CASP-covid (or CASP-Commons 2020 experiment)

https://predictioncenter.org/caspcommons

 Register for CASP_Commons

 Your CASP_Commons groups /predictions

 Released Target List

 Participating Groups

 Submit a prediction

 ARCHIVE: submitted predictions (CASP-covid, 2020)

 Model Accuracy Estimates [2018, NMR nominated targets]

 COVID-19 MODELING RESULTS [2020]

Andriy Kryshtafovych:

introduction of what the initiative was, what we collected, what analyses we did assessment of models on two structurally determined CASP-covid targets

Chaok Seok:

EMA results on the solved CASP-covid targets

Kliment Olechnovic:

EMA-jury system for CASP-covid

Panelists:

what we learned (or could do better)

what we do further with the results

how to attract more attention of structural biology community

next steps

Andriy Kryshtafovych (UC Davis)

CASP-covid (or CASP-Commons 2020 experiment)

https://predictioncenter.org/caspcommons

 Register for CASP_Commons

 Your CASP_Commons groups /predictions

 Released Target List

 Participating Groups

 Submit a prediction

 ARCHIVE: submitted predictions (CASP-covid, 2020)

 Model Accuracy Estimates [2018, NMR nominated targets]

COVID-19 MODELING RESULTS [2020]

Ambitious goal:

Utilize the strength of CASP community to generate SARS-Cov2 structures that will be useful to biologists for

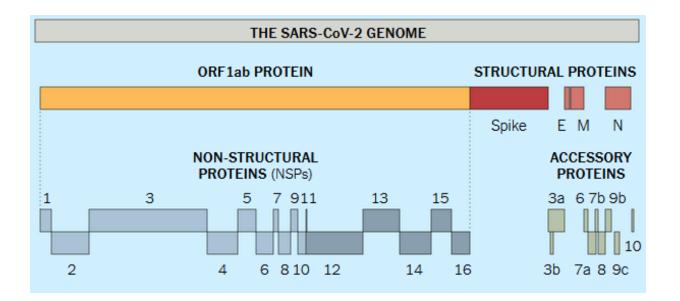
- gaining further insight into the virus' structure and function
- identifying possible epitopes for vaccine development
- evaluating possible drug targeting strategies

Other modeling efforts:

SWISSMODEL: <u>https://swissmodel.expasy.org/repository/species/2697049</u> AlphaFold: <u>https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19</u> Baker group: <u>https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus/</u> Zhang group: <u>https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCov/</u> Michael Feig: <u>https://github.com/feiglab/sars-cov-2-proteins</u> Jinbo Xu group

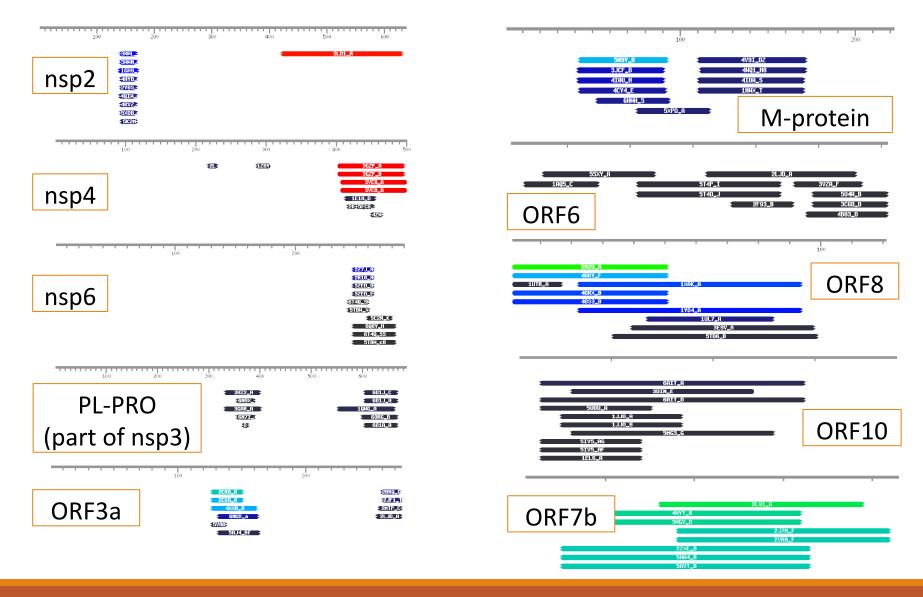
Strength of CASP:

- collect 3D models from a wide range of methods taking part in CASP
- employ our EMA community to generate accuracy estimates of the models
- identify the most promising models


Working plan:

• identify targets

(our efforts would be the most effectively used by concentrating on targets where there was no experimental structure available and where comparative modeling techniques cannot be used)


- collect initial models (round 1)
- run accuracy estimations
- compare models and discuss results
- call for revised models (round 2)
- refinement

January 2020: SARS-CoV2 sequence released

February 2020:

Analyzed the sequence and identified the most difficult for modeling proteins

HHsearch results

Target analysis Model consensus Model accuracy estimates	Target analysis Model consensus Model accuracy estimates
arget: C1905 (ORF3a)	Target: C1908 (ORF8)
C1905	C1908
Summary Sequence templates Signal peptide Transmembrane regions Secondary structure Protein disorder Domains	Summary Sequence templates Signal peptide Transmembrane regions Secondary structure Protein disorder Domains
Templates	Templates
o 100 200 Position	0 25 50 75 100 125 Position
Template Not found Found	Template 📕 Not found Found
Signal peptide	Signal peptide
o 100 200 Position	0 25 50 75 100 125 Position
Signal peptide FALSE	Signal peptide 📕 FALSE 🗾 TRUE
Transmembrane regions	Transmembrane regions
0 100 200 Position	0 25 50 75 100 125 Position
Topology Inside outside TMhelix	Topology uutside
Secondary structure	Secondary structure
0 100 200 Position	0 25 50 75 100 125 Position
Туре Е С Н	Туре 🔜 Е 🔜 С 🦰 Н
Disordered region	Disordered region
o 100 200 Position	0 25 50 75 100 125 Position
Disordered region FALSE TRUE	Disordered region FALSE TRUE
Domains	Domains
	0 25 50 75 100 125 Position
o 100 200 Position	Domain 1
Domain 1	

March 13, 2020: CASP-covid experiment kicked off

https://predictioncenter.org/caspcommons/targetlist.cgi

#	🕈 Tar-id	Туре	♣ Res ♣ Oligo State	Entry Date	Server Expiration	♦ QA Expiration	+ Human Expiration	Description
1.	<u>C1901</u>	All groups	638	2020-03-13	2020-04-06	2020-04-12	2020-04-06	nsp2
2.	<u>C1902</u>	All groups	500	2020-03-13	2020-04-06	2020-04-12	2020-04-06	nsp4
3.	<u>C1903</u>	All groups	290	2020-03-13	2020-04-06	2020-04-12	2020-04-06	nsp6
4.	<u>C1904</u>	All groups	686	2020-03-13	2020-04-06	2020-04-12	2020-04-06	PL-PRO
5.	<u>C1905</u>	All groups	275	2020-03-13	2020-04-06	2020-04-12	2020-04-06	ORF3a PDB code <u>6xdc</u>
6.	<u>C1906</u>	All groups	222	2020-03-13	2020-04-06	2020-04-12	2020-04-06	Membrane protein
7.	<u>C1907</u>	All groups	61	2020-03-13	2020-04-06	2020-04-12	2020-04-06	ORF6
8.	<u>C1908</u>	All groups	121	2020-03-13	2020-04-06	2020-04-12	2020-04-06	ORF8 PDB code <u>7jtl</u>
9.	<u>C1909</u>	All groups	38	2020-03-13	2020-04-06	2020-04-12	2020-04-06	ORF10
10.	<u>C1910</u>	All groups	43	2020-03-13	2020-04-06	2020-04-12	2020-04-06	ORF7b

April 6, 2020: collected first-round models (>1,500 predictions from 52 groups) 3D predictions were immediately posted at the CASP Archive web place: www.predictioncenter.org/download_area/CASPCOMMONS/2020_COVID-19/TS_predictions

April 12, 2020: collected 300 EMA from 30 methods QA predictions were immediately posted at the CASP Archive web place: <u>www.predictioncenter.org/download_area/CASPCOMMONS/2020_COVID-19/QA_predictions</u>

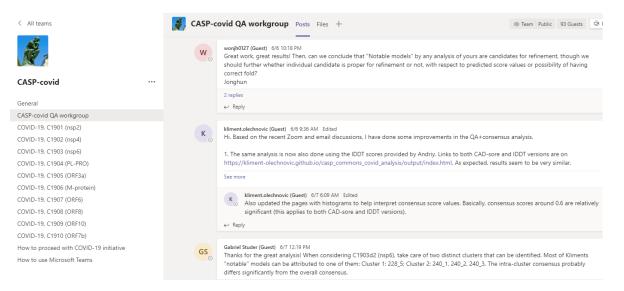
Target analysis Model consensus Model accuracy estimates

 \sim

Target: C1905 (ORF3a)

local score (0.8; 1.0)(0.6; 0.8) (0.4; 0.6) (0.2; 0.4) scale: Model 20 40 60 80 100 120 140 160 180 200 220 240 260 20 40 60 80 100 120 140 160 180 200 220 240 260 - GDTTS_con Predictor LDDT_con C1905TS413 1 TFold-server 1 0 275 0 201 2. C1905TS213_3 McGuffin 0.287 0.200 3. C1905TS213_4 McGuffin 0.285 0.200 C1905TS213_5 McGuffin 0.287 4. 0.200 5. C1905TS213_2 McGuffin 0.286 0.199 6. C1905TS213_1 McGuffin 0.287 0.199 C1905TS401_1 FEIGLAB-R 0.298 0.198 7 Target: C1906 (Membrane protein) local score (0.8; 1.0) (0.6; 0.8) (0.4; 0.6) (0.2; 0.4) (0.0; 0.2) scale # \$Model Predictor 20 40 60 80 100 120 140 160 180 200 21 \$LDDT cons 100 120 140 160 180 200 22 \$GDTTS cons 40 80 C1906TS301_1 FEIGLAB-S 1 0.438 0.327 2 <u>C1906TS152_3</u> MULTICOM 0 434 0.327 3 <u>C1906TS044_1</u> FEIGLAB 1 1 1 100 ... 0.438 0.327 4 C1906TS213_4 McGuffin 0.438 0.324 5 C1906TS438_3 Destini 0.430 0.324 . . . 6 C1906TS213_3 McGuffin 0.439 0 323 7 C1906TS438_5 Destini 0.430 0.323 8 C1906TS213_1 McGuffin 0.437 0.323 9 C1906TS438_1 Destini 0.433 0.323 10 C1906TS152_2 MULTICOM . . . 0 428 0 323 11 C1906TS213_2 McGuffin 0.439 0.323 12 C1906TS438_2 Destini 0.430 0.323 13 C1906TS152 1 MULTICOM 0.427 0.322 14 C1906TS413_1 TFold-server 0.418 0.322 15 C1906TS413_2 TFold-server 1.00 0.413 0.321 16 C1906TS413_3 TFold-server 0.424 0.321 17 C1906TS213_5 McGuffin 0.438 0.320 18 C1906TS438_4 Destini 0 428 0.320 . . 19 C1906TS413_4 TFold-server 1111 0.421 0.319 20 C1906TS299_1 FALCON-.... 0.441 0.317 DeenFolder 21 C1906TS278_1 FALCON 0.441 0.317 22 C1906TS299_4 FALCON-0.445 0.317 DeepFolder 23 C1906TS299_5 FALCON-..... 0.442 0 317 DeepFolder 24 C1906TS278_4 FALCON 0.445 0.317 25 C1906TS228_1 DellaCorteLab 0.439 0.317 1 1 ... 26 C1906TS278_5 FALCON 0 442 0 317 27 C1906TS299_2 FALCON-..... 0.440 0.315 DeepFolder 28 C1906TS278_2 FALCON 101111 0.440 0.315

			Ca-Ca distance:	51	[0.0;	2.0)	[2,	.0; 4.0)		<mark>(4.0) (</mark>	5.0)	[6.0); 8.0)	[8,	0;∞)		N/A							
#	\$TS Model	♦EMA Method	♦ MQAS		I I	I	140 I	н I	I	180	і I	1	₁ 120	н I	I.	₁ 160		I	1200	Т	I.	1 240 I	1	I.
1	C1905TS213_1	204(ModFOLD8_rank)	0.439202																					
2	C1905TS213_2	204(ModFOLD8_rank)	0.438264																					
3	C1905TS213_3	204(ModFOLD8_rank)	0.437396																					
4	C1905TS213_4	204(ModFOLD8_rank)	0.436867																					
5	C1905TS213_5	204(ModFOLD8_rank)	0.43496																					
6	C1905TS405_2	204(ModFOLD8_rank)	0.433448																					
7	C1905TS210_4	204(ModFOLD8_rank)	0.432677																					
_									_	_		_		_		_								_


				tances: [0.0; 2.0] [2.0; 4.0] [4.0; 6.0) [6.0; 8.0] [8.0; #) N/A	
#	♦TS Model	EMA Method	♦ MQAS	S	1
1	C1905TS215_1	452(VoroCNN)	0.521		
2	C1905TS215_2	452(VoroCNN)	0.515		
3	C1905TS215_3	452(VoroCNN)	0.51		
4	C1905TS405_3	452(VoroCNN)	0.508		
5	C1905TS210_2	452(VoroCNN)	0.508		
6	C1905TS210_4	452(VoroCNN)	0.496		
7	C1905TS405_5	452(VoroCNN)	0.496		
8	C1905TS405_1	452(VoroCNN)	0.496		
9	C1905TS044_1	452(VoroCNN)	0.491		
10	C1905TS301_1	452(VoroCNN)	0.491		
11	C1905TS213_1	452(VoroCNN)	0.49		
12	C1905TS230_2	452(VoroCNN)	0.486		
13	C1905TS215_5	452(VoroCNN)	0.486		
14	C1905TS210_1	452(\/oroCNN)	0 482		

Conclusions from the preliminary analysis:

- disagreement between EMA methods
- often considerable variation between model structures
- visual comparison shows some consistent domain boundaries
- domain-based prediction may be beneficial

Engaged the community in the discussion (2 weeks, second half of April):

• set up a Microsoft Teams site to discuss the results

- conducted two zoom sessions for the participants
- summarized in MS Teams notes on tentative domain boundaries, membrane regions, signal peptides, and under-utilized templates (John Moult)
- decided to run the second round of CASP-covid modeling on domains and selected targets where additional useful information was revealed (May 3-17)
- decided to select some of the second-round targets as CASP14 refinement targets (or even regular targets – used ORF8 as T1064)

CASP-covid (2nd round)

Collected >1,500 models from 33 TS groups >400 model accuracy estimates from 23 QA groups

The Round 2 models (TS and QA) were made available for download at https://predictioncenter.org/download_area/CASPCOMMONS/2020_COVID-19/

The initial analysis (similar to round 1) was posted on the CASP-covid site: https://predictioncenter.org/caspcommons/models_consensus2.cgi

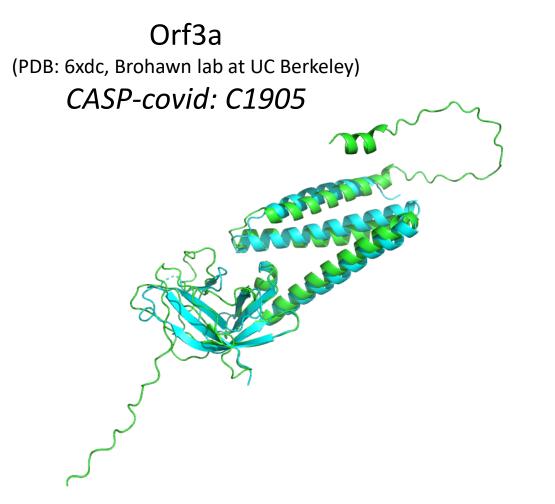
Altogether in two rounds:

collected over 3,500 3D models and 700 accuracy estimates

CASP-covid (2nd round)

Outreach:

Posted information about the available resource at the experimentalists' forums

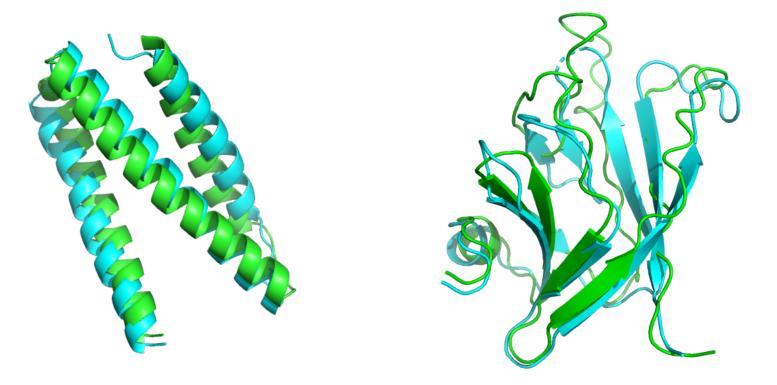

Krzysztof Fidelis (Prediction Center) presented information at the SARS journal Club led by Guy Montelione

Engaged Randy Read, who is one of the leading scientists in the crystallography PHENIX community in advertising our results and connecting to exper. community

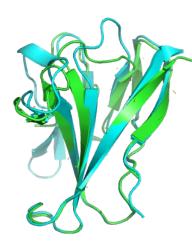
However the dream "If you build it, they will come" did not materialize. Is it because our data were unapproachable for biologists, they did not need them, or they did their own modeling?

Regardless, there are good news: two of CASP-covid targets got solved by now

CASP-covid (evaluation)

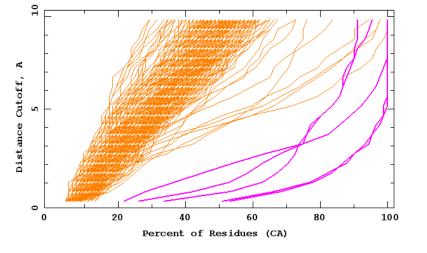

Orf8 (PDB: 7jtl, Hurley lab at UC Berkeley) CASP-covid: C1908 CASP14: T1064

Orf3a


CASP-covid: C1905; C1905d1; C1905d2; C1905x2

Best model on domain 1: C1905TS156_2, GDT_TS=74.7 Best model on domain 2: C1905TS156_3, GDT_TS=63.0

Group 156 in CASP-Commons = AlphaFold


Orf8 CASP-covid: C1908; CASP14: T1064

Best CASP14 model: T1064TS427_1 GDT_TS=87.0 (runner-up GDT_TS=42.9)

Model-Target CA-CA distances

(0; 1)	(1; 2)	(2; 4)	(4; 8)	>8	N/A						
First Models All Models											

T1064-D1

#	Model	10	20	30	40	50	60	70	80	90	100	♦ gdt_ts			
1.	T1064TS427_1-D1											86.96	75.27	59.91	1.84
2.	T1064TS427_2-D1											86.14	73.91	57.25	1.93
3.	T1064TS427_3-D1											71.74	57.61	42.32	8.15
4.	T1064TS427 4-D1											66.85	50.82	34.59	5.37
5.	T1064TS427 5-D1											64.13	44.56	27.04	3.52
6.	T1064TS014 1-D1											42.94	21.20	8.55	5.32
7.	T1064TS014 3-D1											39.13	19.57	8.16	5.92
8.	T1064TS014 2-D1											38.86	19.02	5.00	6.20
9.	T1064TS170_4-D1											36.96	20.65	6.49	10.26
10.	T1064TS050_4-D1											36.41	17.12	2.36	7.33
11.	T1064TS131_1-D1											33.15	21.74	11.34	13.44
12.	T1064TS288_5-D1											31.52	17.12	3.90	10.55
13.	T1064TS304_2-D1											31.25	15.76	0.82	9.88
14.	T1064TS483_2-D1											30.71	19.29	8.27	12.63
15.	T1064TS483_1-D1											29.62	18.21	7.51	12.70
16.	T1064TS024_1-D1											29.35	18.21	5.46	14.30
17.	T1064TS024_5-D1											29.35	18.75	5.39	14.28
18.	T1064TS435_5-D1											29.35	19.02	7.77	14.86
19.	T1064TS024_4-D1											29.08	19.02	5.67	14.28
20.	T1064TS050_3-D1											28.80	15.22	4.96	10.96
21.	T1064TS024_2-D1											28.80	19.29	6.43	14.31
22.	T1064TS024_3-D1											28.80	18.21	4.76	14.26
23.	T1064TS324_2-D1											28.80	17.66	4.42	14.29
24.	T1064TS337_4-D1											27.99	17.12	5.89	13.64
25.	T1064TS435_2-D1											27.99	17.39	3.35	13.89
26.	T1064TS435_4-D1											27.99	18.75	7.32	14.96
27.	T1064TS200_2-D1											27.99	17.12	5.89	13.64
28.	T1064TS301_4-D1											27.72	17.12	6.38	14.65
29.	T1064TS061_4-D1											27.72	17.66	6.19	14.52
30.	T1064TS324 5-D1											27.72	18.20	6.71	15.79

Questions to panelists:

What did we learn?

What could we do better?

What do we do further with the results?

How to attract more attention of structural biology community?

Next steps?