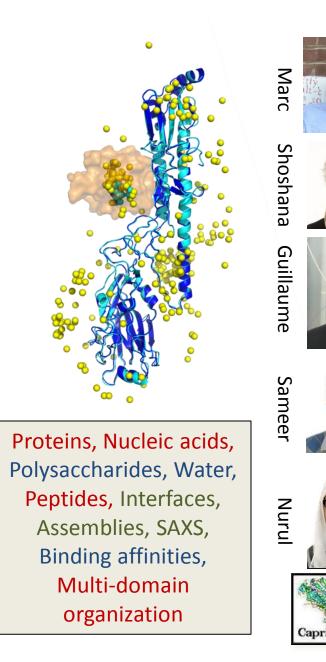


Joint CASP15-CAPRI54 assembly prediction round of 2022

Marc F. Lensink, Guillaume Brysbaert, Nurul Nadzirin, Sameer Velankar, Shoshana J. Wodak Thanks to: Andriy Krystafovych, Burcu Őzden Yűcel, Ezgi Karaca

> University of Lille, CNRS, France European Bioinformatics Institute (EMBL-EBI), Hinxton, UK Structural Biology Group, VUB-VIB, Brussels, Belgium

CAPRI


CAPRI

Since 2001

Critical Assessment of PRedicted Interactions

Community-wide double blind experiment modelled after CASP, launched in 2001, aimed at assessing the performance of protein docking and scoring algorithms.

Prediction of the structure of an unpublished protein-protein, protein-DNA/RNA, protein-peptide, proteinsugar complex; extended to the prediction of binding affinity and interface water position.

CAPRI

CAPRI

Since 2001

Critical Assessment of PRedicted Interactions

Dynamic experiment

Docking experiment

Scoring experiment

Marc Shoshana Guillaume Sameer Proteins, Nucleic acids, Polysaccharides, Water, Peptides, Interfaces, Nurul Assemblies, SAXS,

Binding affinities,

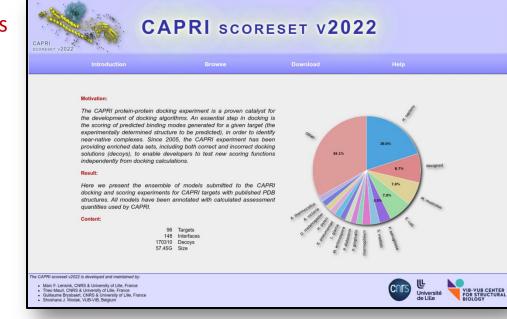
Multi-domain

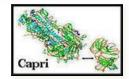
organization

Capri

CAPRI

CAPRI


Since 2001


Critical Assessment of PRedicted Interactions

Dynamic experiment

Docking experiment

Scoring experiment scoreset.org

Website

CAPRI

Since 2001

Critical Assessment of PRedicted Interactions

https://www.pdbe.org/capri

(for prediction submission)

https://www.capri-docking.org/

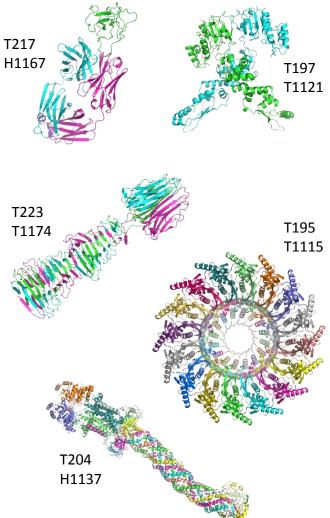
(community exchange portal)

CAPRI DOCKING	ABOUT N	EWS	PEOPLE	CONTRIBUTE TARGETS	RESOURCES	PUBLICATIONS
Capri -		and we	eb server	s to various software which might be usef		
CAPRI communitywide experiment on the comparative	Table of cont	tents				
evaluation of protein- protein docking for structure prediction	Contr site?	ributin	g softwar	e and resources to thi	s web	
Email	• Softw		ols			
D Twitter	Serve Derfor		o of dock	ing servers in CAPRI		
O Github	 Docki 			ing servers in CAPRI		
Subscribe			docking s	servers		
m subscribe				iges / sampling		
				mark datasets		

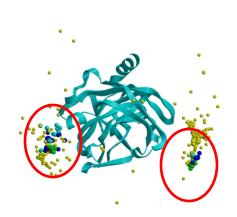
Meetings

CAPRI	La Londe-des-Maures	France	2002
Since 2001	Gaeta	Italy	2004
Critical Assessment of	Toronto	Canada	2007
PRedicted Interactions	Barcelona	Spain	2009
	Utrecht	The Netherlands	2013
	Tel Aviv	Israel	2016
Dynamic experiment	EBI Hinxton	UK	2019
Docking experiment	Alexandre Bonvin	The Netherlands	
	Marc Lensink	France	
Scoring experiment	Michael Sternberg	UK	
	Sandor Vajda	USA	
	Ilya Vakser	USA	
Assessment meetings	Sameer Velankar	UK	
Management committee	Shoshana Wodak	Belgium	
	Joel Janin	France	

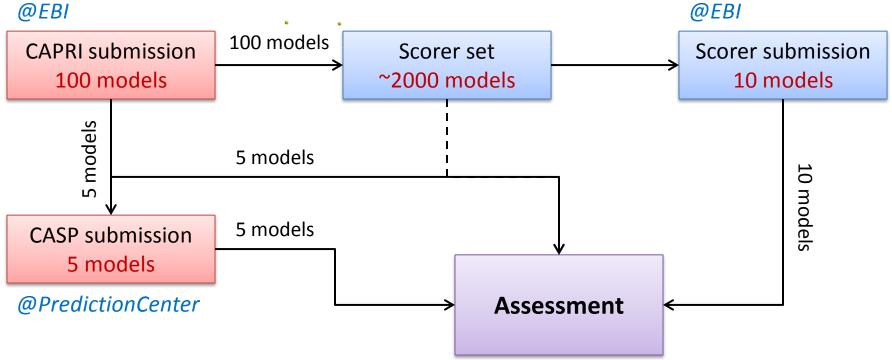
CAPRI evaluation meetings


To date: 54 rounds, 230 targets. 7 Evaluation meetings + CASP11/12/13/14/15 7 Special Issues of Proteins dedicated to CAPRI, 2003 – 2020

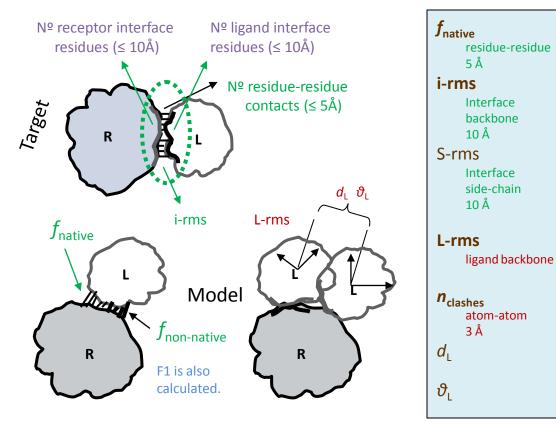
CAPRI / CASP


CAPRI		CASP		
Since 2001		Since 1994		
Critical Assessment of				
PRedict	ed Interactions	Stru	cture Predictions	
Joint prediction rounds	since 2014:			
25 Targets	Round 30	CASP11	2014	
10 Targets	Round 37	CASP12	2016	
21 Targets	Round 46	CASP13	2018	
12 Targets	Round 50	CASP14	2020	
37 Targets	Round 54	CASP15	2022	
Prediction rounds on a	"rolling" basis	Prediction season		
Fits with publicati 3 to 4 weeks per p		Intense 2 to 3 n	nonths	
	Differer	nce in targets		
Mostly hetero-dimers or – Peptides, sugars, water po		Mostly obligate, many h Very large assemblies	omo-oligomers	
Incites method developme	ent	Large-scale testing of me	ethodologies	

CASP15/CAPRI statistics

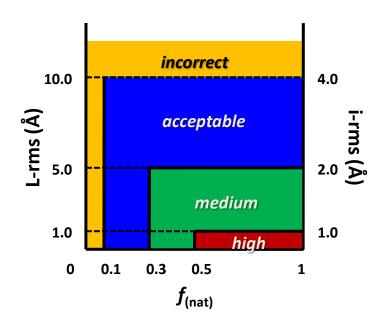

CAPRI	T191 – T230			
CASP	H1106 – T1192			
Homodimers		11		
Homotrimers		3		
Hetero targets		16		
Large assemblies		7		
Multi-interface targets	5			
Number of targets	37 (4 fewer than CASP)			
Easy / Difficult targets	18 / 19			
Number of models (total)		67 851		
Number of models (top-5)	21 941			
Registered groups	23 85 15			
Submitting groups	19 – 21	40 - 69	14 – 15	
	CAPRI	CASP	Scorers	

T40; Bovine trypsin/protease inhibitor Yuxing Chen, Rui Bao; University of Science and Technology, China J Biol Chem 2009;284:26676 Each inhibitor molecule binds two trypsin molecules.



@EBI

CAPRI Assessment


- Assessment criteria established as community consensus
- Chosen in accordance with the experiment community
- Intuitively understand model quality

-Focusing on individual interfaces of interaction CASP15 Only **L-rms**, **i-rms** and **f**_{nat} are used to classify protein-protein interaction models in CAPRI.

Additional quantities are being calculated, such as S-rms, which are useful quality measures for proteinpeptide interaction models.

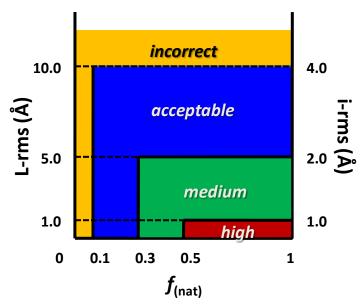
An additional condition may be placed on f_{nonnat} values in the future.

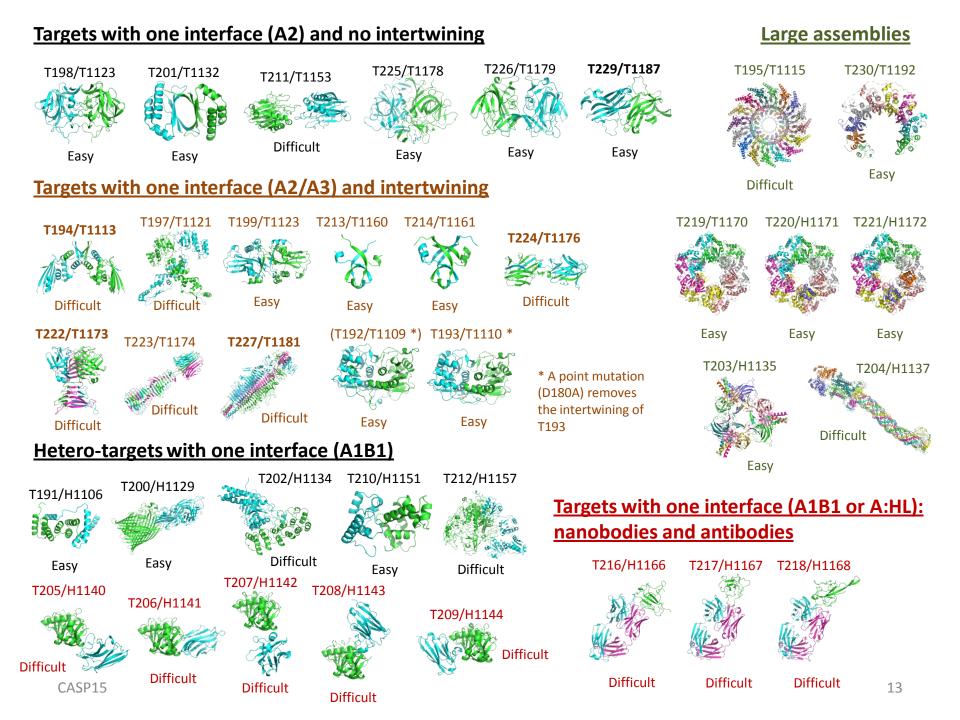
11

CAPRI Assessment

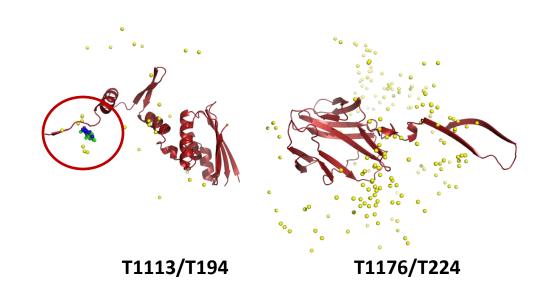
- 1. CAPRI assessment is
 - a) receptor/ligand and
 - b) interface based

- L-rms
- *f*(nat); i-rms
- 2. Four assessment categories
 - incorrect, acceptable, medium, high
- 3. For multimeric targets, each interface is assessed separately; depending on complexity, targets may then be split up into several assessment units (AU), with an AU representing a combination of individual interface scores
 - Either an AverageOf or BestOf
- 4. Final predictor score is the sum of these scores

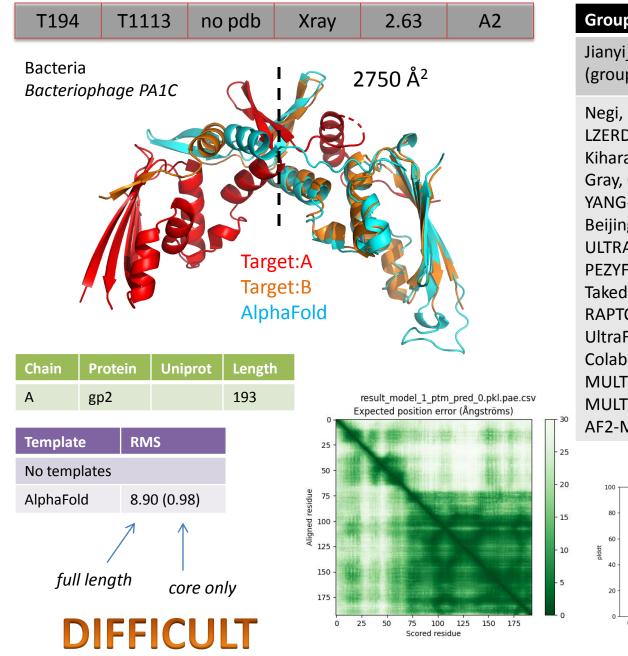

Score = $\omega_1 \cdot N_{ACC} + \omega_2 \cdot N_{MED} + \omega_3 \cdot N_{HIGH}$


 $ω_1$ = 1; $ω_2$ = 2; $ω_3$ = 3

Only **L-rms**, **i-rms** and **f**_{nat} are used to classify protein-protein interaction models in CAPRI.


Additional quantities are being calculated, such as S-rms, which are useful quality measures for proteinpeptide interaction models.

An additional condition may be placed on f_{nonnat} values in the future.



- Most target assessments are single-interface:
 - A2
 - A1B1
 - A3
 - A10
 - A16
- But some are more complicated (and may lead to multiple assessment units):
 - A9B3
 - A1B1C1D1E1F1G2H1I1
 - A6/A6B1/A6B2
- Target difficulty:
 - Traditionally by template availability
 - TBM, FM
 - Now, assessed manually on basis of
 - Extent of conformational change (at interface)
 - Domain entanglement or swapping
 - Template availability
 - AlphaFold model and confidence level (p-IDDT)
 - EASY or DIFFICULT

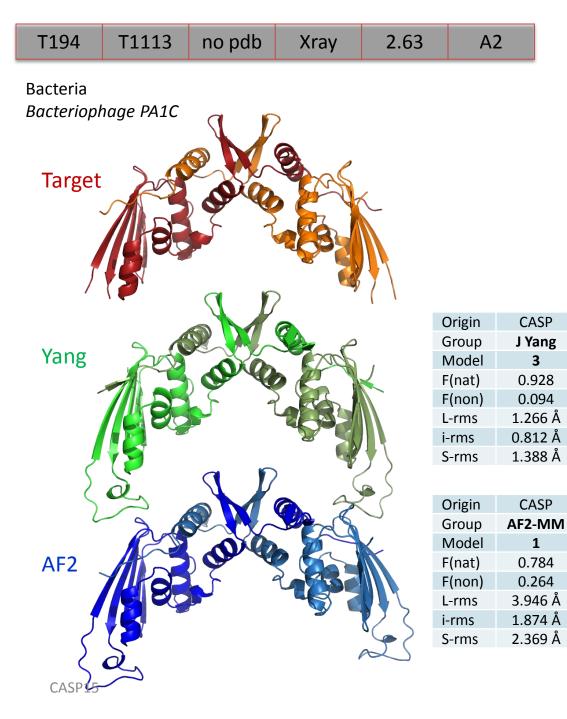
Examples of target difficulty

CASP15

Group	Performance
Jianyi_Yang (group 439)	5/1***/4**
Negi, MULTICOM, LZERD, Kozakov, Kihara, J_Cheng, Gray, CLUSPRO, YANG-MULTIMER, BeijingAIProtein, ULTRAFOLD, PEZYFoldings, Takeda-Shitaka, RAPTORX-multi, UltraFold, ColabFold, MULTIFOLD, MULTIFOLD, MULTICOM*, AF2-Multimer,	5**
result_model_1_ptm_pro	ed_0.pkl.plddt.csv
80 -	mmm

25 50

75 100


Residue

175

150

125

200

Group	Performance
Jianyi_Yang	5/1***/4**
Basically everybody including Elofsson- AF2-Multimer Also most Scorers	1 – 5**

• AF2 makes excellent suggestion

CASP

J Yang

3

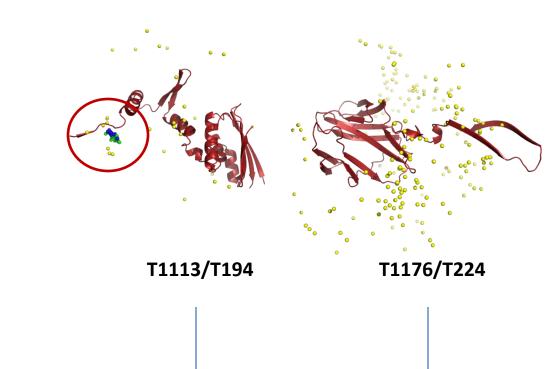
0.928

0.094

CASP

1

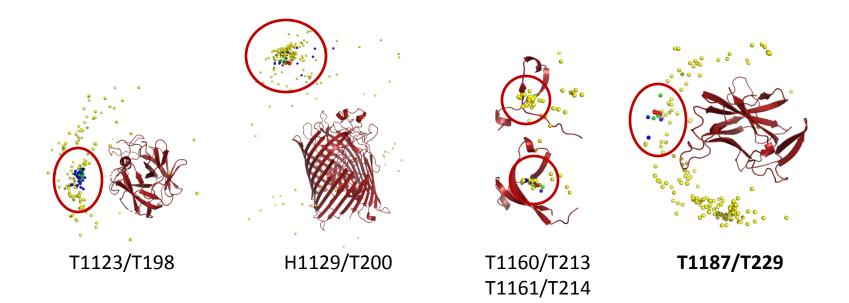
0.784

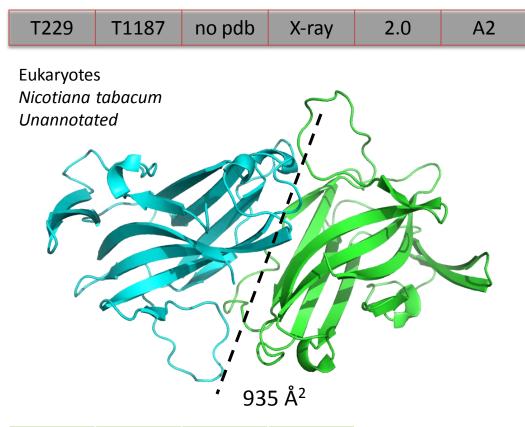

0.264

• Interface can be improved significantly

cpTM = 0.2 pTM + 0.8 ipTM

cpTM = 0.844


	T1176	no pdb	X-ray	2.00	A2	Interface	Chains	Area
						1	A:B	5700
Bacteria Clostridio	ides difficile	•						
Uncharac			get					
			get			Domain	swap	
0			haFold-1					
	7	I all all all all all all all all all al				No accer	otable solu	utions
			-0					
	Nº C							
			5/			Best mo	dol·	
						Destino		
V.		-	1					
							٨	
0	3				1		3	10
Chain	Protein	Uniprot	Length					<u>Nr Nr</u>
			Length				32.9	
Chain A	Protein Idp97509	Uniprot Q182N1?						
		Q182N1?						
4	Idp97509	Q182N1?	170	Good struc	tures	Origin	Scorers	
A Template 1bq2A	Idp97509 RMS	Q182N1?	170 eq ID	Good struc		Origin Group	Scorers Oliva	
A Template Abq2A 5z6pA	Idp97509 RMS 2.97 5.77	Q182N1? So 19 10	170 eq ID 9% 5%	> apart from		Group Model	Oliva 1	
A Femplate Ibq2A 5z6pA 5xj9A	Idp97509 RMS 2.97 5.77 8.48	Q182N1? So 19 10 10	170 eq ID 9% 5% 9%			Group Model F(nat)	Oliva 1 0.007	Targe
A Template Abq2A 5z6pA	Idp97509 RMS 2.97 5.77	Q182N1? So 19 10 10	170 eq ID 9% 5%	> apart from		Group Model F(nat) L-rms	Oliva 1 0.007 15.51 Å	Targe
A Femplate Ibq2A 5z6pA 5xj9A	Idp97509 RMS 2.97 5.77 8.48	Q182N1? So 19 10 10	170 eq ID 9% 5% 9%	> apart from		Group Model F(nat)	Oliva 1 0.007	-
A Femplate Ibq2A 5z6pA 5xj9A AlphaFold	Idp97509 RMS 2.97 5.77 8.48	Q182N1?	170 eq ID 9% 5% 9% 00%	> apart from		Group Model F(nat) L-rms i-rms	Oliva 1 0.007 15.51 Å 8.36 Å	Targe

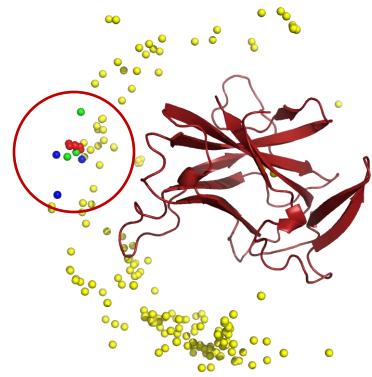

Examples of target difficulty

	62 Gı	roups
	Top-1	Тор-5
High	0	1
Medium	46	54
Acceptable	9	2

63 Groups				
Тор-1	Тор-5			
0	0			
0	0			
0	0			

Easy targets that were surprisingly difficult

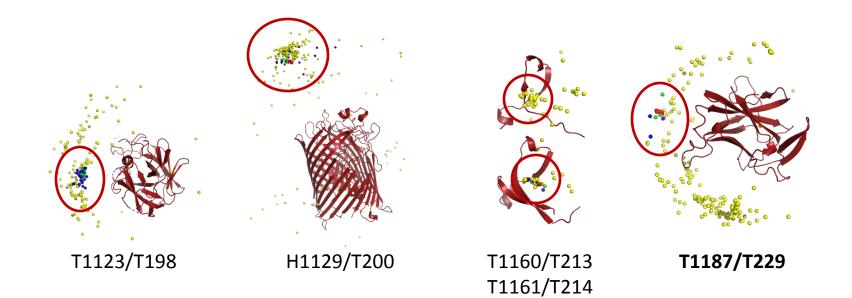
Chain	Pro	otein	Uniprot		Length
А	Leo	tin	Q94EW1		166
Template		RMS			Seq ID
None					
AF-Q207S9		0.	57		100%


EASY

Overlap of AlphaFold model to target

T229 T1187 no pdb X-ray 2.0 A2	T229	T1187	no pdb	X-ray	2.0	A2
--	------	-------	--------	-------	-----	----

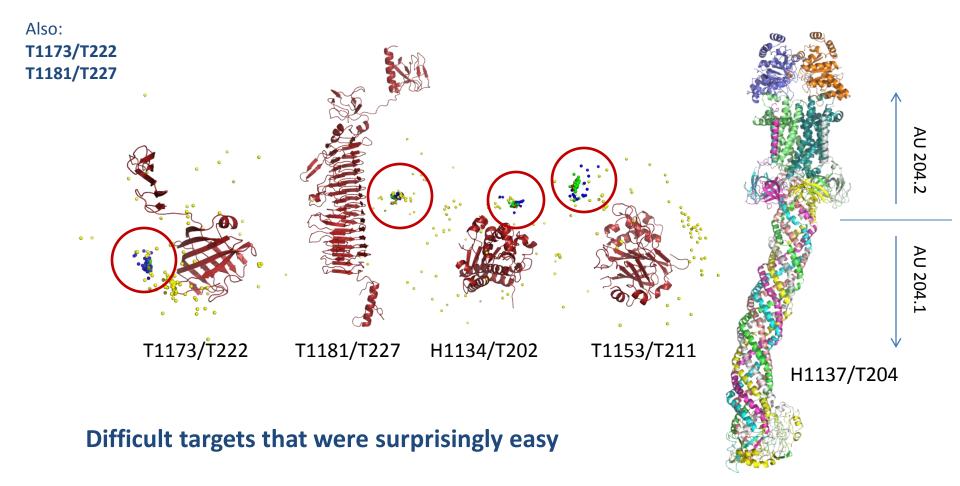
Eukaryotes Nicotiana tabacum Unannotated


High-quality models by:

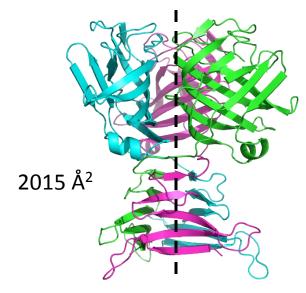
Group	Performance
BeijingAlProtein UltraFold ULTRAFOLD	3/1***/2**
Venclovas S_Chang MULTICOM J_Cheng Bates Wallner CODOCK MULTIFOLD MULTICOM_QA MULTICOM_DEEP MULTICOM MCGuffin	1***

The only Scorer to select an acceptable model:

Group	Performance
Bonvin	1


Easy targets that were surprisingly difficult

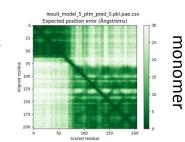
	61 Groups		
	Top-1 Top-5		
High	0	0	
Medium	14	19	
Acceptable	7	11	


71 Groups		
Top-1 Top-5		
4	5	
0 0		
6 15		

64 Groups			
Top-1	Тор-5		
0/0	0/ 4		
0/ 1	3/3		
0/ 1	0/ <mark>3</mark>		

72 Groups			
Тор-1 Тор-5			
3 14			
4	1		
0	1		

Bacteria Bdellovibrio bacteriovorus Cell wall surface anchor

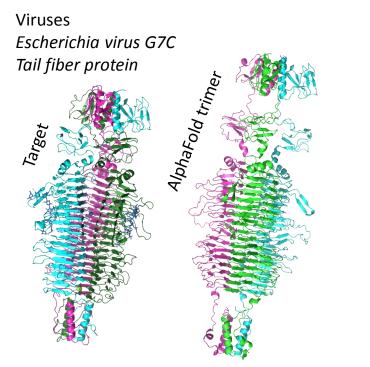

Chain	Protein		Uniprot	Length
А	Bd1334		Q6MNC5	204
Template	RMS			
None				
AlphaFold-1	L 3.49			
AlphaFold-5	5 7.87			

CASP15

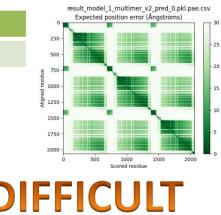
DIFFICULT

Domain intertwining; individual domains well predicted by AF; assembly difficult

200-residue domain in 1150-residue sequence; Shown is an AF model



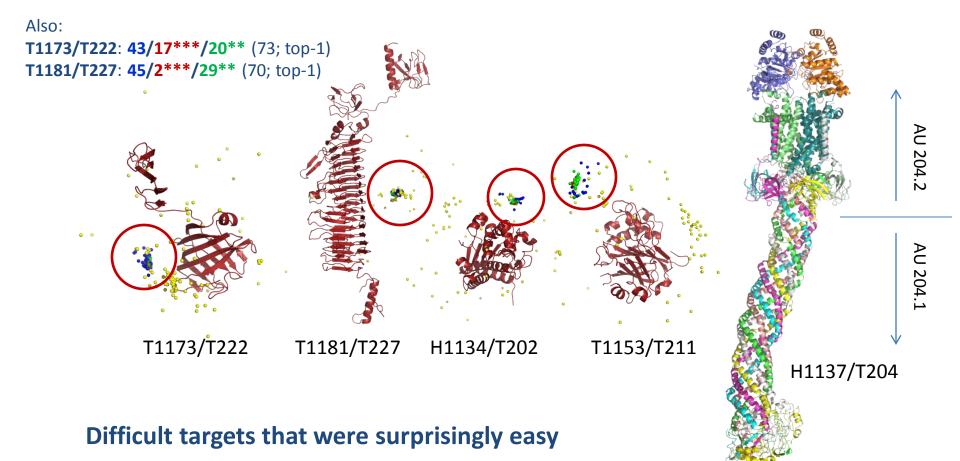
Target AlphaFold-1 AlphaFold-5


T222	T1173	no pdb	X-ray	2.40	A3
	io bacteriov urface anch				
L		- AL	Target Yang m	odel 4	
V	AS A				
				5	
			F(na	it)	0.857
		P-A A	F(nc	on-nat)	0.153
		2	S-rm	ns :	1.85 Å
side	y good e-chain cement				

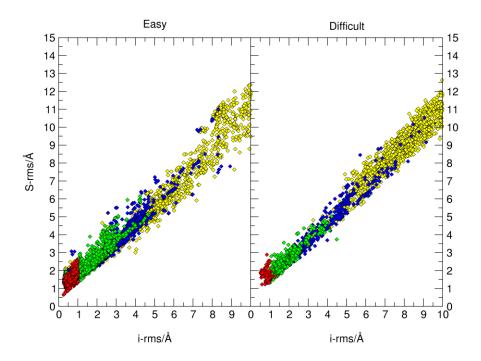
Group	Performance
Jianyi_Yang	5***
YANG-SERVER, YANG-MULTIMER	5/4***/1**
Wei_Zheng, J_Cheng	4/3***/1**
MULTICOM	4/2***/1**
Many others	
AF2-Multimer	2/ 1**

Scorer	Performance
Takeda-Shitaka	10/9***/1**
MULTICOM	10/6***/3 **
LZERD, Kihara	9/2***/6**
S_Chang	10/1***/7**
S_Huang, HDOCK	4/1***/2**
Venclovas	10/ 8**
Zou, MDOCKP	6 / 5**

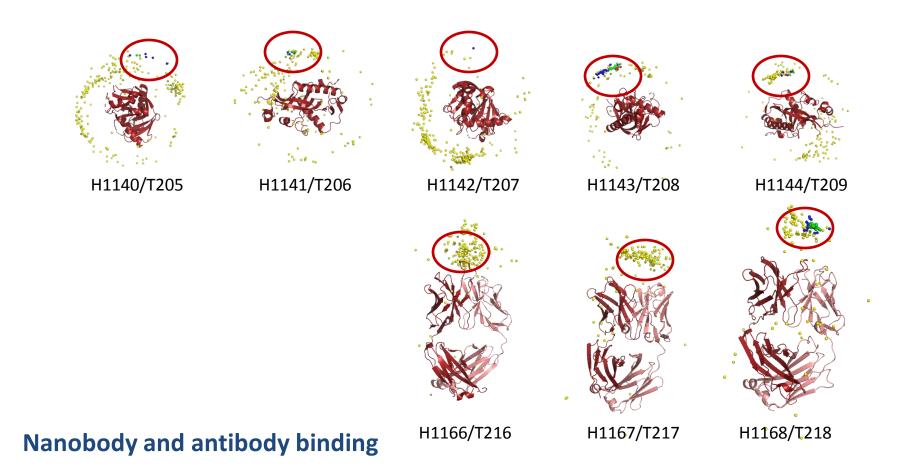
Chain	Protein	Uniprot	Length
А	gp66	G0XNW6	2058
Template	RMS	Seq ID	
4xot	2.53	17.2%	
6nw9	4.94	15.7%	
7lzj	5.34	14.7%	_
many others	5		L
AlphaFold	1.14	100%	
CACD1E			



T227	T1181	no pdb	X-ray	2.30	A3
1227	11101	πορασ	Л-Тау	2.50	73
Viruses	a virus G7C	innaFold trimer	-	L'iapour augustic	


	Kihara	PEZYFoldings	Wei Zheng
Model	5	1	1
F(nat)	0.536	0.524	0.516
F(non-nat)	0.373	0.225	0.262
L-rms	2.46 Å	2.80 Å	1.92 Å
i-rms	0.99 Å	0.85 Å	0.80 Å
S-rms	2.02 Å	1.74 Å	1.60 Å

Group	Performance
Wei_Zheng, PEZYFoldings	5/1***/4**
Kihara	4/1***/3**
MULTICOM-*, J_Cheng, ColabFold, Ness	5**
Yang-*, Baker	5/4**
Some others	
AF2-Multimer	5/3**
Scorer	Performance
Kihara	5 /1***/4 **
Takeda-Shitaka	10**


Performance
5/1***/4**
10**
9**
9/8**
7**
8/ 6**

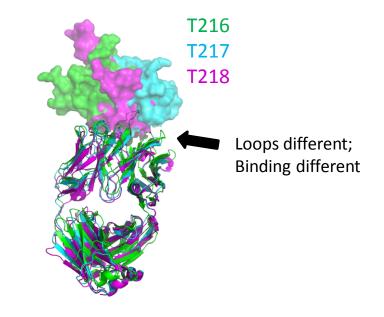
	73 Gr	oups	70 Gi	roups	78 GI	roups	59 Gi	roups	62/64	Groups
	Top-1	Тор-5	Top-1	Тор-5	Top-1	Тор-5	Top-1	Top-5	Top-1	Top-5
High	17	21	2	3	11	22	12	25	0/0	0/0
Medium	20	27	29	31	48	41	28	22	3/8	5/16
Acceptable	6	10	14	19	3	2	0	2	18/27	17/25

What is the relation between target difficulty and model quality?

T205	H1140	2.75	775 Ų
T206	H1141	2.50	925 Ų
T207	H1142	1.73	585 Ų
T208	H1143	2.55	770 Ų
T209	H1144	1.50	895 Ų

All X-ray Sub-Ångstrøm templates available

DIFFICULT

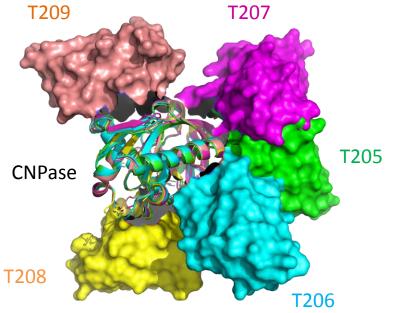

T216	H1166	7sue	2.90	1690 Ų
T217	H1167	7sts	2.16	1600 Ų
T218	H1168	7str	1.50	1820 Ų

Host-pathogen

Homo sapiens / Virus

Antibody binding to SARS-CoV-2 nuclear capsid

Chain	Protein	Uniprot	Length
А	Nucleoprotein	P0DTC9	~ 115
HL	Antibody		~ 220+210

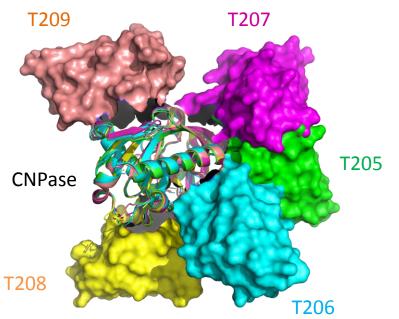


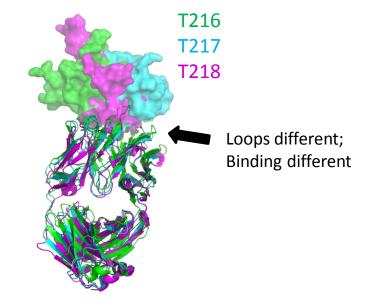
Eukaryotes

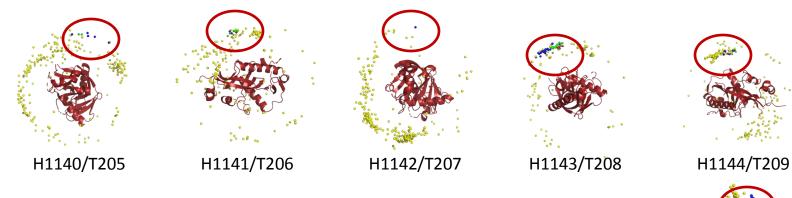
Mus musculus

Biological process: forebrain development

Chain	Protein	Uniprot	Length
А	CNPase	P16330	~ 200
В	Nanobody		~ 130


CASP15


Performance over the 5 targets; Groups predicting at least 3 of them acceptably:


Group	Performance
Wallner	4/3***/1**
Wei_Zheng	4/2***/2**
PEZYFoldings	4/3***
Pierce	3/1***
Kihara	3/1**

Performance over the 3 targets; Only T218 had acceptable results

Group	Performance
MUFold_H, DFOLDING-SERVER	1***
Many others including AF2-MM	1**

Nanobody and antibody binding

H1166/T216

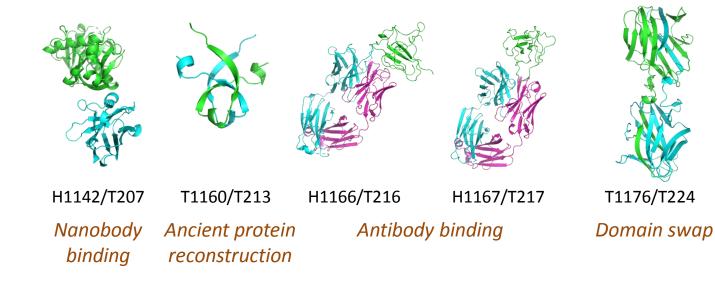
H1167/T217

H1168/T218

T205	Wei_Zheng, Wallner
T206	Wallner, Venclovas, PEZYFoldings, David_Jones-DMP
	Manifold, Wei_Zheng, S_Huang, HDOCK, DFOLDING
T207	Kihara
T208	Basically everybody
T209 CASP15	YANG-MULTIMER, Wei_Zheng, Wallner, PEZYFoldings, Suwen_Zhao, Jianyi_Yang

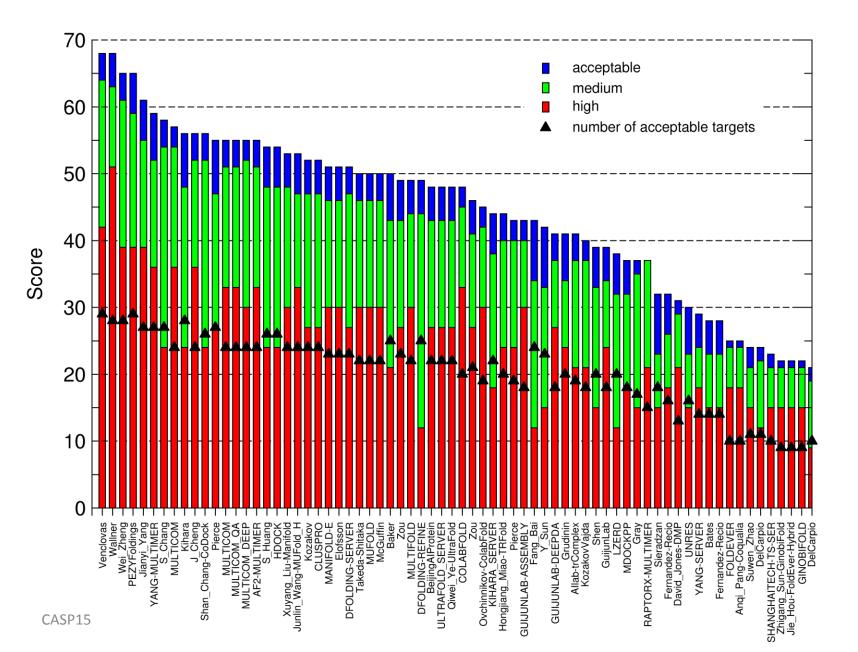
T216	Nobody
T217	Nobody
T218	MUFold_H, DFOLDING-SERVER
	Basically everybody else

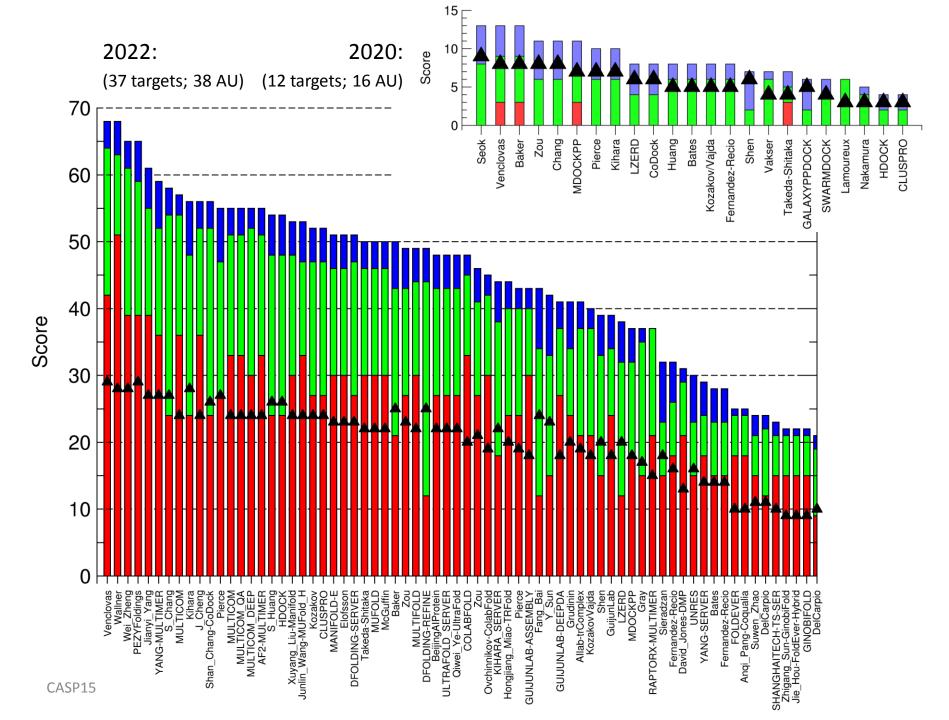
T208 and T218 had templates matching the binding site in the PDB

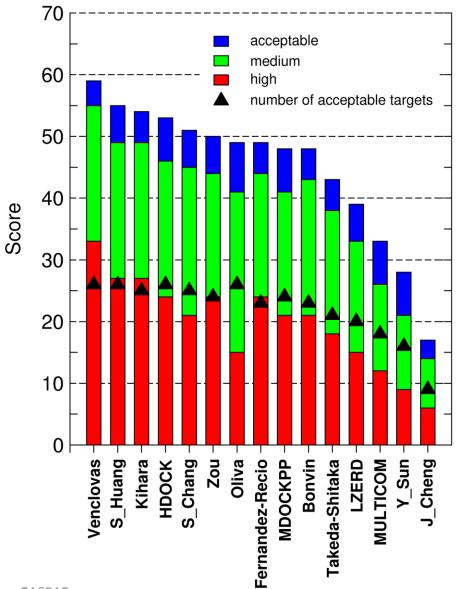

Target	Best in top-1
T191	***
T192	***
T193	***
T194	**
T195	**
T197	*
T198	**
T199	***
T200	***
T201	***
T202	***
T203/1	***
T203/2	**
T204/1	**
T204/2	**
T205	**
T206	***
T207	0
T208	***
T209	***
T210	***
T211	***
T212	**
T213	0
T214	**
T216	0
T217	0
T218	***
T219/1	**
T220/2	***
T222	***
T223	**
T224	0
T225	***
T226	***
T227	***
T229	***
T230	***

38 Assessment Units

21

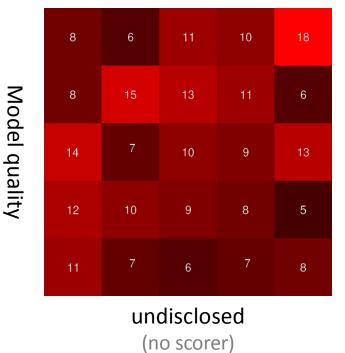

1


- Have ******* Solutions in the **top-1** submissions
- 11 Have ****** Solutions in the **top-1** submissions
 - Has * Solutions in the **top-1** submissions
 - 5 Have no acceptable solutions in the **top-1** submissions


Ranking

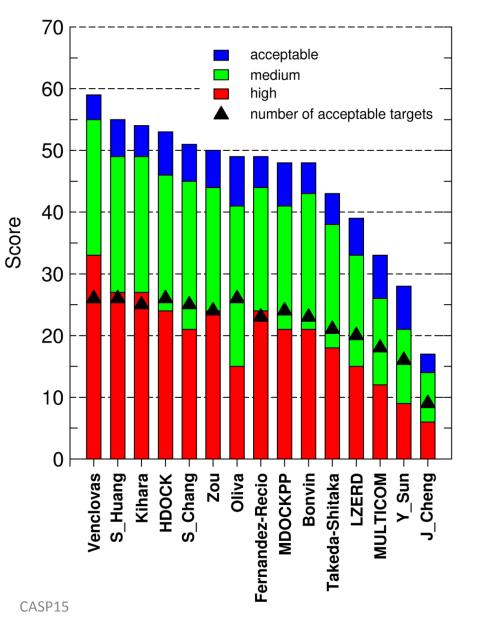
Score =
$$\omega_1 \cdot N_{ACC} + \omega_2 \cdot N_{MED} + \omega_3 \cdot N_{HIGH}$$

 $\omega_1 = 1; \omega_2 = 2; \omega_3 = 3$


Scorers

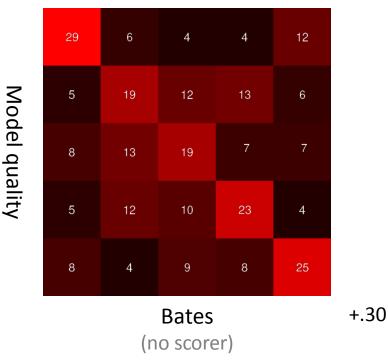
Scorers don't do much worse than Predictors.

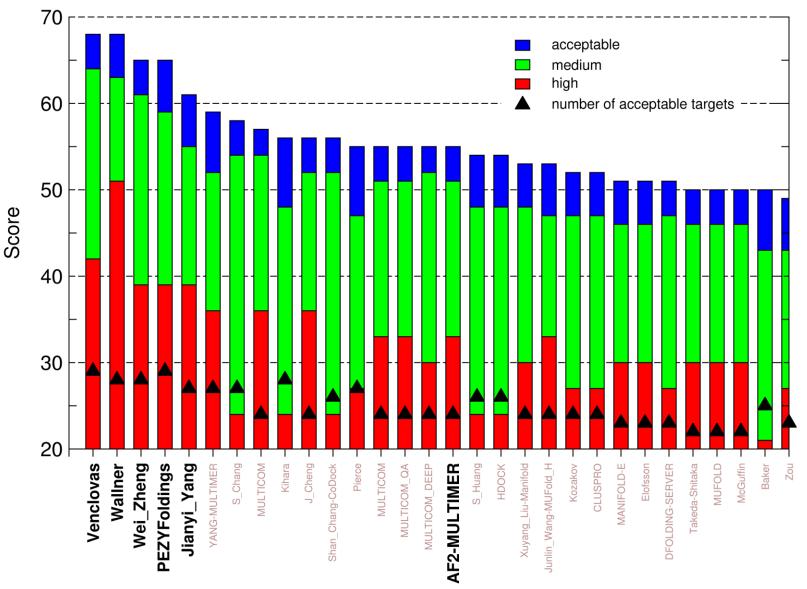
The Scoring set was significantly poorer than on previous occasions

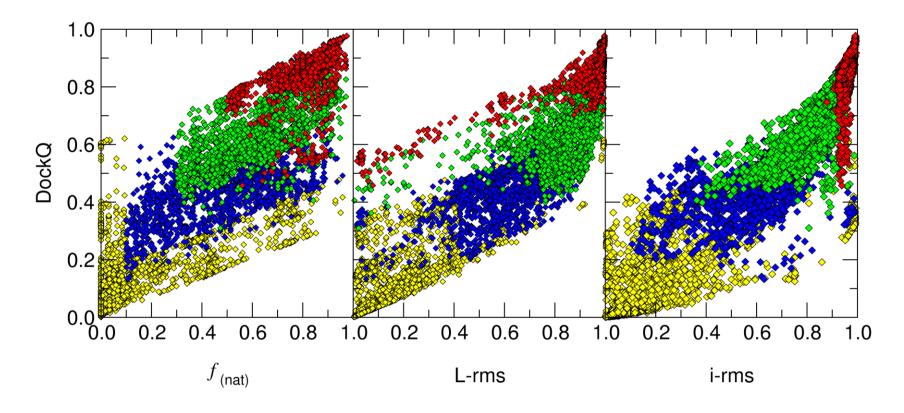

Model rank

-.14

39

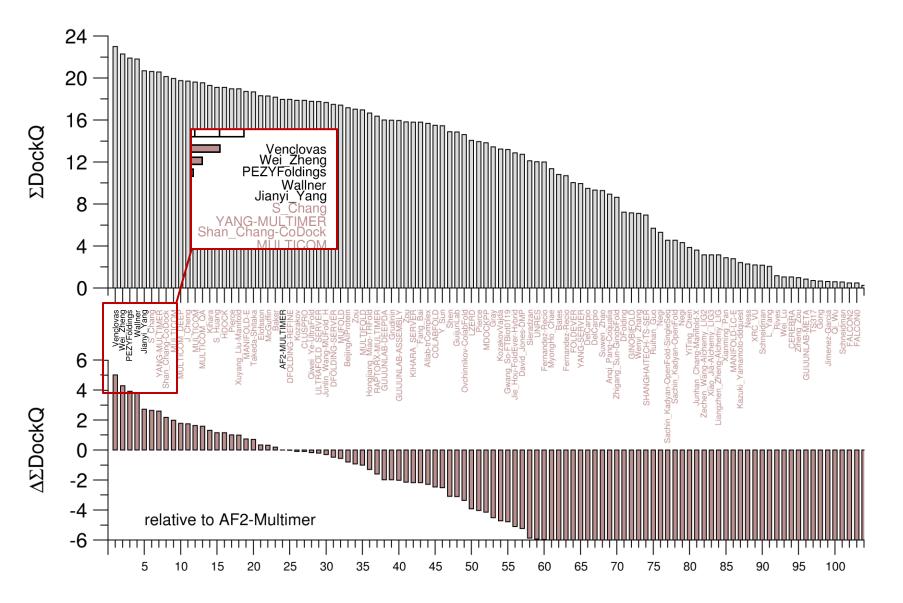

Scorers

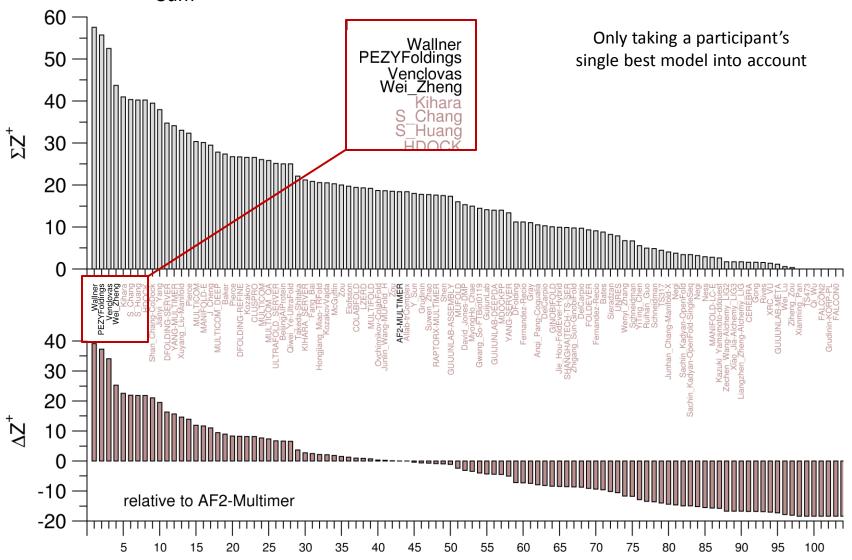

Scorers don't do much worse than Predictors.


The Scoring set was significantly poorer than on previous occasions

Model rank

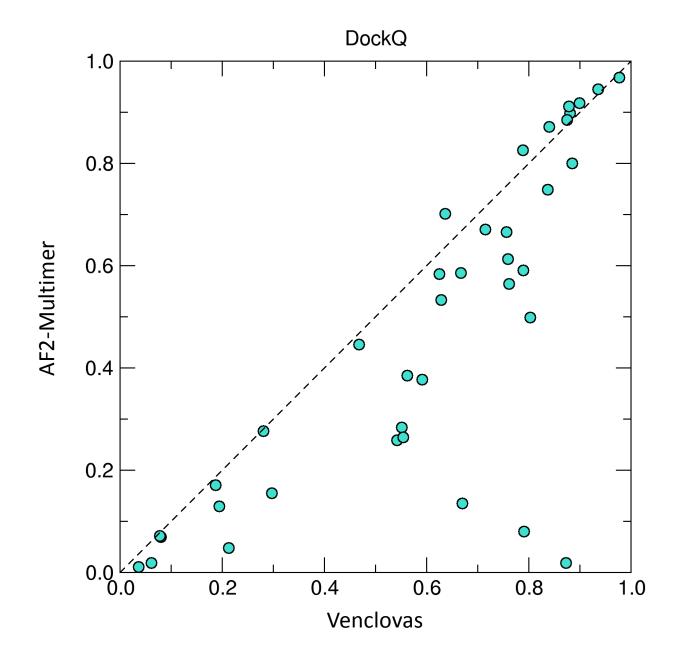
40



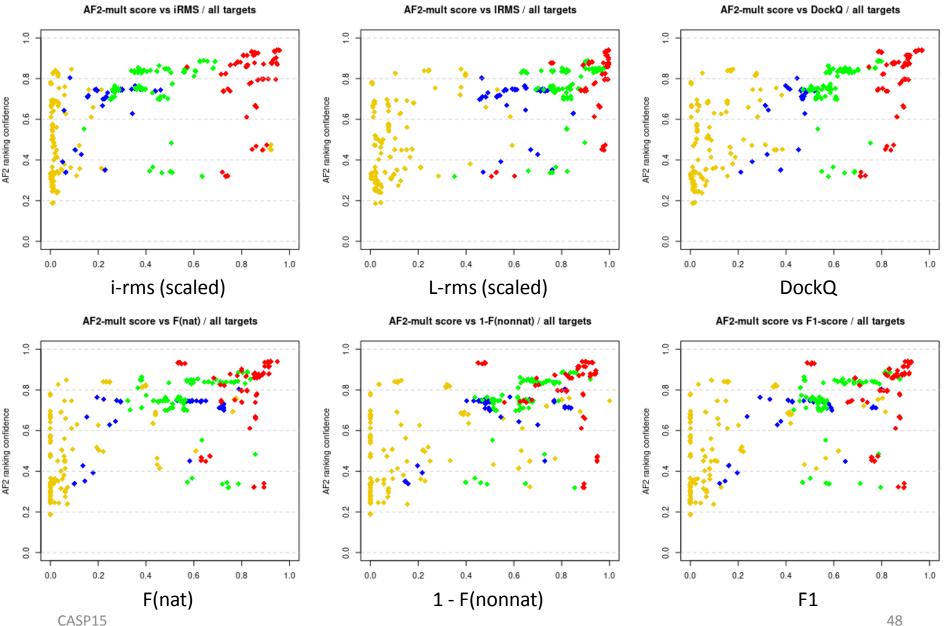

```
Analysis using DockQ
```

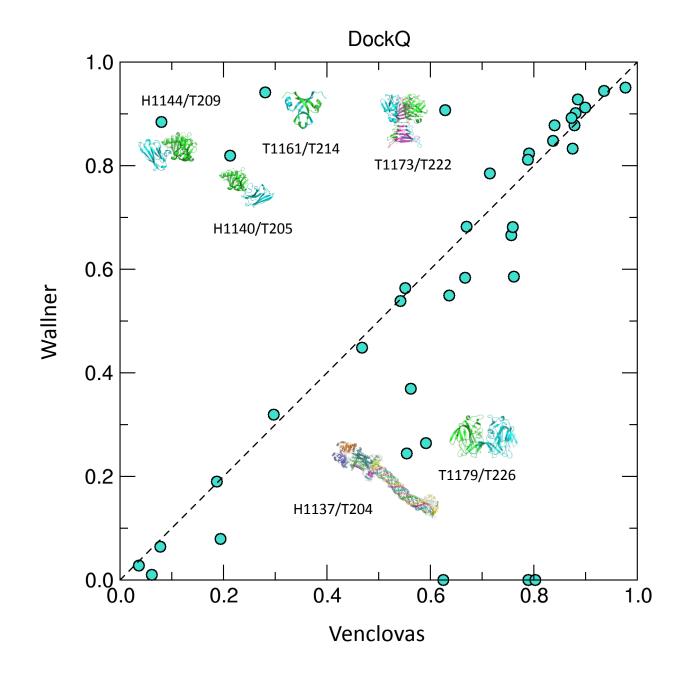
```
DockQ = \frac{1}{3} F(nat) + \frac{1}{3} L-rms + \frac{1}{3} i-rms
```

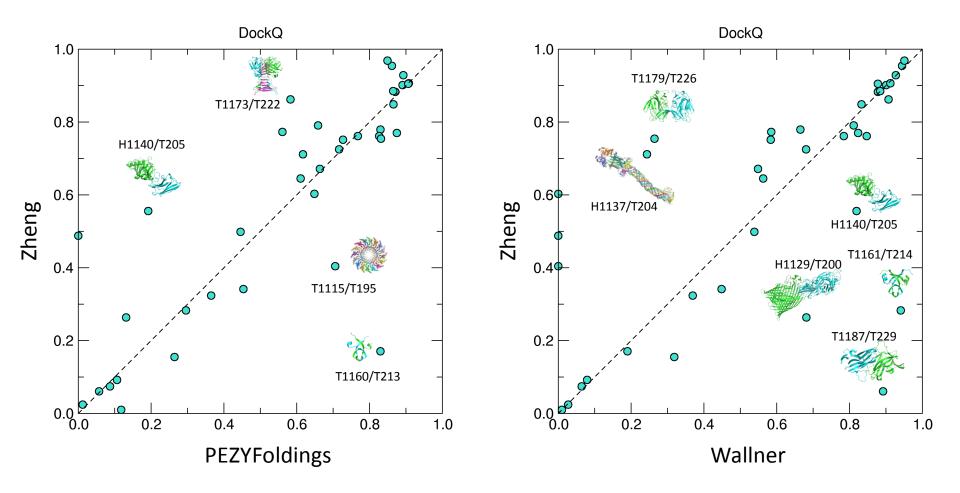
```
function rms_scaled(rms, d) {
  r = rms / d;
  r = 1.0 / (1.0 + r*r);
  return(r);
}
BEGIN { d1 = 8.5; d2 = 1.5; }
{ q = ($1 + rms_scaled($2, d1) + rms_scaled($3, d2)) / 3.0;
  printf "%6.4f\n", q;
}
```



Calculate μ and σ for top-5 models P and TS set, removing exact duplicates Express DockQ in σ (Z-score), retain only positives Sum




Ranking


Position	CAPRI	DockQ	kQ Z-score	
1	Venclovas	Venclovas	Wallner	
2	Wallner	Zheng	PEZYFoldings	
3	Zheng	PEZYFoldings	Venclovas	
4	PEZYFoldings	Wallner	Zheng	
5	Yang	Yang	Kihara	
10			Yang	
16	AF2-Multimer			
24		AF2-Multimer		
43			AF2-Multimer	

Acknowledgement: Guillaume Brysbaert, Claudio Mirabello, Arne Elofsson

CASP15

Conclusions

- CASP15/CAPRI54 presented the largest set of targets so far
 - Not only is the ratio of acceptably predicted targets increased, also the quality!
- Deep learning has found its way into protein docking/assembly prediction
 - AF2 produces routinely a medium-quality model for most targets
 - Many groups do better than the AlphaFold2-Multimer submission by Elofsson
 - Scoring will become increasingly more relevant (even more so than it is already)
- Target difficulty
 - Domain swap > antibody > intertwining > nanobody
- CAPRI / DockQ ranking:
 - 1. Venclovas 2. Wallner 3. Zheng / PEZYFoldings 4. Yang / YANG-MULTIMER
 - Venclovas and PEZYFoldings have the most AU's with acceptable+ (29 out of 38)
 - Followed by Wallner, Zheng and Kihara (28 out of 38)
 - There is still room for improvement
 - Venclovas scores consistently well on everything except the nanobodies
 - Wallner/Zheng/PEZYFoldings do particularly well on the nanobodies
- Ranking on (DockQ) Z-score
 - Pushes Wallner & PEZYFoldings to the top
 - Pushes CAPRI participants higher and AF2 lower
 - These participants do better on the very difficult targets
- Venclovas is also the best scorer
 - Followed by Huang/HDOCK and Kihara

Acknowledgements

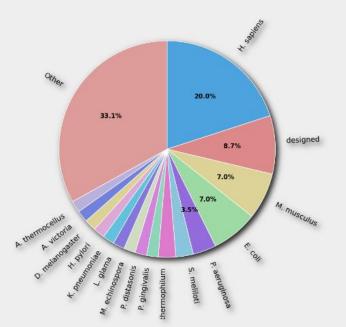
- CASP Team
 - For setting up the experiment and the collaboration with CAPRI
- Assembly assessors
 - Great job and nice discussion sessions
- CAPRI Management
 - Who thoroughly oversee the project
- All participants
 - Continuous support and submissions
- The experimentalists
 - Essential to CASP/CAPRI

The CAPRI Community (2019)

scoreset.org

CAPRI SCORESET V2022	CAPRI SCOR	RESET V20	22	
Introduction	Browse	Download	Help	

Motivation:

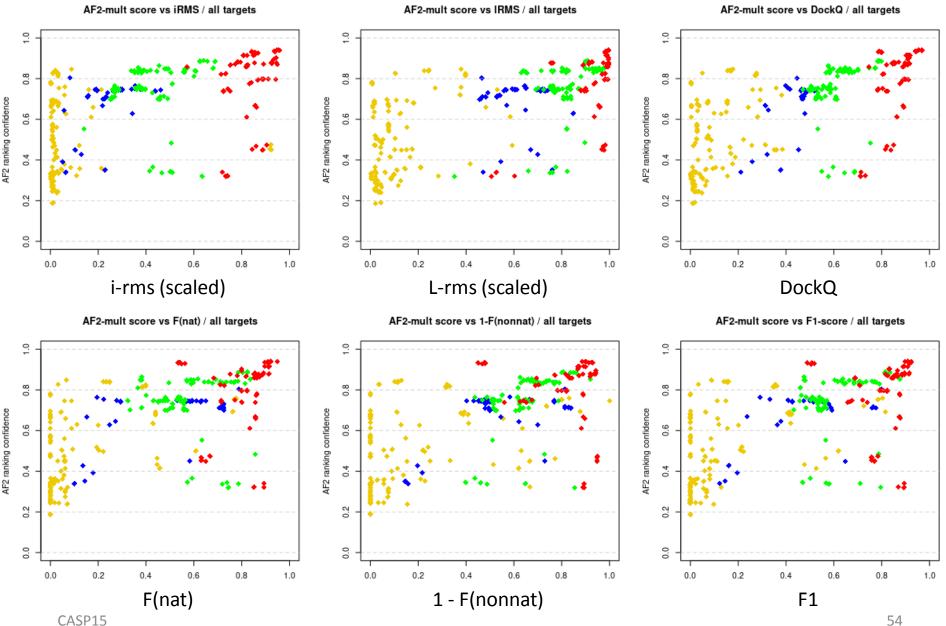

The CAPRI protein-protein docking experiment is a proven catalyst for the development of docking algorithms. An essential step in docking is the scoring of predicted binding modes generated for a given target (the experimentally determined structure to be predicted), in order to identify near-native complexes. Since 2005, the CAPRI experiment has been providing enriched data sets, including both correct and incorrect docking solutions (decoys), to enable developers to test new scoring functions independently from docking calculations.

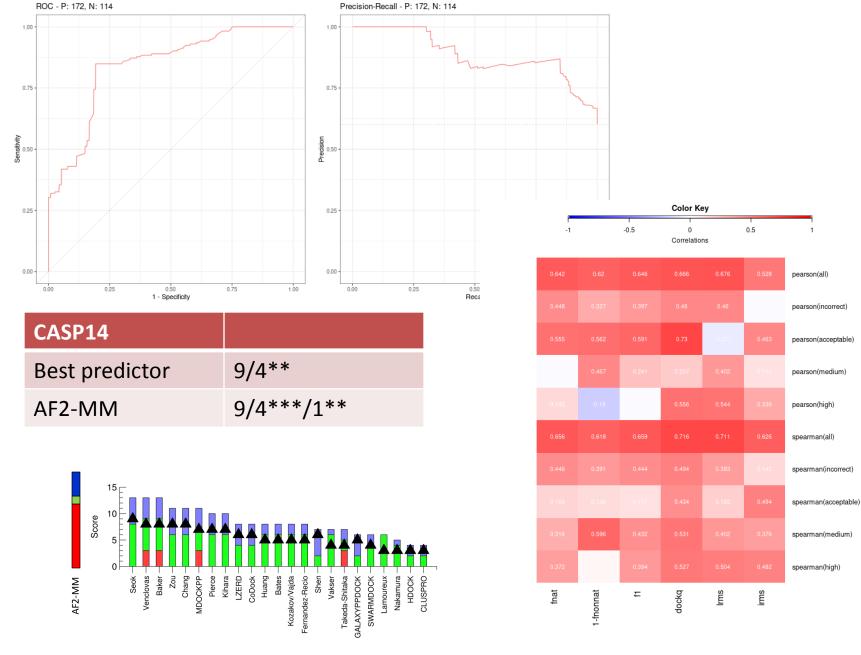
Result:

Here we present the ensemble of models submitted to the CAPRI docking and scoring experiments for CAPRI targets with published PDB structures. All models have been annotated with calculated assessment quantities used by CAPRI.

Content:

Targets
Interfaces
Decoys
Size





The CAPRI scoreset v2022 is developed and maintained by:

- Marc F. Lensink, CNRS & University of Lille, France
- Theo Mauri, CNRS & University of Lille, France
- · Guillaume Brysbaert, CNRS & University of Lille, France
- Shoshana J. Wodak, VUB-VIB, Belgium

Acknowledgement: Guillaume Brysbaert, Claudio Mirabello, Arne Elofsson

