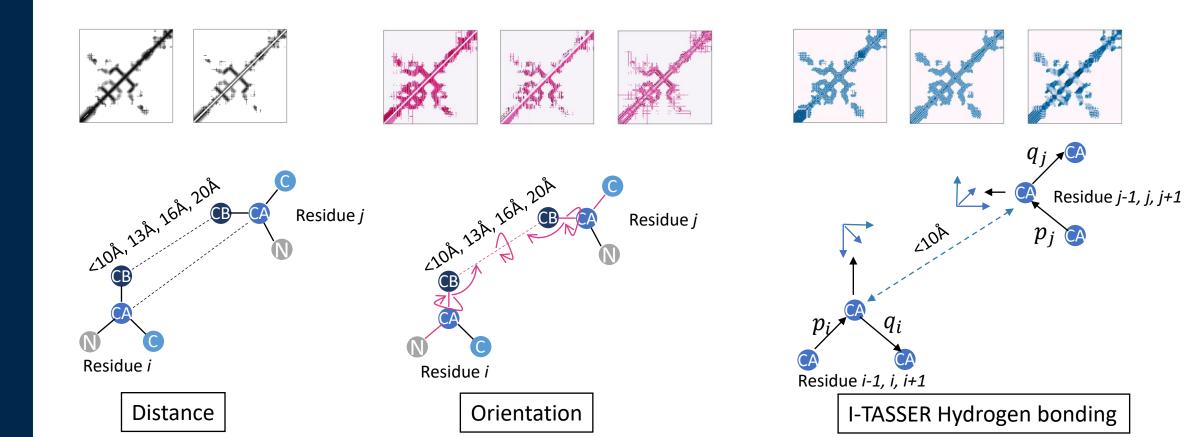
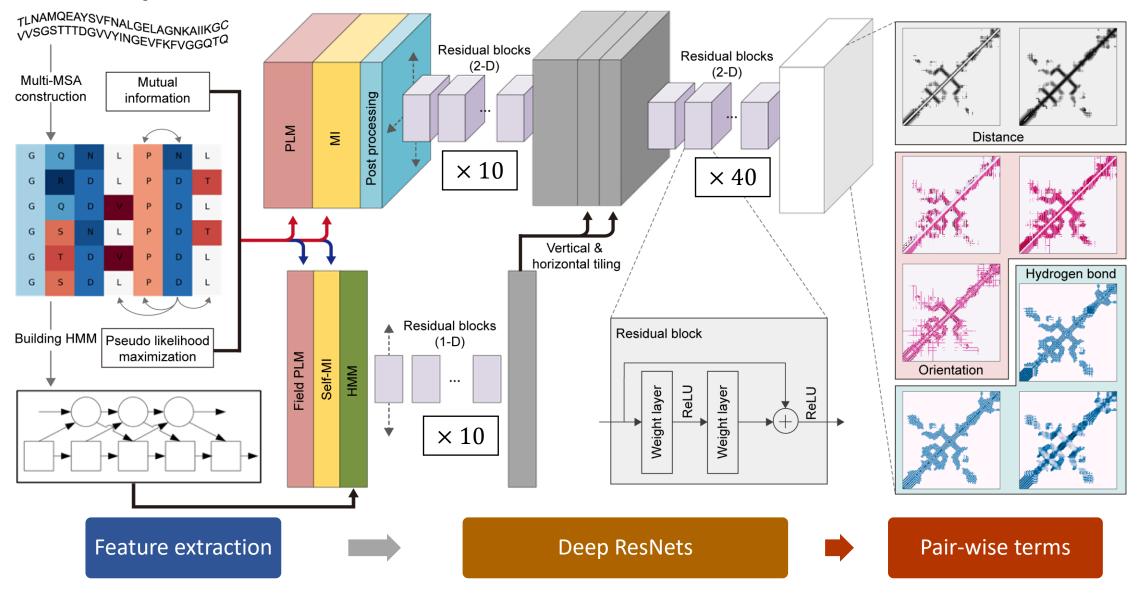


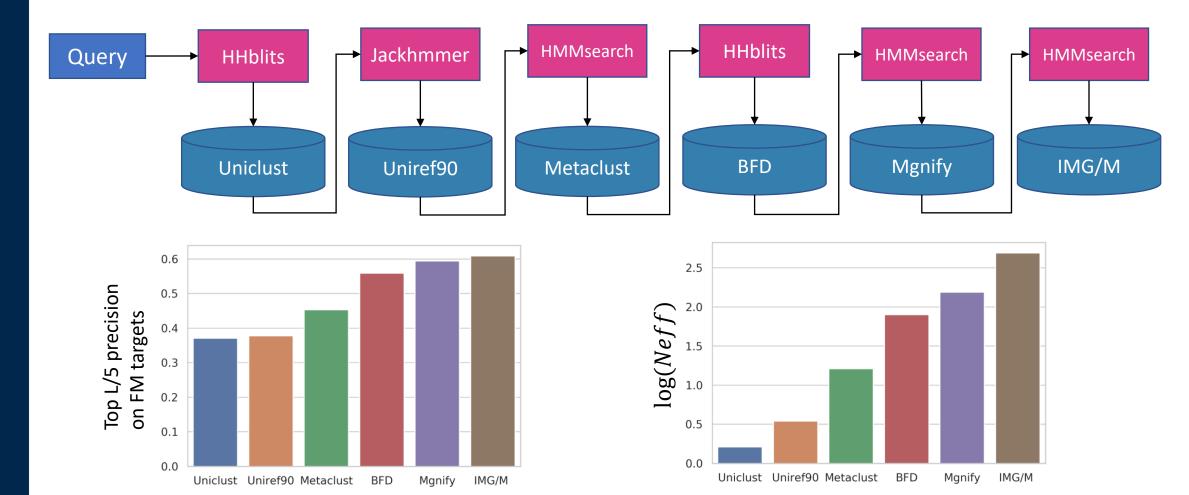
DeepPotential: Deep learning based inter-residue contact/distance prediction in CASP14


Yang Li, Chengxin Zhang, Wei Zheng, Xiaogen Zhou, Eric W. Bell, Dong-Jun Yu, and Yang Zhang

University of Michigan Nanjing University of Science and Technology

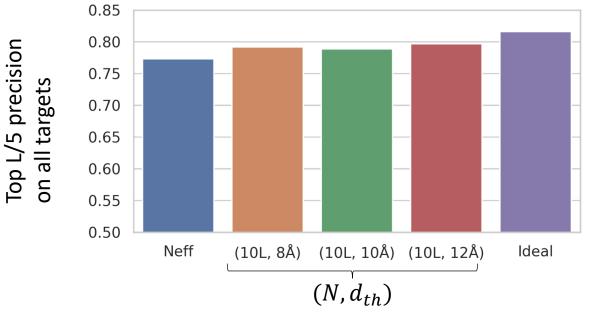

DeepPotential

Predicting (long-range) pair-wise **statistical potential terms** for protein structure prediction,


DeepPotential

MSA construction

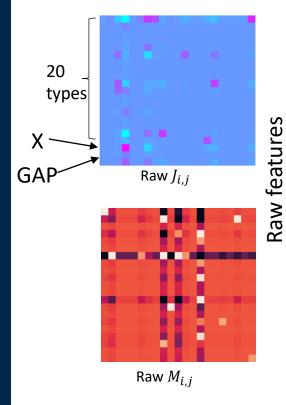
Progressive collection of MSA increasing accuracy of contact prediction



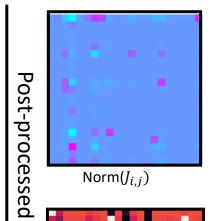
MSA selection

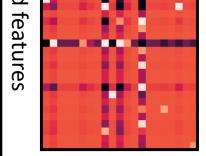
MSA selection based on confidence score outperforms based on Neff

- Select MSA based on mean of top-N DeepPotential contact probabilities (defined at the threshold of d_{th} , $p(x < d_{th})$)
- Use the prediction from the selected MSA

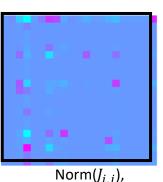

In CASP14, two confidence score configurations are considered:

- $(N = 10 \times L, d_{th} = 12\text{Å})$, Group name: TripletRes
- $(N = 10 \times L, d_{th} = 8\text{Å})$, Group name: DeepPotential

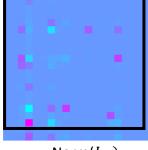

Feature extraction

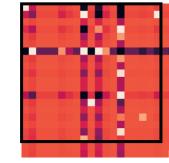

Co-evolutionary features:

- Couplings matrix I ($I \in \mathbb{R}^{L \times L \times 22 \times 22}$) of Pseudolikelihood maximization (PLM)
- Raw Mutual information matrix (MI): $M (M \in \mathbb{R}^{L \times L \times 22 \times 22})$; ۲
- And their post-processing. $(L \times L \times (4 + 4))$ ٠



UNIVERSITY OF **MICHIGAN**


 $Norm(M_{i,i})$



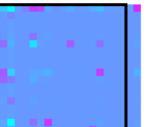
Excluding GAP

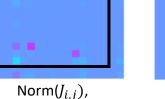
Norm $(M_{i,i})$,

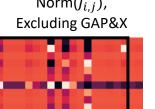
Excluding GAP

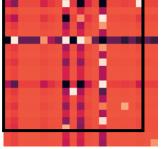

Norm $(M_{i,i})$, Excluding GAP&X PLM

Residue i


MI


Residue *j*


Query sequence Parameter in $J_{i,i}$



Query sequence Parameter in $M_{i,i}$

Training

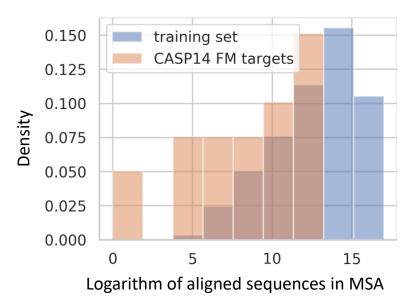
Training data:

- 26,151 structures from PDB, by 11/12/2019
- Sequence identity cut-off of 35%
- Maximum length of 1000
- Training MSA: HHblits against Uniclust only

Loss function

- Discretizing prediction terms into bins
- Neg-log likelihood of all prediction terms
- Loss = $-\sum_{n=1}^{N}\sum_{i,j}\sum_{t\in T}w_t \log P(data_n^t(i,j)|\mathbf{J},\mathbf{M})$
 - *n*, *i*, *j* enumerates all residue pairs in the training set
 - $w_t = 1$ for all $t \in \{ distance \ terms; orientation \ terms; H bond \ terms \}$

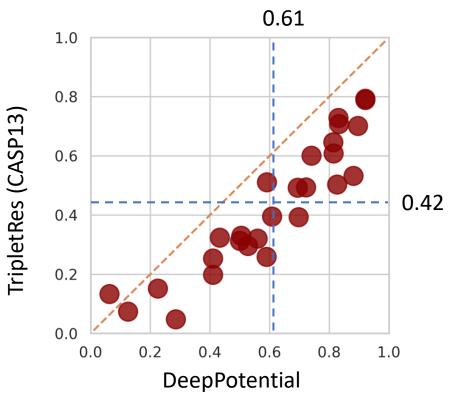

Approximations: Independent distributed in


• $p(data) = \prod_{n=1}^{N} p(data_n)$ • Samples = $\prod_{n=1}^{N} \prod_{t \in T} p(data_n^t)$ • Prediction terms = $\prod_{n=1}^{N} \prod_{t \in T} \prod_{i,i} p(data_n^t(i,j))$ • Residue pairs (pixels)

Training

Generalization ability of the model

- Sub-sampling MSAs during the training
- Larger weights on shallow MSAs

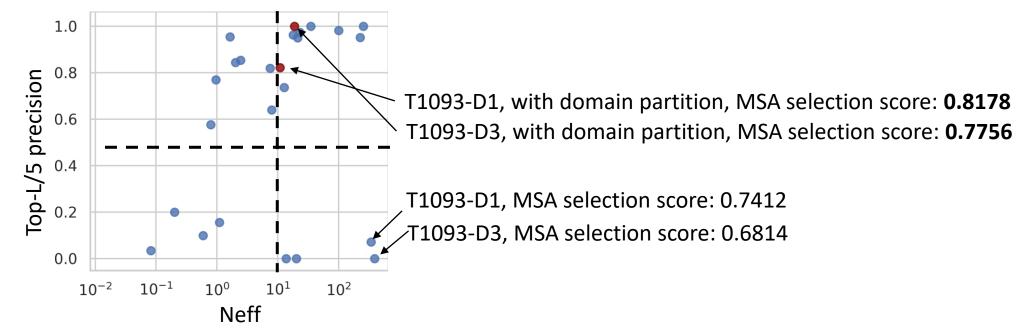

The finale prediction is the ensemble of 15 diverse models, with different combination of terms and thresholds

Results

Results in contact prediction on CASP13 targets

 Head-to-head comparison of long-range top-L precision on 27 CASP13 FM targets

DeepPotential is over 40% higher than CASP13 version of TripletRes

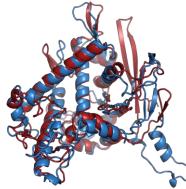


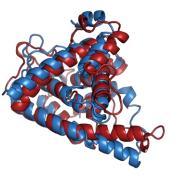
Results

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |d_{expectation}^{i} - d_{experimental}^{i}|$$

Results of DeepPotential in CASP14

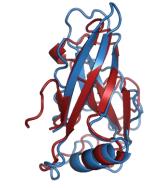
MSA selection	Contact precision (long range)				Mean Absolute Error (long range)		
	Top L/10	Top L/5	Top L/2	Top L	Top L	Top 2L	Top 5L
$N = 10 \times L$ $d_{th} = 8 \text{\AA}$	65.53	61.31	50.96	37.66	2.68	2.89	3.23
$N = 10 \times L$ $d_{th} = 12\text{\AA}$	62.67	59.01	48.16	36.59	2.69	2.87	3.25

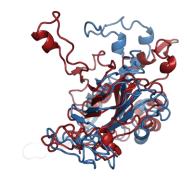



Results

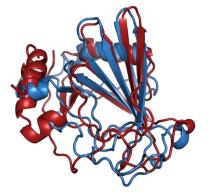
DeepPotential is capable of folding high-accuracy protein structures

9 FM targets with contact precision over 0.8 and Zhang-Server has a TM-score over 0.5

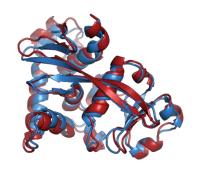

T1037-D1, MAE=0.948 TM-score=0.680



T1041-D1, MAE=0.760 TM-score=0.722



T1042-D1. MAE=1.344 TM-score=0.730



T1061-D2, MAE=1.109 TM-score=0.527

T1090-D1, MAE=1.157 TM-score=0.656

T1094-D2, MAE=1.062

TM-score=0.914

T1096-D1, MAE=1.189

TM-score=0.835

T1049-D1, MAE=1.561

TM-score=0.675

T1096-D2, MAE=1.454 TM-score=0.833

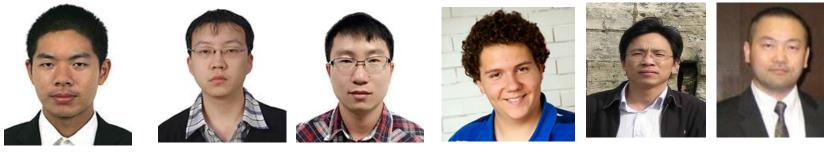
Native Zhang-Server (DeepPotential + I-TASSER)

MAE: Top-5L long range MAE

Summary

Extreme Science and Engineering Discovery Environment

What was working?


- More data help the training
- Constructing deeper MSA
- MSA selection by top-N contact scores
- Various prediction tasks
- Raw coevolution/multi-view feature fusion

What went wrong?

- Limited computational resources, trainable with single GPU (10GB)
 - RAW Precision matrix (PRE in TripletRes (CASP13)) was discarded
 - Deeper/wider neural networks was not considered
- Tuning weight of distance term should help distance/contact accuracy
- Overconservative domain partition.

Acknowledgements

Zhanglab members

Chengxin Zhang

Wei Zheng

Xiaogen Zhou

Eric W. Bell

Dong-Jun Yu Ya

Yang Zhang

Special thanks to

• The authors of *trRosetta* for insightful discussion

Thank you!

