

### **Cryo-EM Targets** and their evaluation in CASP14

Andriy Kryshtafovych (UC Davis)

Tristan Cragnolini, Maya Topf (Birkbeck, U London)

### Cryo-EM Targets in CASP14

H1036 (2.8 Å) :: glycoprotein B-

neutralizing antibody complex

Stefan Oliver /Wah Chiu,

Stanford, USA



H1097 (3.8 Å) :: AR9

RNA polymerase

T1026 (3.2 Å) :: faba bean necrotic stunt virus **Stefano Trapani**, CBS, Motpellier, France



H1060 (3.2 Å) :: *T5 bacteriophage tail complex* **Romain Linares**, IBS, Grenoble, France

T1099 (3.7 Å) :: capsid of duck hepatitis B virus Bettina Boettcher, University of Würzburg, Germany H1047 (2.2 Å) :: flagellar L/P-ring protein complex. Susan Lea, Oxford, UK

H1081 (2.1 Å) :: *decarboxylase* **Ambroise Desfosses**, IBS, Grenoble, France

## Cryo-EM Targets (7 complexes = 23 evaluation units)

| Single-domain: | <u>Multi-domain:</u>                       |
|----------------|--------------------------------------------|
| 1. T1026       | 1. T1092                                   |
| 2. T1036s1     | 2. T1093                                   |
| 3. T1092-D1    | 3. T1094                                   |
| 4. T1092-D2    | 4. T1096                                   |
| 5. T1093-D1    |                                            |
| 6. T1093-D2    | <u>Complexes:</u>                          |
| 7. T1093-D3    |                                            |
| 8. T1094-D1    | 1. H1036 (A3B3C3 complex)                  |
| 9. T1094-D2    | 2. H1047 [T1047s1, T1047s2]                |
| 10. T1095      | 3. H1060 [T1061]                           |
| 11. T1096-D1   | 4. H1081 (A20)                             |
| 12. T1096-D2   | 5. H1097 (A1B1C1D1E1 complex)              |
| 13. T1099      | 6. T1099ov0 (A4 substructure of a 240-mer) |

#### CASP Models on Cryo-EM targets Evaluation vs Reference structures

T1026 (3.2 Å) *faba bean necrotic stunt virus* Stefano Trapani



T1026 TBM-hard Best model: AlphaFold2 (TS427\_1) GDT\_TS=**94** 

### CASP Models on Cryo-EM targets Evaluation vs Reference structures

T1047s2 (2.2 Å) flagellar L/P-ring protein complex

Susan Lea







T1047s2-D2 FM/TBM Best model: AlphaFold2 GDT\_TS(TS427\_2)=**95** 

### CASP Models on Cryo-EM targets Evaluation vs Reference structures

### T1096 (3.8 Å) g226 from AR9 RNAP

#### Petr Leiman







T1096-D2 FM Best model: AlphaFold2 GDT\_TS (TS427\_2-D2)=**79** 

### CASP Models on Cryo-EM targets Evaluation vs Reference Structures Tertiary structure (3GDT\_TS + LDDT + CADaa + SG)



### Cryo-EM Targets (evaluation units)



For evaluation versus maps we need 'high quality models' defined here as those scoring GDT\_TS>70 (monomers) or LDDT>70 (multimers)

# Outcomes of the 2019 EMDataResource model challenge: validation of cryo-EM models at near-atomic resolution

| Metric Class                                       | Package Metric Definition                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Correlation Coefficient,<br>all voxels             | Phenix <u>CCbox</u> full grid map vs model-map density correlation coefficient <sup>18</sup><br>TEMPy <u>CCC</u> full grid map vs model-map density correlation coefficient <sup>23</sup>                                                                                                                                                                                                                    |
| Correlation Coefficient,<br>selected voxels        | Phenix <u>CCmask</u> map vs model-map density, only modelled regions <sup>18</sup><br>Phenix <u>CCpeaks</u> map vs model-map density, only high-density map and model regions <sup>18</sup><br>TEMPy <u>CCC_OV</u> map vs model-map density, overlapping map and model regions <sup>25</sup><br>TEMPy <u>SMOC</u> Segment Manders' Overlap, map vs model-map density, only modelled<br>regions <sup>25</sup> |
| Correlation Coefficient,<br>other density function | TEMPy <u>LAP</u> map vs model-map Laplacian filtered density (partial 2 <sup>nd</sup> derivative) <sup>22</sup><br>TEMPy <u>MI</u> map vs model-map Mutual Information entropy-based function <sup>22</sup><br>TEMPy <u>MI_OV</u> map vs model-map Mutual Information, only modelled regions <sup>25</sup>                                                                                                   |
| Correlation Coefficient,<br>atom positions         | Chimera/MAPQ <u>Qscore</u> map density at each modeled atom vs reference Gaussian density function <sup>14</sup>                                                                                                                                                                                                                                                                                             |
| Fourier Shell Correlation                          | Phenix <u>FSC05</u> Resolution (distance) of Map-Model FSC curve read at point FSC=0.5 <sup>18</sup><br>CCPEM/Refmac <u>FSCavg</u> FSC curve area integrated to map resolution limit <sup>19,59</sup>                                                                                                                                                                                                        |
| Atom Inclusion                                     | EMDB/VisualAnalysis <u>AI all</u> Atom Inclusion, percentage of all atoms inside depositor-<br>provided density threshold <sup>20</sup><br>TEMPy <u>ENV</u> Atom Inclusion in envelope corresponding to sample MW; penalizes<br>unmodeled regions <sup>22</sup>                                                                                                                                              |
| Side Chain Density                                 | Phenix <u>EMRinger</u> evaluates backbone positioning by sampling map density around Cy-<br>atom ring-paths for non-branched residues <sup>21</sup>                                                                                                                                                                                                                                                          |

#### Lawson C, Kryshtafovych A, et al. 2020 Nature Methods (accepted)

#### CASP14 webpage – Global analysis

Assessors Home | General Discussions | Domain Definitions and Classifications | Summary on Experimental Sequences | Summary on Target Structures | Available Structures | Target List | TS Results | EMA Results | RR Results | Tarballs & Plain Files

| Global Scores | Per Residue Analysis |  |
|---------------|----------------------|--|
|               |                      |  |
| Table         | Atom Inclusion Plot  |  |

Target: T1026-D1 ¥

#### Text

|    |                 | TemPy |       |                       | Phenix                 |                          |                        | EMRinger       | Atom inclusion |              |
|----|-----------------|-------|-------|-----------------------|------------------------|--------------------------|------------------------|----------------|----------------|--------------|
| #  | Model           | ¢ CCC | \$ MI | <pre>\$ SMOC(d)</pre> | <pre>\$ CC(mask)</pre> | <pre>\$ CC(volume)</pre> | <pre>\$ CC(peak)</pre> | EMRinger score | <b>≑ ALL</b>   | ¢ BB         |
| 1. | T1026-D1.pdb    | 0.589 | 0.209 | 0.783                 | 0.807                  | 0.799                    | 0.629                  | 3.329          | <u>0.771</u>   | <u>0.892</u> |
| 2. | T1026TS427_1-D1 | 0.561 | 0.189 | 0.674                 | 0.599                  | 0.666                    | 0.468                  | 2.715          | 0.648          | <u>0.815</u> |
| 3. | T1026TS427_3-D1 | 0.561 | 0.190 | 0.666                 | 0.586                  | 0.662                    | 0.459                  | 2.026          | 0.645          | <u>0.805</u> |
| 4. | T1026TS427_4-D1 | 0.559 | 0.190 | 0.667                 | 0.580                  | 0.661                    | 0.458                  | 2.622          | 0.636          | 0.796        |
| 5. | T1026TS427_2-D1 | 0.558 | 0.189 | 0.661                 | 0.582                  | 0.656                    | 0.455                  | 2.773          | 0.639          | <u>0.791</u> |
|    |                 |       |       |                       |                        |                          |                        |                |                |              |



#### How better is reference compared to models

#### CASP14 webpage – Local analysis T1096

