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2Vinardo 

A classical empirical scoring function (2Vinardo) trained using multi-task learning with deep-
learning-inspired strategies 

R. Quiroga and M.A. Villarreal 
 Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET). ARGENTINA. 

mvillarrreal@unc.edu.ar 

Key: Auto:Y; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:N; MD:N 

 

Structure-based drug discovery methodologies such as molecular docking and virtual screening have 
proved to be invaluable tools in developing novel drugs. Central to these methods are scoring functions, 
which predict the binding affinity between ligands and protein targets. Machine-learning based docking 
has proven to improve upon classical empirical scoring functions for single tasks such as scoring and 
virtual screening, although it has been shown that in some cases these results can be due to overfitting, 
memorization, and learning the inherent bias of training sets. In recent years, several innovative deep 
learning-based docking methods were introduced, however, it was shown that on carefully curated 
datasets, these methods did not outperform classical docking software and scoring functions such as 
Autodock Vina and Gold1. We propose that applying deep learning strategies to train novel empirical 
scoring functions may offer a promising solution to outperform current applications while displaying 
generalizability and avoiding overfitting and memorization issues. 

Methods 
We have developed a novel but classical empirical scoring function denominated 2Vinardo. This scoring 
function is the second generation of scoring functions developed in our lab, with the first being Vinardo2, 
based on the Autodock Vina scoring function3. 2Vinardo consists of a linear combination of short-range, 
long-range, non-directional-hydrogen-bond and repulsion terms. Each of these terms are calculated on an 
atom-pair bases, for which we define 21 different atom types using a custom version of Openbabel. For 
this empirical scoring function, we developed a parameter training framework programmed in Julia, which 
uses a procedure which combines what we call batch-annealing, automatic differentiation and gradient 
descent to optimize a loss function which consist of linearly combined multi-task objectives. These 
objectives aim to simultaneously optimize the scoring, docking and virtual screening capabilities of the 
2Vinardo scoring function, by tuning the approximately 250 parameters that define 2Vinardo. 
 We used the 2Vinardo scoring function to perform rigid-flexible protein-ligand docking for the 
L1000 CASP16 supertarget. To do this, we performed docking using the 2vinardo software, based on 
idock4 and Autodock Vina3 code, which uses a Monte Carlo procedure deemed “iterated local search 
global optimizer” with BFGS as the method for local optimization and the Metropolis criterion as the 
decision mechanism to decide to accept or reject each step3. We used all protein structures for chymase 
available in the PDB database, performed docking for each ligand, and selected the structure for the best 
scoring protein-ligand complex. 
 

 



12 

Availability 
2Vinardo software is at early development stages, and is available from authors upon request. Please 
contact Marcos Villarreal at mvillarreal@unc.edu.ar 
 

1. Buttenschoen M, Morris GM, Deane CM. (2024). PoseBusters: AI-based docking methods fail to 
generate physically valid poses or generalise to novel sequences. Chem Sci. 15(9), 3130–3139. 

2. Quiroga R, Villarreal MA. (2016). Vinardo: A Scoring Function Based on Autodock Vina Improves 
Scoring, Docking, and Virtual Screening. Sticht H, editor. PLOS ONE. 11(5):e0155183. 

3. Trott O, Olson AJ. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. J Comput Chem. 31(2):455–461. 

4. Li H, Leung KS, Wong MH. (2012). idock: A multithreaded virtual screening tool for flexible ligand 
docking. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and 
Computational Biology (CIBCB). IEEE_2012:77–84. 
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AF_unmasked  

Quality assessment using AF_unmasked 

Claudio Mirabello
1,2

, Yogesh Kalakoti
1
 and Björn Wallner

1
 

1 Division of Bioinformatics, IFM, Linköping University 

 2 National Bioinformatics Infrastructure Sweden 
 

bjorn.wallner@liu.se 
 

Key: Auto:Y; CASP_serv:Y; Templ:N; MSA:N; DeepL:Y; EMA:Y; MD:N 
 
The default version of AlphaFold-Multimer1 only uses templates for the monomers of a multimer, 
completely ignoring the relative orientation of subunits. AF_unmasked2 enables the use of templates for 
multimeric proteins, making it possible to predict interactions with large complexes without remodelling 
everything from scratch. In the quality assessment category, we utilized AF_unmasked as a scoring 
function by inputting the multimeric models as templates with no MSA information to the AF2 inference 
system. 
 

Methods 
The rescoring using AF_unmasked uses inference with the ʻmultimer_5_v2ʼ neural network with the input 
model as a template and no MSA information. If the length of the input model was shorter than 1,400 
amino acids, the input model was relaxed using the standard AF2 Amber relaxation protocol before 
rescoring. Five models were generated, and the best model confidence was used as the score for the input 
model. For models larger than 1,400 amino acids, the unrelaxed model was used, and only one model was 
generated to save time. 
 
The local probabilities for interaction between chains were simply the pLDDT scores for the residues 
within 8 angstroms CB of another chain. 
 

Availability 
AF_unmasked is available at https://github.com/clami66/AF_unmasked 
 
1. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Biorxiv 2021.10.04.463034 

(2021) doi:10.1101/2021.10.04.463034. 
2. Mirabello, C., Wallner, B., Nystedt, B., Azinas, S. & Carroni, M. Unmasking AlphaFold: integration 

of experiments and predictions in multimeric complexes. Nature Communication (2024). 
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AF3-server, elofsson, pDockQ, pDockQ2, Pcons 

AlphaFold3 in CASP16 

Arne Elofsson 
Dept of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University 

arne@bioinfo.se 

Key: Auto:Y; CASP_serv:Y; Templ:Y; MSA:Y.MetaG; DeepL:Y; EMA:Y; MD:Y 

 

We submitted manual predictions as group Elofsson (#241) and server predictions as AF3-server (#304). 
All predictions were made using the AlphaFold3 server1. The five models from one target were submitted 
for the server predictions. In contrast, more models were generated, and good models with some structural 
variability were submitted for the manual predictions. For some models, additional changes were made; 
see methods. 

Quality estimations were performed using pDockQ2(#080), pDockQ23(#446) and Pcons4(#471) 
whenever the methods worked and managed to submit the results in time.  These methods are not discussed 
here as they have been described before, and we do not believe the results should be perfect for CASP16 
targets. 

Methods 
Here, we will describe the manual interventions we have performed for different categories of targets.  

 
Unknown stoichiometry 

For targets with unknown stoichiometry, we examined the possibility of predicting stoichiometry by 
generating models with possible stoichiometries. For computational reasons, it was not possible to 
generate all possible stoichiometries. Therefore, we used some manual intervention to select which ones 
to try. We usually ran monomers to hexamers for a start - but this was impossible for all H targets as the 
number of combinations was too big. After an initial screen, we used the ranking confidence and 
evaluation of the PAE map to predict the stoichiometry. 

 
Too big targets 

Some targets (e.g., H1227, H1257) were too big to run on the server (the maximum is 5000 
residues/nucleotides). Here, we used the strategy from MolPC5, i.e., building different types of 
overlapping fragments, superposing the shared parts, and thereby generating complete models, see 
Figure 1. 

 
Ligand predictions 

For ligand targets, we (1) generated a structural model from the smiles using online tools and (2) ran the 
AlphaFold3 Server with the available ligand most resembling the ligand that should be docked. Finally, 
the CASP ligand was superposed on the AlphaFold3, and a new PDB/Ligand file was generated, Figure 2. 
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RNA/DNA targets  
It was noted that for many RNA-containing targets, the server's resulting models put the chains on top of 
each other, Figure 3. For these targets, we generated many models with the server and used internal scripts 
to identify models with no (or minimal) overlap. This was also apparent from the internal AlphaFold3 
scores.  

 

 

 

Figure 3: Example of “overlapping” RNA 
prediction for R1258. 

 

Figure 4: Stoichiometry prediction of H0236: 
A3B6 was correctly identified. 

 

Figure 1: An example is target H1227 where the last part (colored 
in red) could not be modelled and was therefore added later. 

 

Figure 2: Example of ligand 
prediction for R1263v1. 
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Ensemble targets 
Different strategies were used for different ensemble targets.  

● R1203, T1214, R0283 - Standard predictions using AlphaFold3 
● T1294, T1200/T1300, M1239, T1249, M1228, T2249, R1253 - Generated many models and 

submitted ensembles of them after clustering 
● R1260 (solvation shell) - For AF3, an ensemble of models was generated and hydrated using 

standard protocols. Elofsson took the best models and ran a 47 ns long MD simulation. 
 

Results 
Here, we report some interesting observations.  

Stoichiometry 
For the monomeric target, we submitted the correct model (as first ranked) for 9 (and for lower rank for 
the other targets), i.e. it seems quite possible to predict the stoichiometry for the monomeric target. 
However, it should be noted that these predictions were not made with a single score, as it was observed 
that the monomer's score was often higher than for multimeric models, even when it was a multimer. Most 
models with only one copy of each chain were correctly predicted for multimeric models. However, only 
two models that did not have this case were predicted correctly.  For mixed “M” models - no single guess 
of stoichiometry was correct. 

 

Figure 5: a) pTM and ipTM for first ranked predictions for targets of different classes. b) 
Distribution of pTM scores given class and number of chains. 

 

 

 



17 

Predictions  
It was observed that predictions of RNA targets were significantly less reliable than other type of targets, 
see Figure 5a. For all other yoe of targets the pTM were 0.6-0.7 on average and ipTM scores 0.5 to 0.6. 
For RNA targets avereage pTM was 0.3 and ipTM 0.2. 

 
Availability 
AlphaFold3 is only available as a web server for non-commercial entities. Code under unknown licensing 
rules (likely CC BY-NC-SA 4.0) has been promised to be released before the meeting. 

Details about all predictions can be found here 

 https://github.com/ElofssonLab/casp16/blob/master/Targets.MD 

 

1. Abramson J., et al. Accurate structure prediction of biomolecular interactions with AlphaFold Nature 
630, 493–500 (2024) 

2. Bryant, P, Pozzati, G, Elofsson, A Improved prediction of protein-protein interactions using 
AlphaFold2, Nat Commun 2022 Mar 10;13(1):1265. 

3. Zhu, W, Shenoy, A, Kundrotas, P , Elofsson, A Evaluation of AlphaFold-Multimer prediction on 
multi-chain protein complexes, Bioinformatics. 2023 Jul 1;39(7):btad424. 

4. Lundström, L, Rychlewski, L, Bujnicki,, J. Elofsson, A. Pcons: a neural-network-based consensus 
predictor that improves fold recognition. Protein Sci . 2001 Nov;10(11):2354-62. 

5. Bryant, P, Pozzati, G, Zhu, W, Shenoy, A, Kundrotas, P, Elofsson, A, Predicting the structure of large 
protein complexes using AlphaFold and Monte Carlo tree search. Nature Comm 13,: 6028 (2022)  

  

https://github.com/ElofssonLab/casp16/blob/master/Targets.MD


18 

aicb 

Perturbation of AlphaFold to predict protein structure ensembles 

Ziheng Zou, Shuya Li and Jianyang Zeng* 

School of Engineering, Westlake University 

* corresponding author: zengjy@westlake.edu.cn 
 

 
Key: Auto:N; CASP_serv:N; Templ:Y; MSA:Y; DeepL:Y; EMA:N; MD:Y 
 
We participate in CASP16 focusing on the protein ensemble tasks T1200 and T1300. We developed 
perturbation strategies based on OpenFold, which is a torch-based reproduction of AlphaFold2. By 
introducing physical perturbations into the structure modules, we obtained a series of protein structural 
variants as the output. Then, we calculated the probabilities of perturbed conformers with the help of the 
Amber energy function. We utilized our pipelines pert-linker and pert-plddt to produce protein ensembles 
with and without the help of prior knowledge of the linker and functional domains. 
 

Methods 
We modified the inference process of OpenFold to introduce more flexibility to the output structures 
without changing the feature generation and transformations1,2. Without specific descriptions, our method 
shared the same procedures as OpenFold, including the MSA generation and templates searching. Here, 
we introduced the detailed modifications to predict the protein structure ensembles with the prior 
knowledge of PDB records 2LR2 and 4NDP by pert-linker, and to use pert-plddt to infer the structures 
automatically. 
 
Reference rigid generation 
 
Based on the original OpenFold pipeline, we first obtained the raw predicted structure. We aligned the 
2LR2 and 4NDP structures to the raw structure and calculated the rigids of structures. According to 
sequence alignments, we replaced parts of the rigids of the raw predicted structure by those of 2LR2 and 
4NDP. The merged rigids would serve as the reference in the perturbation step for pert-linker. And pert-
plddt requires no reference rigids. 
 
Reinitialization and Perturbation 
 
To modify the predicted structures based on our prior knowledge, we introduced two novel operations into 
the structure module of AF2, that is, reinitialization and perturbation. Here we applied the operations in 
one of the eight blocks in the structure module. To be specific, reinitialization reads the given reference 
rigids to rebuild the initial conformer, and perturbation adds a random rotation to specific residues. The 
random rotations were sampled from uniform distributions with user-defined parameters. Based on the 
requirements of the T1200 and T1300 targets, we set the linker residues in pert-linker as the perturbed 
residues manually. And pert-plddt chose low plddt-value residues as the perturbation sites. 
 
Structure prediction and scoring 
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With ten weight parameter files published by AF2, we generated 300 random conformers for each 
parameter file with diverse perturbation parameters and different random seeds. The output conformers 
were relaxed by the standard OpenFold pipeline, and the resulting Amber energies were recorded3. 
 
Population distribution estimation 
 
Inspired by the conformer searching steps in classical molecular dynamics methods, we clustered the 
predicted conformers with MaxCluster and selected represents in each cluster4. Then, the probabilities of 
filtered conformers were calculated based on the Boltzmann distribution. 
 

Availability 
The related code and manuscript will be released after publication. 
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generalization. Nature Methods. 21 (2024) 1514-1524. 
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4. Herbert, A., & Sternberg, M. J. E. MaxCluster: a tool for protein structure comparison and clustering. 
(2008) http://www.sbg.bio.ic.ac.uk/~maxcluster/index.html 

 

 

  



20 

APOLLO (QA) 

Quality Estimation of Single-Model Individual Interface Residues using Graph Neural Networks 

Gabriel Huang, Andrew Jordan Siciliano, Bishal Shrestha, and Zheng Wang 

Department of Computer Science, University of Miami 

zheng.wang@miami.edu 
 
Key: Auto:N; CASP_serv:N; Templ:N; MSA:Y.MetaG; DeepL:Y; AF:AF2; EMA:N; MD:Y 
 
APOLLO is a single-model quality assessment method that uses graph neural networks (GNNs) to predict 
the quality of interface residues within protein-complex models. Our server participated in QA (QMODE-
2 and QMODE-3) categories. QMODE-2 was largely done through automated scripts with minimal 
human intervention, while QMODE-3 targets required human intervention.  

Methods 
For QMODE-2 we directly predicted the local qualities of interface residues. To predict the global 
interface score we average the predicted quality scores for interface residues, which was used for both 
QMODE-2 and the ranking of relaxed models in QMODE-3. QMODE-3 was skipped for targets that could 
not be relaxed in time due to computational issues (approx. > 1000 residues or heavy server usage). 
Relaxation was performed using OpenMM1 and the Amber99sb force field2 as described and implemented 
by AlphaFold23-4. 

APOLLO first represents the protein as a graph in which each node corresponds to a residue, and the 
edges represent spatial relationships between residues. The GNN performs message passing between 
connected residues to learn meaningful representations of the protein and its features. This message-
passing operation is implemented through a MetaLayer5, where multi-layer perceptron (MLP) blocks are 
used to aggregate and transform information from neighboring residues. PatchQS6 was calculated using 
OpenStructure7 and was used as the ground truth. Information on node and edge features, as well as dataset 
generation, can be found within the abstract for COAST. 

 
1. Eastman, P. et al. (2017). OpenMM 7: Rapid development of high performance algorithms for 
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3. Jumper, J. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-
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4. Evans,Richard,et al. "Protein complex prediction with AlphaFold-Multimer." biorxiv: 2021-10. 
5. Battaglia, P.W., et al., Relational inductive biases, deep learning, and graph networks. arXiv preprint 

arXiv:1806.01261, 2018. 
6. Studer, G., Tauriello, G., & Schwede, T. (2023). Assessment of the assessment—All about 
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7. Biasini,Marco,et al. "OpenStructure: an integrated software framework for computational structural 

biology." Acta Crystallographica Section D: Biological Crystallography 69.5 (2013): 701-709 
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We developed ARC, a single-model quality assessment method that predicts interface residue quality 
scores for protein-complex models. Our server participated in both assembly (TS) and Quality Assessment 
(QA) categories, specifically QMODE-2 and QMODE-3. QMODE-2 was largely done through automated 
scripts with minimal human intervention, while TS and QMODE-3 targets required human intervention.  

Methods 
 
For QMODE-2, local interface qualities were predicted directly from ARC, and the global interface 
prediction (QSCORE) was the average of the predicted local interface scores. QSCORE was used as the 
metric for ranking the top 5 relaxed models for QMODE-3. QMODE-3 was skipped for targets that could 
not be relaxed in time due to computational issues (approx. > 1000 residues or heavy server usage). For 
TS predictions, we sampled multimeric structures using dropout-enabled ESM-Fold1-2 with varying gap 
and linker sizes. Structures with varying stoichiometry were generated for Phase 0 TS targets. For both 
Phase 0 and Phase 1 targets, the top 5 sampled models ranked by ARC’s predicted global quality score 
were relaxed and submitted. Relaxation was performed using OpenMM3 and the Amber99sb force field4 
as described and implemented by AlphaFold25-6. 

Model Architecture. ARC implements an ensemble of state-of-the-art graph-based deep learning 
algorithms to predict per-residue quality scores. These include Generalized Graph Convolution 
(GENConv)7, Graph Attention Networks (GATv2)8, GeneralConv9, Pathfinder Discovery Networks 
(PDNConv)10, Graph Isomorphism Network with Edge Features (GINEConv)11, Residual Gated Graph 
ConvNets (ResGatedGraphConv)12, and Graph Transformer (TransformerConv)13. Each base model 
processes the protein-complex model as a graph where the nodes correspond to the amino acid residues 
and edges represent spatial relationships within 14Å. The node and edge features consist of a 
comprehensive set of attributes derived from both the sequence and structure of the protein complex 
model. The ground truth (PatchQS)15 was calculated using OpenStructure14. Details regarding dataset 
generation, node features, and edge features are located within the abstract for COAST.  

Each GNN processes the graph using specialized convolutional layers and message-passing 
mechanisms that leverage node and edge attributes to capture complex structural patterns and interactions. 
The ensemble integrates diverse techniques such as dynamic attention mechanisms8, edge 
convolutions11,13, learnable aggregation functions7, message normalization7, residual connections12, gating 
mechanisms12, flexible multi-head operations9, and pathfinder discovery networks10. These mechanisms 
collectively enhance the models' ability to represent intricate spatial relationships, capture long-range 
dependencies, and distinguish between different types of residue-residue interactions.  

mailto:zheng.wang@miami.edu
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After processing through successive layers of message passing and feature transformation, each model 
outputs per-residue quality predictions, which are passed through a sigmoid activation function to produce 
scores between 0 and 1. The ensemble aggregates the outputs from all base models by averaging the per-
residue scores, providing the final per-residue prediction.  
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Seventy years ago, physical model building using metal rods allowed Watson, Crick, and Franklin to 
propose the now famous double-helical, hydrogen bonded structure for DNA based on low-resolution data 
from the then novel technique of macromolecular crystallography1, and more recently, the game Foldit2 
allowed players from around the world to contribute to predicting the three-dimensional structures of 
novel proteins, in some instances matching or even ouperforming the conformational sampling algorithms 
available at the time, and has since expanded into small-molecule ligand prediction3. 

 I have participated in the 16th CASP experiment to test to what extent human manual model 
builders can contribute to ligand complex prediction in the current state of development of the field, an 
area that lags behind the availability of accurate target structures at close to whole-genome scale4. One of 
the drawbacks of such model building is its low throughput, which did not allow pose prediction for the 
autotaxin data set consisting of over 200 ligands. This is somewhat unfortunate given the fact that this set 
contained the largest diversity of chemotypes and binding modes of the six protein-ligand prediction 
targets in CASP16—however there were five other protein targets whose ligand poses have been 
submitted. 

 If I am successful in CASP16, I hope to attempt to apply whatever insights I have developed toward 
developing the next generation of sampling algorithms and ligand interaction force fields, as well as 
toward prediction of endogenous ligands for proteins of currently unknown function. 

 

Methods 

When predicting ligand poses and binding affinities, I utilized existing structures of the targets and their 
homologues from the PDB to guide assessments of the dynamic conformational variability of the proteins, 
and existing ligand complexes (when available) to inform possible modes of interaction and as 
benchmarks for ligand absolute affinities (through data from PDBBind5)—however I did not restrict poses 
or side chain conformations to those previously observed.  

For the three enzyme-inhibitor data sets L1000, L2000, and L4000, I assumed that the ligands 
were competitive active site inhibitors and thus needed to at least partially overlap the substrate envelope, 
an assumption that seems, based on preliminarily released poses, to have been correct for all molecules 
except for one of the coronaviral MPro ligands. For the PQQ transporter model, the conformational 
changes undergone by other TonB-dependent transporters upon binding of their cognate substrates were 
used to predict the hinge points for the closure motion of the extracellular loops. 

mailto:arosko@buckinstitute.org
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Ligand poses were submitted directly as predicted manually—no energy minimization was 
performed, except to generate physically plausible bond lengths and angles for the ligands themselves 
prior to model building. In some cases, where multiple plausible poses were found, more than one model 
was submitted. 
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3. Eiben,C.B., Siegel,J.B., Bale,J.B., Cooper,S., Khatib,F., Shen,B.W., Players,F., Stoddard,B.L., 

Popovic,Z., Baker,D.(2012) Increased Diels-Alderase activity through backbone remodeling guided 
by Foldit players, Nat. Biotechnol. 30, 190-192. 
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Our solution utilizes a variational autoencoder1 to refine predictions of protein assembly structure. The 
encoder embeds the solution from an upstream solver and samples several embeddings in the 
neighborhood. The decoder generates candidate protein structures from the sampled embeddings, and the 
protein structure with lowest RMSD to other samples is selected. 

 

Methods 

Model Architecture: The model utilizes an Encoder-Decoder architecture. The encoder is 
parameterized by a Signal-to-Noise ratio. This ratio adapts during the model training. When a Protein 
Structure is passed through the encoder, it generates another sample with the specified Signal-to-Noise 
Ratio. 

The Decoder generates a predicted structure from the encoder’s noisy sample. Each atomic 
coordinate is modeled as a Gaussian distribution. Atomic-level features are passed through multiple 
Sparse Transformer layers2 to predict the mean and variance of the atomic coordinate’s Gaussian 
Distribution. The features employed by the Decoder include: 1) the noisy samples from the Encoder and 
2) the sequence of atoms and residues. 

Model Training: The Model is trained on protein assemblies in the RCSB PDB3. The training 
pipeline utilizes MMseqs24 to assign individual protein sequences to clusters. On each training step, the 
training pipeline randomly selects a cluster, and it randomly selects assemblies with sequences in that 
cluster. Each training step takes a gradient step to maximize the Evidence Lower Bound on the selected 
assemblies. 

Inference: The inference pipeline utilizes the variational autoencoder to refine protein structure 
predictions from AlphaFold25. The pipeline utilizes the encoder to sample 10 noisy versions of the protein 
structure. It passes the 10 noisy protein structures through the decoder to generate predicted solutions. The 
predicted solution with the lowest RMSD to all other predicted solutions is chosen as the most likely 
structure. The chosen structure is passed through an OpenMM6 minimization using the Amber Force 
Field7 to remove steric violations. 
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This method tests an integrated protein structure prediction system based on an interplay of AlphaFold21 
and AlphaFold32 for both monomeric and multimeric protein targets. The objective is to investigate the 
ability of an integrated version of AlphaFold2 and AlphaFold3 to improve the predictive modeling 
accuracy compared to the baseline AlphaFold versions. Since AlphaFold3 is only available as an online 
server with limited number of job submissions per day, the method participated in CASP16 as a human 
group to allow for more computational time. 
 
Methods 
 
First, AlphaFold32 (alphafoldserver.com) was used to predict 5 structural models given the CASP target 
sequences for monomeric inputs or for multimeric inputs of known stoichiometry. All AlphaFold3 
predictions are then fed into AlphaFold21 as custom templates together with custom multiple sequence 
alignments (MSAs) generated by DeepMSA23 and/or MMseqs24. The predicted structural models from 
the customized AlphaFold2 run were submitted as the final predictions by selecting models with the 
highest confidence score. 
 

ColabFold5 was used to run custom version of AlphaFold v2.3.0 that takes the AlphaFold3 
predicted structural models as templates and custom MSAs generated by DeepMSA2 and/or MMseqs2. 
For the monomeric targets, alphafold2_ptm weights were used with the maximum number of recycles set 
to 3, whereas for alphafold2_multimer_v3 weights were used for multimeric inputs with the maximum 
number of recycles increased to 20. 
 

Since alphafoldserver.com only allows the submission of jobs with a total length less than 5,000 
residues, the default version of AlphaFold2 was employed for large multimeric targets having length more 
than 5,000 residues. In addition, for some of the large multimeric targets the maximum number of recycles 
was reduced during the customized AlphaFold2 run to save computational time. 
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In CASP16, we tested a fully automated scoring-guided RNA 3D structure prediction system to investigate 
the effectiveness of our newly developed RNA scoring function for 3D structural model selection and 
ranking. In addition, we tested an integrative protein-RNA complex prediction system by combining our 
newly developed single-sequence method based on geometric attention-enabled pairing of biological 
language models with other existing methods.  

Methods 

Scoring-guided RNA Structure Prediction 

We used several deep learning-based RNA structure prediction methods to generate an ensemble of RNA 
3D structural models from the CASP16 target sequence. To generate the structural ensemble, we used 
trRosettaRNA1, a modified version of DeepFoldRNA2, DRfold3, NuFold4, our customized version of 
NuFold with fine-tuned weights, E2EFold-3D5, RoseTTAFold2NA6, AlphaFold37 webserver, and 
AlphaFold3 predictions relaxed by restrained optimization using PyRosetta8. We used the default rMSA9 
pipeline to generate the MSA for a given RNA sequence as an input to the MSA-based RNA structure 
prediction methods. 

To select the top 5 models from this structural ensemble, we used our newly developed locality-
aware invariant point attention model for scoring RNA 3D structures, lociPARSE10, to score the structural 
models. The top 4 submitted unique models are selected based on four different variants of lociPARSE 
trained independently (i.e., with varying sets of weights and loss functions). The 5th model is chosen based 
on consensus having the highest aggregated rank based on all four lociPARSE models. 

Integrative Protein-RNA Complex Prediction 

Our integrative protein-RNA complex prediction pipeline is powered by our newly developed single-
sequence method ProRNA3D-single11 based on geometric attention-enabled pairing of biological 
language models. We employed multiple strategies for the 5 submissions per target. One submission was 
purely based on biological language models, with embeddings generated from protein and RNA language 
models, informed by single-sequence-based ESMFold12 and E2EFold-3D5 for predicting the component 
protein and RNA structures, ultimately predicting the protein-RNA interactions using ProRNA3D-single, 
followed by restrained optimization using PyRosetta8 to generate protein-RNA complex structural models. 
For the other submissions, we used a customized version of ProRNA3D-single, where AlphaFold37, 
RoseTTAFold2NA6, and RoseTTAFold All-Atom13 were employed to predict protein-RNA complex 
structures. For these predictions, we extracted the component protein and RNA structures and used 
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ProRNA3D-single for predicting the protein-RNA interactions followed by restrained optimization using 
PyRosetta8 to generate protein-RNA complex structural models by updating the relative coordinates of 
the components. Additionally, we submitted the AlphaFold3-predicted protein-RNA complex structure as 
a baseline. 

Availability  

lociPARSE is freely available at: https://github.com/Bhattacharya-Lab/lociPARSE.  

ProRNA3D-single is freely available at https://github.com/Bhattacharya-Lab/ProRNA3D-single.  
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In CASP16, we tested our RNA tertiary structure prediction method, BRIQ2, using Monte Carlo sampling 
with a statistical force field. We developed a coarse-grained version of the BRIQ1 force field and 
optimized its all-atomic counterpart. The sampling process involves two steps: coarse-grained sampling 
and all-atomic sampling, both using the Monte Carlo method. Before the coarse-grained sampling, we 
apply various secondary structure prediction tools, such as SPOT-RNA, RNAStructure, UFold, and our 
newly developed method, bpFold, to obtain the secondary structure as input. However, this pipeline is 
only effective for small RNAs with sequence lengths of less than 200. For larger RNAs, we use the 
AlphaFold3 webserver to generate an initial model, followed by structure refinement with BRIQ2 to 
produce the final model. 

 

1. Xiong, P. et al.(2021). Pairing a high-resolution statistical potential with a nucleobase-centric sampling 
algorithm for improving RNA model refinement. Nature Communications 12(2777). 
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RNA structure and dynamics are heavily dependent on the properties of the surrounding solvent, in 
particular its ionic composition. Most notably, RNA establishes strong interactions with Mg2+ cations, for 
which accurate attribution within published PDB structures is a long-standing challenge.1 In order to reach 
maximum accuracy, RNA structure prediction tasks must incorporate implicitly or explicitly the presence 
of Mg2+. We here used molecular dynamics (MD) simulations to predict the solvation shell of the Apo L-
21 Scal Tetrahymena ribozyme. We present two closely related predictions. In this one, we used plain MD 
simulations. In the related one, we used enhanced sampling techniques.  

 

Methods 

We tackle the task of local buffer structure ensemble prediction with molecular dynamics (MD) 
simulations. Simulations were done with GROMACS2 2022.3 patched with PLUMED3 2.8.1. 

 Preliminary analysis. Before starting the simulations, we inspected the Cryo-EM structure of the 
Apo L-21 Scal Tetrahymena ribozyme (PDB: 7EZ0)4, focusing on the ions already present in the PDB. 
Since ions in Cryo-EM experiments are often misplaced/misidentified,1 we tested the accordance of each 
ion with the Cryo-EM potential density map (EMBD: emd_31385) related to this structure. We tried to 
change atom types and occupancies, finding the best accordance with all Mg2+ ions, as was deposited 
initially. Since all 27 ions were already in the optimal site, according to the potential density map, we 
decided to restrain their positions in the structure during the following simulations. 

 Topology and force field. The structure of the Apo L-21 Scal Tetrahymena ribozyme (PDB: 7EZ0)4 
was then sanitized with PDBFixer to add missing heavy atoms. All 27 Mg2+ ions present in the original 
structure were kept. We used the TIP3P5 water model and a modified version of the amber14sb.ff.tar.gz 
force field parameters, corresponding to the standard AMBER force field for RNA6–8 with “microMg” 
parameters for magnesium from Grotz and Schwierz (2021),9 and chloride/sodium parameters from 
Mamatkulov and Schwierz (2018).10 

 Buffer preparation. The structure was solvated in a rectangular box (~17×12×13 nm3) and the 
RNA was neutralized with Na+ and Mg2+ in a 3-to-1 ratio (including the already present 27 Mg2+) so as to 
match the ion competition observed in experiments.11 Ions were added in the bulk to reach experimental 
buffer conditions (10 mM MgCl2, and 50 mM Na-HEPES treated as NaCl). All extra ions (124 Mg, 
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121 Na, 91 Cl) were added with gmx genion, with independent random seeds for each replicate mentioned 
hereafter. 

 Equilibration. Energy minimization was done with steepest descent algorithm and the system was 
equilibrated for 5 ns in the NPT ensemble (1 bar, 300 K, C-rescale barostat12 and V-rescale thermostat13) 
with positional restraints on the RNA heavy atoms and the 27 PDB Mg2+ ions. 

 Plain MD simulation. Considering that all the Mg2+ ions included in PDB 7EZ0 were important to 
match the density map reported in previous experiments, we decided to perform extensive sampling with 
the same setup used in the Equilibration phase. Specifically, we independently solvated and prepared 16 
systems and ran these as replicates for 165 ns each. 

Final ensemble. For each of the 16 replicates, 62 equally spaced frames were extracted with a pace 
of 2.5 ns, skipping the initial 10 ns. This resulted in a total of 992 frames submitted for ensemble 
assessment. 

 

Availability 

Input files and scripts will be made available as part of an upcoming publication of the method’s details. 
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RNA structure and dynamics are heavily dependent on the properties of the surrounding solvent, in 
particular its ionic composition. Most notably, RNA establishes strong interactions with Mg2+ cations, for 
which accurate attribution within published PDB structures is a long-standing challenge.1 In order to reach 
maximum accuracy, RNA structure prediction tasks must incorporate implicitly or explicitly the presence 
of Mg2+. We here used molecular dynamics (MD) simulations to predict the solvation shell of the Apo L-
21 Scal Tetrahymena ribozyme. We present two closely related predictions. In this one, we used enhanced 
sampling techniques. In the related one, we used plain MD simulations. 

Methods 

We tackle the task of local buffer structure ensemble prediction with molecular dynamics (MD) 
simulations, complemented with enhanced sampling techniques to accelerate the rearrangement of Mg2+ 
coordination shells. Simulations were done with GROMACS2 2022.3 patched with PLUMED3 2.8.1. 

 Topology and force field. The structure of the Apo L-21 Scal Tetrahymena ribozyme (PDB: 7EZ0)4 
was sanitized with PDBFixer to add missing heavy atoms. All 27 Mg2+ ions present in the original 
structure were kept. We used the TIP3P5 water model and a modified version of the amber14sb.ff.tar.gz 
force field parameters, corresponding to the standard AMBER force field for RNA6–8 with “microMg” 
parameters for magnesium from Grotz and Schwierz (2021),9 and chloride/sodium parameters from 
Mamatkulov and Schwierz (2018).10 

 Buffer preparation. The structure was solvated in a rectangular box (~17×12×13 nm3) and the 
RNA was neutralized with Na+ and Mg2+ in a 3-to-1 ratio (including the already present 27 Mg2+) so as to 
match the ion competition observed in experiments.11 Ions were added in the bulk to reach experimental 
buffer conditions (10 mM MgCl2, and 50 mM Na-HEPES treated as NaCl). All extra ions (124 Mg, 
121 Na, 91 Cl) were added with gmx genion, with independent random seeds for each replica mentioned 
hereafter. 

 Equilibration. Energy minimization was done with steepest descent algorithm and the system was 
equilibrated for 5 ns in the NPT ensemble (1 bar, 300 K, C-rescale barostat12 and V-rescale thermostat13) 
with positional restraints on the RNA heavy atoms and the 27 PDB Mg2+ ions. 

 RMSD restraint. To restrain RNA orientation in the non-cubic simulation box and to limit RNA 
conformational dynamics, a soft harmonic bias was applied to the RMSD of the RNA to its native 
coordinates, computed on a subset of each nucleotide atoms (C1′, C2, P) and with simple translational 
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alignment. A harmonic constant of 200 kJ mol−1 nm−2 was empirically selected to obtain an average 
RMSD around 4 Å. 

 Accelerated Mg-binding dynamics. Mg-binding dynamics to the backbone phosphate free oxygen 
atoms was accelerated using ad hoc biases. Specifically, two-dimensional bias potentials were applied to 
the space of two collective variables for each Mg atom: its distance from the closest phosphate oxygen 
atom (O1P, O2P) and the coordination number of Mg to water oxygen atoms (OW). The bias functional 
form was parameterized on a simple system composed of a diuridine molecule and a single magnesium 
ion in water. Parameters were chosen by hand to compromise between the following goals: minimize 
barrier height on the observed reaction pathway; minimize bias away from the barrier and hence maximize 
overlap with the original ensemble; avoid the generation of new, spurious metastable states. 

 Replica-exchange phase. Sampling of the canonical distribution of ions was enhanced by coupling 
the bias-accelerated approach to a Hamiltonian Replica Exchange setup (HRex).14,15 A ladder of 16 replica 
of the system with various bias amplitudes were simulated in parallel, and configurational exchanges 
between adjacent replicas were accepted or rejected with a Metropolis Monte Carlo criterion. The first 5 
replicas were kept bias-free (original force-field) while the following 11 got increasing scaling factors for 
the bias potential. Spacing between the non-zero scaling factors was optimized to enforce homogeneous 
acceptance rates. 

 Relaxation phase. As a trade-off between the limited throughput of the Replica-exchange 
simulation and the slow diffusion of free ions in bulk water, we interspersed Hamiltonian replica-exchange 
phases with ordinary Molecular Dynamics for the first 5 (bias-free) replicas. Our method thus alternates 
costly sampling with accelerated Mg-binding kinetics, and cheaper sampling with traditional MD. 

 Production run. One sampling round comprised 5 ns of HRex followed by 10 ns of ordinary MD 
on the unbiased replicas. A total of 12 sampling rounds were simulated on CINECA’s Leonardo 
supercomputer (Bologna, Italy). Each replica used one node with 4 NVidia Ampere GPUs. Two 
independent replicates of the simulation setup were made, totaling 32 (16 + 16) replicas (all with different 
initial configurations for bulk ions). Total accumulated simulation time was 2×16×12×15 ns = 5760 ns, 
corresponding to about 300 000 CPU hours. 

 Final ensemble. For each of the 5 unbiased replicas of the two replicates, 100 equally spaced frames 
were extracted from the concatenated HRex phases after discarding the first two rounds. This resulted 
in a total of 1000 frames submitted for ensemble assessment. 

Results 

Ionic concentrations in the bulk (> 2 nm from RNA) quickly equilibrate (~ 10 ns) close to their target 
nominal values. The number of RNA phosphate oxygen atoms bound to magnesium increases with 
sampling time from 35–40 in the original structure and plateaus at 70–75 after 60 ns of cumulated replica 
exchange sampling, with similar dynamics in both replicate. For comparison, 170 ns of plain MD did not 
significantly change that number, with only a tenth of binding/unbinding events. 

Availability 

Input files and scripts will be made available as part of an upcoming publication of the method. 
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Our protein complex structure prediction and accuracy estimation is based on an optimized protein 
docking potential (ODP) derived using a single-layer perceptron and docking decoys. 
 

Methods 
Docking Potential for complex structure scoring 
ODP potential is an upgraded version of neural network-based distance-dependent atom-pair potential 

for protein docking as described in ref1. The potential was trained on a protein complex dataset(472 protein 
complexes) from ref2. To train neural network, 4000 decoys of even distance(iRMSD) distribution 
generated by in-house docking decoy generation program were used for each of 472 protein complexes in 
the training set.  

We used atom-pair distance distributions to evaluate docking geometries. The neural network input 
information uses type specific atom-pairs (with atoms belonging to different proteins of the complex), 
which are assigned to different distance classes (bins). The complete distance range that we take into 
account extends from 0.0 to 8Å and is divided into 12 distance bins. 

As a target function we used Fnat which is the fraction of native interfacial contacts preserved in the 
decoy. 

 
Assembly prediction  
For phase 1 oligomeric targets (T1xxx homooligomers and H1xxx heterooligomers), phase 0 oligomer 

prediction models were ranked using the ODP potential and top 5 models were submitted. For phase 2 
oligomeric targets (T2xxx homooligomers and H2xxx heterooligomers), phase 1 oligomer prediction 
models were ranked using the ODP potential and top 5 models were submitted. 

 
Multimer structure model accuracy estimation  
For each predicted quaternary structure model, ODP score was calculated to estimate the overall 

interface accuracy.  
For QMODE1/QMODE2, all prediction models of a target oligomer submitted to CASP16 are ranked 

according to their ODP interface accuracy scores, and a reference model set is constructed from top-
scoring N models. Then, the pair-wise similarity score is computed between each model and all models 
of the reference set using TM-score3 to produce N TM scores. The consensus-based quality score is 
calculated as the mean of N TM scores. Overall fold accuracy score of a model is the weighted sum of 
consensus-based quality score and overall interface accuracy score. The size of reference model pool N 
was set to 21. 

Interface reliability score of an interface residue was predicted by a multilayer perceptron using the 
following features as input. 
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1. One-hot encoding of a residue. 
2. Per-residue ODP potentials and ODP potentials averaged on residues within 8-, 12-, 15- and 20-
Å sphere from a specific residue. 
3. Residue contact frequencies between a residue and neighboring residues within 8Å distance. 
4. Nine amino acid features. 

 
Five-layer perceptron was trained using above 54 features as input to predict the local lddt score for 

each residue in the model in the training set.  
 
For QMODE3, 8040 MassiveFold models of a target oligomer were ranked using the ODP potential 

and top 5 models were selected. 
 

Availability 
ChaePred is still under development. 
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RNA structure is notoriously sensitive to its environment- namely, the presence of solvent, ions, and other 
biomolecules in the system. Water and ions play an especially important role in RNA folding, dynamics, 
and structure. Molecular dynamics (MD) simulation of these interactions at an atomistic level has proved 
difficult without preexisting experimental data. Past work has shown that the selection of the ion 
parameters plays a critical role in representing accurate dynamics and structural changes of RNA.1 We 
selected two commonly used divalent ion models to represent Mg2+ in our CASP16 simulations, the Li 
Merz and the Villa ion parameters.2,3 These models were selected because they have previously shown 
low levels of direct magnesium chelation that often happen during MD simulation, causing structural 
alterations and trapping the RNA for the length of the trajectory.  

Methods  

The experimental cryo-EM structure (PDB 7EZ0)4 was used for the initial Tetrahymena Ribozyme RNA 
conformation. The hydrogen atoms and initial Mg2+ ions were removed from the file before parametrizing 
the system. The RNA was described with the Amber OL3 RNA force field parameters5 and solvated with 
a truncated octahedron 10.0 Å box using the OPC water model6. The system was neutralized using 194 
Mg2+ ions and 2 Cl- ions and solvated with 82,494 water molecules. To generate the 10mM MgCl2 
experimental conditions, an additional 18 Mg2+ and 35 Cl- ions were added to the system based on the 
initial volume. Two different parameter sets were used to model the MgCl2 atoms: the Li Merz divalent 
ion parameters and the Villa divalent ion parameters. The van der Waal parameters were modified in the 
resulting topology files according to the Leonard-Jones backbone parameters which increased the radii of 
the OP1, OP2, O5’, and O3’ oxygen atoms by 0.0884 Å.7,8 Four replicas were run for each system to 
ensure reproducibility.  

Each system was minimized with 1000 steps steepest descent minimization with strong restraints on heavy 
atoms followed by NTV MD at 300K and SHAKE on hydrogens for 15 ps. Steepest descent minimization 
was done again first with relaxed restraints on heavy atoms, then minimal restraints, and then no restraints. 
Lastly, NTP MD was done with SHAKE, first with low restraints and then with minimal restraints on 
heavy atoms for 5 ps, then with minimal backbone restraints for 10 ps, and finally with no heavy atom 
restraints for 10 ps. After minimization, hydrogen mass repartitioning was done for both systems, which 
increased non-solvent hydrogen masses to 3.02 Da by redistributing weight from adjacent heavy atoms, 
allowing for an increased time step in production (2 fs to 4 fs).9  

MD production was run with constant pressure and volume, with the temperature set to 300K. The Villa 
systems ran for a combined total of 2.12 μs, and the Li Merz systems ran for 2.2 μs. Following production, 
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trajectories from each replica were combined, and then the trajectories from each divalent ion model were 
clustered according to the K-means algorithm using CPPTRAJ.10 The clusters with over 1000 frames 
were selected (6 clusters from Li Merz and 4 from Villa) to represent the most populated conformational 
states. For CASP submission, 50 frames were extracted evenly across each cluster and saved as PDBs, the 
hydrogens were removed to save space, and all 500 PDBs were submitted.  
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In the latest CASP-CAPRI round, our group generated models of protein assemblies using a combination 
of baseline and customly trained AlphaFold derived architectures, and docking using the ClusPro 
webserver.1-3 Here, we will describe the methods used for both generating and ranking ensembles of 
protein—protein complexes. For ligand modeling we have used ClusPro LigTBM, and diffusion based 
generalisaiton approach.4 

Methods 

Assembly Prediction  

For assembly prediction, our group utilized a two-stage methodology in which we first generate an 
ensemble of initial models using various AlphaFold (v1,v2,v3) based architectures, including customly 
trained ones. Briefly, the protocols used for initial model generation are described below: 

Docking Alphafold2 Models with Cluspro (AF2+ClusPro): The structure of each chain in the 
assembly is independently predicted using most confident prediction among different AF architectures. 
These single-chain predictions are then ranked by the predicted LDDT (pLDDT). The top ranked model 
for each chain is selected, and low confidence residues (pLDDT < 0.50) are cut from the termini. The 
trimmed models are then docked using the ClusPro web server.3 All models generated using the 
“Electrostatic-favored” coefficient set are downloaded and retained for further processing. For antibody 
and nanobody targets, ClusPro was run in antibody mode.5 For homomeric complexes additional models 
were generated using ClusPro’s multimer docking mode. 

The models generated using each of the aforementioned approaches are then refined with 
Alphafold-Multimer. The refinement stage is dual purpose, as it can not only improve the quality of 
template models, but also produce a confidence score for each model that can be used for ranking. For 
refinement, MSAs were prepared for each subunit using the AFMMseqs2 API.6 

Ligand Docking 

We applied the template-based small-molecule docking algorithm ClusPro LigTBM to build the model of 
the ligand. If no global template was found, LigTBM was extended to consider local templates of binding 
pockets in PDB structures containing fragments of the candidate metabolite. Instead of searching for fully 
homologous receptor-ligand pairs, our approach identifies ligand substructures and matching binding 
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pockets on the target protein surface. In addition to original protocol we have used its torsional diffusion 
generalization. 

Availability 

ClusPro and ClusPro LigTBM are available as webservers that are free for academic and governmental 
use. 
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We developed a graph-based deep learning algorithm that predicts qualities of single-model protein-
complex structures. Our models predict scores for both the overall fold and overall interface of an input 
structure. Our server participated in both TS and QA categories. QMODE-1 was largely done through 
automated scripts with minimal human intervention, while QMODE-3 and TS targets required human 
intervention.  
 
Methods 
For QA we directly predicted the global qualities (QMODE-1 and QMODE-3). We ranked relaxed 
QMODE-3 models using the predicted overall fold scores from. QMODE-3 was skipped for targets that 
could not be relaxed in time due to computational issues (approx. > 1000 residues or heavy server usage). 
For TS predictions we sampled multimeric structures using dropout enabled ESM-Fold1-2 with varying 
gap and linker sizes. For Phase 0 TS targets, we generated structures with different stoichiometry 
information and submitted the top 5 ranked models according to the predicted overall interface scores 
from COAST. For Phase 1 TS targets the top 5 ranked models according to predicted overall fold scores 
from COAST were submitted. Targets that could not be predicted in time (approx. > 1600 residues or 
heavy server usage) were also skipped. Relaxation was performed using OpenMM3 and the Amber99sb 
force field4 as described and implemented by AlphaFold25-6.  

Our server APOLLO was used in the TS category solely for comparison with ESMFold’s internal 
QA estimates. For Phase 0 TS targets, we generated structures with different stoichiometry information 
and submitted the top 5 ranked models according to the average pLDTT of interface residues predicted by 
ESM-Fold. For Phase 1 TS targets we submitted the top 5 ranked models according to the average pLDTT 
of all residues predicted by ESM-Fold. 
 

Dataset. A total of 3,722 reference native protein complex structures with a resolution < 3Å were 
fetched from the protein data bank7. For each of these structures we predicted models using state of the 
art tools1-2; 6; 8-15. We used PyRosetta16 to perturb both the predicted and native structures. Our 
comprehensive dataset contained a total of 152,512 computationally predicted and perturbed structures. 
All structures were relaxed. TM-score17 and QS-best18 were both calculated using OpenStructure19, with 
the respective native structures as reference, and designated as the ground truth values for overall fold and 
overall interface accuracy, respectively. 

 
Features. Protein complex models are parsed and mapped to a graph which preserves relevant 

topological and geometrical attributes of the quaternary structure. Each node corresponds to a single amino 
acid residue. Edges are defined between any two nodes (residues) that have a CB-CB (CA for Glycine) 
distance ≤ 14Å. Node features include: predictions from NetSurfP3.020, DisoFlag21, and Seqinsite22, 
energy scores  from Rosetta16; 23, self-interaction scores calculated using Surfaces24, DSSP25-26 annotations 
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of both the model and predicted AlphaFold25; 9 tertiary structures, and graph kernel scores27-30 which 
compare the model structure to predicted intra and inter-chain structures from AlphaFold25; 9 and 
CDPred31, respectively. AlphaFold25; 9 tertiary structures were predicted using ColabFold9 and were used 
along with the MSA’s produced by ColabFold’s MMSeqs2 Server8; 13 as the input to CDPred31. We also 
developed custom positional node features based upon the relative distances and angles from each residue 
to the center of mass of the protein and respective chain. Edge features include: a binary variable indicating 
intra vs. inter-chain edges, distances and angles parsed from the model structure, distance and angle 
predictions from AlphaFold25; 9 (tertiary), distance and contact predictions from CDPred31 (dimeric), and 
energy scores from Rosetta16; 23 and Surfaces24. 
 

Model Architecture. Our model architecture pipeline starts by processing the entire input graph 
(protein model) using a global attention layer, with each node having access to every other node’s features 
irrespective of the edges. As information progresses through the model nodes are dropped via learned 
projection scores and updated via neighborhood aggregations. The input graph (protein model) is reduced, 
refined, and aggregated to a single output prediction that reflects the quality of the input protein model. 
To achieve this our model utilized a GPSConv32 layer, TransformerConv33 layers, Top-K Pooling34 layers, 
and a Global Attention Pooling35 layer. 
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ColabFold [1] is a protein structure prediction platform that exposes accessible and powerful notebooks 
and command line tools for leading structure prediction models. ColabFold-AlphaFold2 is the most widely 
used instance that extends the groundbreaking AlphaFold2 and AlphaFold-multimer models with 
performance enhancements and exposes various advanced parameters. Its largest diversion from the base 
AlphaFold2 is the revamped MMseqs2-based [2] multiple sequence alignment (MSA) stage offering 
orders of magnitude acceleration at matching prediction quality. We previously found [3] that MSAs 
enriched with SRA-mined protein sequences contribute to a large increase in prediction quality for 
difficult targets. However, searching through petabytes of data is time- and resource-consuming, thus we 
built large clustered metagenomic databases for monomer- as well as for the first time a metagenomic 
database suited for taxonomic pairing necessary for multimer-predictions. 

Methods 

We registered two servers for CASP16: colabfold_baseline and colabfold. Both used identical parameters 
and software versions (ColabFold commit 57b220e) except as highlighted in the following. For monomer 
prediction, we used the AlphaFold2-ptm model [4] and for multimeric protein structure prediction we 
used the AlphaFold-multimer-v2 model [5]. The MSAs were generated following the protocol described 
in [1]. The sequence and template databases we used were UniRef100 2302, ColabFoldDB 202108, and 
PDB70 230517. The colabfold server replaces the ColabFoldDB with a newer version 
(colabfold_envdb_2023) and further includes an additional metagenomic pairing database 
(spire_ctg10_2401_db; described below). For the AlphaFold runs, we used 12 recycles, enabled templates 
and GPU-based relaxation. For the longest sequences whose memory requirements exceeded the VRAM 
available on Nvidia A5000 GPUs, we manually transferred the automatically generated job script to an 
Nvidia H100 based system and executed it with automatic prediction submission upon completion. 
Manual parameter tweaks were additionally required for some of these large models to fit them into system 
memory or within the time limit (reduced recycles, or disabled relaxation). We further registered a manual-
intervention group (colabfold_human), where we submitted predictions for only one target. Here, we 
exceeded the time-limit for the automatic submission by approximately a day. The predictions were ranked 
using the default prediction confidence metrics. For monomers, this was the predicted LDDT (pLDDT) 
and for multimers a combination of predicted interface and overall TMscore (ipTM and pTM). 
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Metagenomic databases update for MSAs. We updated the ColabFoldDB to include clustered 
representatives from over 35 billion protein sequences by integrating Serratus [6] and SPIRE [7]. We 
removed all clusters with two or fewer members from the resulting database, followed by redundancy 
filtering to keep only the 10 most diverse sequences for each cluster. This database was converted to a 
ColabFold expandable search database, resulting in 169 million representatives and over a 1.3 billion 
members, thus nearly doubling sequence count and average cluster size over the previous ColabFoldDB. 
The SPIRE database includes information from which contig each protein originates, thus offering us the 
possibility to retrieve additional metagenomic co-occurrence information for multimeric predictions. We 
kept all proteins from contigs containing at least 10 proteins and created a ColabFold expandable search 
database, resulting in 100 million representatives and over 3.5 billion members in total.  

Results 

colabfold_baseline: Mean pLDDT of all predicted targets (rank1 model) is 81.36 (1st Quantile: 77.13, 
Median: 84.4, 3rd Quantile 88.6). For heteromeric targets (H prefix) the mean ranking metric (0.8*ipTM 
+ 0.2*pTM) was 0.622 (1st Quantile: 0.475, Median: 0.631; 3rd Quantile: 0.796); 

colabfold: Mean pLDDT of all predicted targets is 81.4 (1st Quantile: 75.5, Median: 84.1, 3rd Quantile 
88.6). For heteromeric targets the mean ranking metric was 0.62 (1st Quantile: 0.48, Median: 0.64; 3rd 
Quantile: 0.80). 

Availability 

ColabFold is free and open source software that can be installed locally from 
https://github.com/sokrypton/ColabFold or used online with a web browser through Google Colab at 
https://colabfold.com. The ColabFold databases can be found at https://colabfold.mmseqs.com. Submitted 
predictions, including MSAs and confidence metrics, were uploaded immediately after submission to 
CASP16 to https://casp16.colabfold.com. 
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Molecular dynamics simulations are widely used to study various biological phenomena on the length and 
timescales often inaccessible by experiments.1-3 An all-atom molecular dynamics (MD) simulation treats 
atoms as classical particles, where the position and velocity of every atom in the system evolve according 
to Newton's equations of motion. The forces acting on the atoms are computed using an energy function, 
known as a force field model, which is typically designed using a combination of first-principles physics 
and empirical fitting to quantum mechanical and experimental data. In this study, we used all-atom MD 
simulation to predict water and ions' structure and local motion around the Tetrahymena ribozyme RNA 
molecule.  

 

Method 

The starting structure for the Tetrahymena ribozyme RNA was taken from the Protein Data Bank (PDB) 
entry 7EZ0. This PDB contained 27 Mg2+ ions around the RNA molecule. We maintained Mg2+ ions at 
positions given in the PDB file and added the corresponding number of Cl- ions (54) to adjust the salt as 
MgCl2. We modeled the RNA sequence using the nucleic acid force field DESRES4 and combined it with 
the TIP4PD6 water model using the library files provided by Kührova et al.5 A single copy of the RNA 
molecule was solvated in a cuboidal box of volume 2060 nm3. Simulation input files were generated using 
AmberTools8 and then converted to a format compatible with the simulation suite GROMACS10. 386 Na+ 
ions were added to maintain electroneutrality. The ions were modeled using CHARMM22 parameters7. 
After solvation and salt addition, we minimized the energy of the system using the steepest descent 
algorithm. The simulation box was then equilibrated with 100 ps NVT simulation (T = 300 K) followed 
by 2 ns NPT simulation (T = 300 K, P = 1 bar). Atmospheric pressure (1 bar) was maintained using an 
isotropic Parrinello-Rahman barostat9 with a time constant of 2 ps, while the temperature (300 K) was 
maintained using v-rescale thermostat with a time constant of 1 ps. In both the equilibration steps, the 
positions of all the heavy atoms of RNA were restrained using a force constant of 500 kJ/(mol nm2). We 
used GROMACS 2023.510 to perform all the production runs at 300 K and 1 bar, with a time step of 2 fs. 
Electrostatic interactions were calculated using the particle-mesh Ewald method11 with a real space cutoff 
distance of 1 nm. A cutoff distance of 1 nm was also used for the van der Waals interactions. In the 
production steps, the positions of all the heavy atoms of RNA were restrained using a force constant of 
250 kJ/(mol nm2). The simulation was run on 4 nodes having 2 GPUs and 28 CPU cores per node. 
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Results 

After running an MD simulation for 247 ns, we computed the root-mean-square deviation (RMSD) of the 
heavy atoms in the RNA structure. All the sampled frames had an RMSD value of less than 0.4 nm from 
the native structure, indicating structural stability throughout the simulation. In total, 248 distinct models 
were reported, corresponding to each nanosecond from 0 to 247 ns of simulation time. 

 

Figure 1: Root-mean-square deviation (RMSD) of the heavy atoms of the RNA molecule as a function of time during 
production run. The positions of all the heavy atoms of RNA were restrained using a force constant of 250 kJ/(mol nm2) in this 

simulation. 
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Molecular dynamics simulations are widely used to study various biological phenomena on the length and 
timescales often inaccessible by experiments.1-3 An all-atom molecular dynamics (MD) simulation treats 
atoms as classical particles, where the position and velocity of every atom in the system evolve according 
to Newton's equations of motion. The forces acting on the atoms are computed using an energy function, 
known as a force field model, which is typically designed using a combination of first-principles physics 
and empirical fitting to quantum mechanical and experimental data. In this study, we used all-atom MD 
simulation to predict water and ions' structure and local motion around the Tetrahymena ribozyme RNA 
molecule.  

 

Method 

The starting structure for the Tetrahymena ribozyme RNA was taken from the Protein Data Bank (PDB) 
entry 7EZ0. This PDB contained 27 Mg2+ ions around the RNA molecule. We maintained Mg2+ ions at 
positions given in the PDB file and added the corresponding number of Cl- ions (54) to adjust the salt as 
MgCl2. We modeled the RNA sequence using the nucleic acid force field DESRES4 and combined it with 
the TIP4PD6 water model using the library files provided by Kührova et al.5 A single copy of the RNA 
molecule was solvated in a cuboidal box of volume 2060 nm3. Simulation input files were generated using 
AmberTools8 and then converted to a format compatible with the simulation suite GROMACS10. 386 Na+ 
ions were added to maintain electroneutrality. The ions were modeled using CHARMM22 parameters7. 
After solvation and salt addition, we minimized the energy of the system using the steepest descent 
algorithm. The simulation box was then equilibrated with 100 ps NVT simulation (T = 300 K) followed 
by 2 ns NPT simulation (T = 300 K, P = 1 bar). Atmospheric pressure (1 bar) was maintained using an 
isotropic Parrinello-Rahman barostat9 with a time constant of 2 ps, while the temperature (300 K) was 
maintained using v-rescale thermostat with a time constant of 1 ps. In both the equilibration steps, the 
positions of all the heavy atoms of RNA were restrained using a force constant of 500 kJ/(mol nm2). We 
used GROMACS 2023.510 to perform all the production runs at 300 K and 1 bar, with a time step of 2 fs. 
Electrostatic interactions were calculated using the particle-mesh Ewald method11 with a real space cutoff 
distance of 1 nm. A cutoff distance of 1 nm was also used for the van der Waals interactions. The 
simulation was run on 4 nodes having 2 GPUs and 28 CPU cores per node. 
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Results 

After running a 193 ns simulation, we calculated the root-mean-square deviation (RMSD) of the heavy 
atoms in the RNA. Frames with an RMSD above 0.4 nm were excluded, and the first 571 out of 2176 
frames(models) with RMSD values below 0.4 nm were submitted. The remaining frames were discarded 
due to the extensive translational movement, which rendered them unsuitable for predicting the 
surrounding solvent shell.  

 
Figure 2: Root-mean-square deviation (RMSD) of the heavy atoms of the RNA molecule as a function of time during 

production run. The horizontal dashed line at RMSD = 0.4 nm marks the cutoff above which the frames are excluded from 
submission. 
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The input files used to perform the simulation are provided in this zip file: simulation466.zip 
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Our model is trained by feeding self-prepared data into the framework of AF2 with precisely adjusted 
hyperparameters [1]. Under most conditions, we need only take the target sequence as the input, then, the 
structure prediction is performed simultaneously, also providing us with a ranked result by the built-in 
scoring function, meanwhile, the structure is refined based on the Amber force field [2]. While, in order 
to further improve the prediction and selection accuracy, we also made some modifications, including 
replacing the default MSA with that is derived from self-developed multiple sequence alignment 
algorithm, assigning the specific template, offering binding sites by literature reviewing, optimizing the 
score function and model selection strategy. 
 

Methods 
1. MSA 

In order to guarantee the diversity and integrity of MSA, we developed a new algorithm to perform 
sequence alignment, which aims to find the best alignment sequence to query sequence through multiple 
sequence search tools for cascading search. Based on this framework, we further introduced self-built 
metagenomic clustering data, like MetaClust, TARA, MetaSource and JGI. Once targeting the sequence 
for individual chain, the next step is pairing them and forming an intact complex, while assembling, the 
species information is the priority, then, the sequence similarity.  

2. Template 
As the template is identified based on the result of MSA, the precise MSA determines the high quality of 
template. Although this could improve the result of monomeric template search significantly, it doesn’t 
perform well when encountering multimeric template. Owing to the template is determined separately for 
each chain according to the sequence similarity, the interaction between chains is ignored. To rescue the 
information loss and capture the inter-chain interactions, we developed a new strategy to find the 
multimeric template. Firstly, each chain is aligned, among this, the pdb id is recorded, then, by calculating 
the distance between each two chains in the same pdb to estimate if these chains are indeed within a 
complex, finally, only the actual complex with the highest average similarity is maintained and treated as 
the final template. 

3. Model training 
Our model is trained based on the framework of AF2 but increasing the training data by 200%, which is 
achieved by data augmentation. We built quantities of pseudo-multimer data by modifying the multi-
domain proteins from both native monomer and multimer protein structures. According to the annotation 
in CATH, SCOP and ECOD, the position of each domain is assigned and these domains with freeSASA 
larger than 1000 Å2 are assembled into a pseudo-multimer. Besides, we also optimize the loss function 
and some specific hyperparameters while training. 
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4. Model selection 
In our pipeline, more than 300 models are generated for each target, both the default score and diversity 
are the criteria for model selection. In order to distinguish models in different conformation, we applied 
the cluster method before ranking with the values of score function. Briefly, every two models are paired, 
the TMScore between them is calculated, then, all of these models are divided into groups according to 
the TMScore, finally, the model with highest score is selected. 

5. Recycle 
To ensure the model selected is indeed in high accuracy, we could take it as the assigned template and 
perform structure prediction for three cycles. In each cycle, the template is composed of the original one 
and the one with highest score in the last round. If the input is indeed a model in high quality, we supposed 
that it wouldn’t be changed largely. 

6. Manual intervention 
For some cases, especially those with barely homologs, it’s difficult for the prediction model to provide a 
credible result. Under this circumstance, some extra information is introduced manually, like the 
experimental determined binding sites, symmetric parameters or native stoichiometry, etc. 
 

Results 
To evaluate the result of our self-trained model, we test it on the CASP15 and experimentally solved 100 
multimer cases, which are out of the training dataset. Statistically, the overall TMScore increased by 10% 
in monomer and 3% in multimer compared to AF2 and AF3 (Figure 1a). Here is a showcase of our model 
(Figure 1b), as shown in the figure, the Cool-PSP model surpasses AF2 and AF3 greatly, which is mainly 
a result of accurate improvement in the multimer interface identification.  

 

Figure 1. The result of Cool-PSP model. a. The average TMScore of three models on CASP15 monomer, 
CASP15-multimer and multimer-100 test databases. b. Showcase of three models on PDB 7XDY. 

 

Availability 
By now, our method is still under development and we plan to integrate each module mentioned above 
into an end-to end model, which will not be released until the completion. 
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In CASP16, we developed UltimateMSA that generates multiple sequence alignment (MSA) by 
integrating multiple sequence databases, and an in-house deep learning protein structure prediction model 
combining elements of RoseTTAFold21 and AlphaFold-multimer2. The overall pipeline is illustrated in 
Figure 1, and it was applied to all targets except antibodies. For antibody predictions, please refer to the 
CSSB_experimental (Antibody) abstract. 
 

 
 

Figure 1. Schematic diagram of overall pipeline. 
 
Methods 
Phase 0 and 1. We developed UltimateMSA, a tool that generates MSAs by integrating data from 
UniRef303, BFD4,5, and custom databases built from NCBI BLAST6 searches against target sequences 
across multiple databases (nr, tsa_nr, and env_nr). MSAs were constructed using HHblits7 and MMseqs28, 
followed by structural predictions using ColabFold9 or our in-house protein structure prediction method. 
For multi-domain proteins, we searched MSAs for each domain and integrated them with the original 
MSAs. For viral proteins, we used sequences from the UniProtKB/Swiss-Prot viral protein database 
(uniprot_sprot_vir70) and the NCBI virus database10 to improve MSA quality. 

We also developed an in-house protein structure prediction model, a 3-track AI model 
incorporating elements from RoseTTAFold2 (RF2) and AlphaFold-Multimer. This model retains the core 
3-track architecture of RF2. In the MSA module, we implemented more efficient column-wise attention 
to mitigate memory limitations. Additionally, we replaced the SE(3)-Transformer11 with a modified 
Invariant Point Attention (IPA) mechanism12, which calculates attention based on pair embeddings only. 
We refined the model's training objective by adding the Locally Aligned Displacement Error (LADE) and 



58 

Chain Aligned Displacement Error (ChADE), smoother alternatives to the FAPE loss used in AlphaFold 
and RoseTTAFold2 training1,12. To better utilize experimental data found in literature, we integrated an 
interaction embedding module that incorporates both positive and negative interaction data.  

With a few exceptions, we submitted structures generated by UltimateMSA using ColabFold for 
models 2 and 3, while for models 4 and 5, we submitted models from our in-house model. For model 1, 
the structure with the highest AF2Rank13 score from these two methods was submitted. 
 
Phase 2. Based on various metrics provided with the MassiveFold structures, we filtered out low-
confidence structures. The remaining structures were ranked using AF2Rank. From the top-ranked 
structures, 10 structures with meaningful structural diversity, as determined by TM-score14, were selected. 
Each of these selected structures were used as a template, from which five structures were sampled using 
our in-house protein structure prediction model in single-sequence mode. Out of the resulting 50 structures, 
20 were chosen based on our modelʼs confidence score. These structures were then relaxed using Rosetta 
FastRelax15 and re-ranked with AF2Rank. For assembly targets, we applied a composite score of AF2Rank 
multiplied by iPTM, while for monomer targets, only the AF2Rank composite score was used. 
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In CASP16, we predicted protein-nucleic acid complex structures and RNA structures using 
RoseTTAFoldNA1, AlphaFold32, and our in-house RNA structure generation model with human 
interventions. Since neither RoseTTAFoldNA1 nor AlphaFold32 shows high-accuracy modeling 
performance for nucleic acids, we focused on sampling diverse structures and incorporating experimental 
data reported in literature.  

Methods 

Sampling diverse structures with various deep learning models 

For both RNA and protein-nucleic acid complexes, a variety of structures were sampled using 
RoseTTAFoldNA1 and AlphaFold32 by providing different random seeds. Template structures identified 
with BLAST³ and HHsearch⁴ were used for RoseTTAFoldNA-based prediction. With AlphaFold3, we 
also modeled structures with additional metal ions, such as magnesium, sodium, and potassium, as nucleic 
acids commonly interact with these ions. By modeling structures with different types or quantities of metal 
ions, we were able to sample more diverse structures using AlphaFold3. 

For RNA monomers, we employed our in-house conditional RNA structure generation model to 
sample diverse RNA structures in addition to RoseTTAFoldNA and AlphaFold3. This model uses a flow 
matching algorithm⁵ to generate the tertiary structure of RNA based on the given sequence and base-
pairing information. We provided base-pairing data, either predicted or reported in the literature, to guide 
structure sampling with this in-house model. 

For complexes that were too large to predict as a whole, models were generated in segments and 
then combined. Subunits known to be adjacent were grouped and modeled together. In the case of protein-
RNA complexes, since RNA structure is highly dependent on the surrounding proteins, RNA was always 
modeled with its interacting protein subunits to improve structural accuracy. 

 

Ranking predicted structures with confidence metrics and experimental data  

For RNA structure modeling, given the variety of methods used, it was challenging to directly compare 
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confidence metrics across different approaches. To address this, we ranked the predicted structures using 
pLDDT scores from RoseTTAFoldNA, treating each predicted structure as a template. When RNA 
secondary structure data were available in the literature, models that best matched to this information were 
selected as the final models. 

For protein-nucleic acid complexes, we primarily relied on information extracted from relevant 
literature. The predicted structures were manually inspected and ranked based on their agreement with 
experimental data, such as nucleic acid binding domains or residues. In cases where no additional data 
were available, we used confidence metrics from AlphaFold3 to select the final models. 

For both RNA and protein-nucleic acid complex modeling, the final models were optimized using 
Rosetta FastRelax6 before submission. 

Availability 

RoseTTAFoldNA is freely available at https://github.com/uw-ipd/RoseTTAFold2NA (source code). The 
in-house RNA structure generation model is currently under development. The code will be made publicly 
accessible upon completion. 
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FAKER was employed to predict protein structures except huge complexes and DNA/RNA-protein 
complexes. This method focuses on improving multiple sequence alignments (MSA) for protein structure 
prediction by collecting sequences based on structural information. The overall pipeline is described in 
Figure 1. 

 

 

Figure 1. Schematic diagram of FAKER pipeline. 

 

Methods 

Initial structure prediction 

FAKER requires initial predicted structures to improve MSA. For phase 0, initial structures were 
generated using ColabFold (MMseqs2-based MSA generation followed by AlphaFold protein structure 
prediction). Diverse structures were generated with and without template information, and AF2Rank then 
utilized to select the most confident structure. Composite scores of AF2Rank were used to measure 
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confidence for monomers, while, for multimers, we developed custom scores by combining metrics from 
AF2Rank. The custom score is the product of AF2Rank outputs including pLDDT, pTM, and ipTM. For 
phase 1, the initial structure was sourced from the top-ranked model submitted in phase 0 from the CSSB-
Human group. 

 

Additional MSA generation with structural information 

The selected initial structure was subsequently used as a query in Foldseek to identify structural homologs, 
retaining those that covered at least 50% of the query sequence. Each structurally homologous sequence 
was subjected to further sequence searching using HHblits and the resulting sequences were combined to 
the original MSA, which was then filtered using HHfilter3. 

 Additionally, the structure was used as input for ProteinMPNN whose noise-adding region was 
modified from all to low pLDDT residues only. ProteinMPNN designed multiple sequences under 
conditions of high noise and low temperature, and these were integrated into the filtered MSA. As FAKER 
has been developed until now, ProteinMPNN was conditionally applied during the later stages of CASP16 
if the addition of designed sequences led to improvement in AF2Rank scores. 

 

Structure refinement with iterative MSA generation 

The refined protein structures were predicted using ColabFold with the extended MSA as described in the 
previous section. This MSA reconstruction and refinement process was repeated five times, and the top-
scoring decoys, based on the AF2Rank metric, were submitted as final models after energy relaxation7. 
However, manual intervention was applied if there was evidence suggesting that a low-scored structure 
was more likely to be correct. 

 

Notes on phase 2 submissions 

For phase 2, FAKER algorithm was not applied. Instead, MassiveFold structures were filtered based on 
provided confidence metrics, and the remaining structures were evaluated using AF2Rank. Starting from 
the top-scoring decoys, a pairwise comparison of the structures was performed using TM-score to identify 
ten models as diverse as possible. These models were then clustered into five distinct groups, from which 
five representative structures were selected. After energy relaxation, the five representatives were 
submitted. 
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Availability 

FAKER is currently under development. The code will be made publicly accessible upon completion. 
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The CSSB-Human group performed structure sampling with various structure prediction methods, ranked 
the structures with AF2Rank scores, and selected the final models based on a mixture of human analysis 
and literature information. 
 
Methods 
Initially, proteins related to the target query protein were identified using BLAST1, FoldSeek2, and 
relevant literature. Literature information was primarily used to find clues about the tertiary structures, as 
well as to find potential interfaces for protein-protein interactions and their stoichiometries. Based on the 
initial structure and confidence metrics given by our in-house automated server (CSSB-server), we 
categorized the prediction process into three main branches, depending on the confidence level of the 
structure predictions. Special cases that require a deviation from the primary prediction process are 
described separately below.  
 
High confidence predictions: Confidence metrics such as the pLDDT, pTM, or PAE scores provided by 
protein structure prediction methods are known to be reliable indicators of prediction quality. Therefore, 
when both the pLDDT and pTM were high and the PAE was low, no further interventions were made to 
improve the prediction quality. This typically happened when coevolutionary information in the MSA was 
sufficient or when clear templates were available. A literature search was also conducted in parallel, and 
if the predictions did not align with experimental results reported in literature, the case was treated as a 
special one. 
 
Medium confidence predictions: For cases where the server predictions showed medium confidence, such 
as when the PAE of the interdomain regions was high, or when the pLDDT and pTM scores ranged 
between 0.6 and 0.8, additional interventions were made to improve structure quality. For example, we 
filtered out sequences based on coverage and identity when the MSA was too deep and diverse. When the 
MSA depth was insufficient, we reconstructed the MSA with additional sequence databases. For proteins 
where only specific regions had low sequence coverage, the MSA for “under-covered” regions were 
separately generated and then concatenated back into the original MSA, potentially providing additional 
coevolutionary signals. A parallel literature search was performed to identify potential homologues to use 
as structural templates, with human intuition playing a role in the final structure selection process. 
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Low confidence predictions: For cases where the confidence metrics were low, we performed more 
extensive literature search, as the methods above were difficult to apply. These targets therefore had to be 
handled on a case-by-case basis. Compared to the other confidence levels, targets with extremely low 
confidence metrics were relatively uncommon.  
 
Special cases: When complex template structures were identified by BLAST1, HHsearch3, or Foldseek2, 
we used a modified version of AlphaFold24 to incorporate complex template information, including 
interchain orientation. In cases where experimental data, such as interface residue information, were 
available to guide structure modeling, we employed various docking methods, including 
GalaxyTongDock5 and HADDOCK6, to sample a diverse range of complex structures that satisfied the 
experimental data. If the query protein was too large for our computational resources, models were 
predicted in segments and combined. For antibody cases, we sampled thousands of antibody-antigen 
complex structures using ColabFold7 and AlphaFold38, selecting the top-ranked models with AF2Rank9. 
 
Final selection process: After running the processes above, we ranked the candidate structures with 
AF2Rank9. Complexes were ranked with a newly defined custom score, designed to put the interfaces 
more into consideration. When experimental data was available, human intervention was made 
accordingly. We submitted the top 5 models after performing energy optimization using Rosetta 
FastRelax10.  
 
Handling the New Phases of CASP16 
Phase 0: In phase 0, we first referenced templates identified by the HHsearch3 or FoldSeek2 to 
approximate the possible stoichiometries. We then examined the confidence metrics provided by 
ColabFold7, AlphaFold38, and RoseTTAFold211. By incorporating additional information found in the 
literature, we made a final decision on the most likely stoichiometry.  
 
Phase 2: Based on the various confidence metrics provided with the MassiveFold structures, we select 
the most likely structures using AF2Rank9 after removing structures below a predefined quality threshold. 
Up to 10 of the highest ranked, structurally diverse models were selected by clustering using the TM-
score12. These models were then further clustered into four groups, and the high-confidence regions of 
representative structures from each cluster were given as custom templates for ColabFold7 modeling. 
Among the ColabFold7 outputs, we selected the structures based on the confidence metrics and submitted 
the top 5 “unique” structures after energy minimization using Rosetta FastRelax10. 
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We present RF-AbAg, a docking model based on RoseTTAFold21, designed for the unbound docking of 
antibody-antigen complexes. RF-AbAg constructs antibody-antigen orientations by utilizing epitope 
information, multiple sequence alignments (MSA), and individual antibody and antigen structures. It was 
developed by fine-tuning RoseTTAFold2 on antibody-antigen complex structures curated from SabDab2 
as well as general loop-mediated protein-protein complex structures. We applied RF-AbAg for antibody 
complex structures during CASP16. 
 
Methods 
Phase 0 & 1: Epitope scanning for antibody-antigen complex structure predictions 
In phase 0, antigen stoichiometry was predicted through literature or template searches. Individual 
antibody and antigen structures were modeled using ColabFold3. When epitope information was 
unavailable, we scanned the antigen surface to generate potential epitope candidates. For each surface 
residue, all nearby antigen residues within 5 Å were grouped into a single epitope candidate. RF-AbAg 
then sampled antibody-antigen complex structures based on these epitope candidates. To enable the 
modeling of CDR loops, we used CDR-removed antibody structures as inputs, allowing RF-AbAg to 
reconstruct the CDR regions during interface modeling. Structures with low interface Predicted Aligned 
Error (iPAE) scores were selected and underwent further relaxation4. The final models were re-ranked 
using AF2Rank5. 
 
Phase 2: Utilizing predicted epitopes from MassiveFold 
The complex structures provided by MassiveFold were first sorted based on confidence metrics, primarily 
the iPAE score from AF2Rank. Epitope candidates were then extracted from the top-scored MassiveFold 
complexes. For each of these epitope candidates, the antibody-antigen complexes were re-modeled using 
RF-AbAg, employing the same individual antibody and antigen structures from the previous phases. The 
resulting complexes were ranked using the iPAE metric from RF-AbAg. From these, a structurally diverse 
set of five models was selected for additional energy optimization using FastRelax4. The final models 
were re-ranked using AF2Rank5. 
 
Availability 
RF-AbAg is currently under development. The code will be made publicly accessible upon completion. 
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In the CASP16 experiment, we developed DeepFold2, an upgraded version of DeepFold 1. The DeepFold2 
pipeline (DeepFold-server) introduces new features: (1) a refactored baseline framework offering greater 
flexibility in handling diverse inputs, (2) fast vector embedding-based databases, which significantly 
accelerate sequence alignment searches by leveraging protein language models (PLM), and (3) a 
customized multimer pipeline that utilizes monomer templates generated by our monomer protocol to 
enhance multimer modeling. Furthermore, as a human protocol, we refined the structure predicted by 
DeepFold-server through a conformational space annealing (CSA) method 2, which improved both the 
accuracy and reliability of the prediction (DeepFold). 
 

Methods 
 Refactored baseline framework: We refactored the entire DeepFold2 pipeline using PyTorch, 
introducing modern AI techniques such as multi-GPU inference, flash attention for the Evoformer 
network, and reduced precision (bfloat16) to decrease memory usage for the embedder and Evoformer 
stacks. This transition allowed us to take advantage of PyTorch's dynamic computation graph for fast 
inference and handling of large protein complexes, enabling easier debugging and offering greater 
flexibility for future model development. 

MSA feature: To improve the quality of MSA, DeepFold2 introduced new approaches to the 
conventional methods, which relied on sequence databases searches using HHblits and JackHMMER. Our 
new approach integrated vector database MSA searches, which utilizes PLMs. Specifically, newly-
constructed offline sequence embedding databases enabled quick searches for similar sequences by 
comparing vector embeddings rather than raw sequences. Potential sequences were then aligned using 
PLMalign. 
 Template features: In template-based structure prediction, the DeepFold2 pipline combines 
several complementary techniques to improve accuracy. Initially, our pipeline performs an hhsearch 
against the PDB70 database to identify potential templates. Additionally, the pool of viable templates is 
expanded by using Foldseek to find structures similar to those generated by AF2 baseline predictions 
3. Finally, DeepFold2 applies the CRFalign method 4, based on conditional random fields, to realign 
templates, optimizing selection and ensuring high-quality alignments. 
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Structure prediction: To predict the three-dimensional structure of proteins, we utilized both AF2 
network and DeepFold2 network together. The pipeline produced approximately 35 distinct structures for 
each query sequence, which were subsequently evaluated and ranked. 

Ranking and Clustering: After generating structure predictions, these models are subsequently 
clustered using hierarchical clustering based on TM-scores to group similar structures together. From these 
structures, we select the top five models according to their plDDT scores, ensuring that only the highest 
quality predictions are considered for further analysis. 

Multimer pipeline: Our multimer pipeline utilized AlphaFold-Multimer version 2.3 (AFM) 
network with customized input features. This pipeline incorporates both paired MSA features based on 
taxonomy annotation and updated template derived from the monomer prediction process. The multimer 
predictions are clustered using US-align 5, and the best structures are selected based on their pTM+ipTM 
scores, enabling accurate prediction of multimeric assemblies. 

DeepFold as Human protocol: We applied the conformational space annealing (CSA) method to 
globally optimize the predicted structures generated by our DeepFold-server pipeline. Using distogram 
restraint potentials and the ref2015_cart score function from the PyRosetta package, the CSA method 
produces refined structures that satisfy the distogram restraints obtained from DeepFold-server while 
balancing the Rosetta forcefield. 
 
Availability 
The code for DeepFold will soon be available on GitHub. Additionally, we will be launching 
(https://www.deepfold.org/), which will be accessible upon request. 
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We developed Deep-interact, a graph transformer-based GNN (Graph Neural Network) architecture for 
protein-interaction site prediction1. We predict the interaction site of the protein structure using a 
regression approach rather than classification. We designed the model to learn interactions by using both 
protein structural information and ligand data together as inputs to the GNN. To enhance the model 
performance, we used residual connections, global multi-head attention, and deep graph transformer layers 
in the model. Using this approach, we performed inference and prediction on the L5001 target protein-
ligand interaction data from CASP16. The L5001 protein structures were generated using the DeepFold 
protocol2. 
 
Methods 
 
Deep-interact utilizes a dual-channel architecture comprising a protein channel and a ligand channel, 
predicting interaction sites by calculating a dot product between their representation vectors. 
 
Protein representation: It is processed using Ankh, a pre-trained language model for protein residues, 
and an adjacency matrix was constructed using Euclidean distances between residues to capture spatial 
relationships3. This channel uses multiple layers of graph transformers with residual connections. The 
transformer layers apply global multi-head self-attention and adjust the attention scores based on the 
distance matrix between residues. With the residual connection and attention value adjustment, the model 
reduces the problem of over-smoothing. 
 
Ligand representation: It is generated by Molformer, a transformer-based molecular model3. The model 
architecture consists of five layers of graph transformers in the protein channel with an input dimension 
of 1,536, and three layers of FFN in the ligand channel with an input dimension of 768. 
 
Outputs from both channels are reduced to 48 dimensions before the final dot product. This representation 
is projected to match the protein channel's output size through a feed-forward network (FFN) employing 
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Exponential Linear Unit (ELU) activation functions. 
 
To obtain a predicted interaction score for each residue-ligand pair, the model calculates a scalar product 
between the protein residue and ligand representations. The ground truth score is pre-processed from the 
ligand-residue distance. During pre-processing, the distance is normalized, with emphasis placed on 
values below 3Å. These values are then converted to their reciprocals to assign higher scores to interaction 
residues, and the data is smoothed to ensure stable learning. 
 
Our regression-based method outputs continuous values representing the degree of interaction likelihood 
for each residue. This approach addresses class imbalance by using both positive (interacting) residues 
and negative (non-interacting samples. As a result, the model's generalization capabilities improve, 
offering a more comprehensive understanding of protein-ligand interactions. 
 
Data preprocessing: The preprocessing pipeline accounts for the three-dimensional nature of proteins 
and ligands by calculating distances between the ligand's center of mass and each residue's alpha carbon. 
We adjusted the raw distance values to account for different protein sizes and to highlight important 
interaction distances. We did this by applying transformations like logarithmic scaling, non-linear 
adjustments, and limiting the values within a specific range (clamping). 
 
Training: We trained the model on the PDBBind2021 dataset. Training was performed on an NVIDIA 
RTX 4090 GPU5. The training process took approximately five hours over 35 epochs, using a batch size 
of 200 to balance efficiency with memory constraints. 
 
Pose and affinity prediction: Based on the predicted interaction sites, we calculated the ligand center by 
taking the weighted mean of the coordinates of residues involved in interactions. We then employed 
QuickVina2 to predict the ligand poses6. 
 
Availability 
The code and model weights for Deep-interact will soon be available on GitHub. 
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We participated in CASP16 with the DeepFold-refine protocol, aimed at improving structures predicted 
by our DeepFold-server1 using molecular dynamics (MD) simulations. To enhance the detailed quality of 
the predictions without significantly altering the original structures, several restraint potentials were 
applied during the MD simulations. In most cases, our protocol successfully improved the clash score and 
stereochemistry of both the backbone and side chains. 
 
Methods 
 
The main challenge of the refinement protocol lies in selecting optimal conditions that allow for local 
conformational optimization while preserving the global structure. To achieve this, we incorporated 
modifications to the force field and applied several restraint potentials within the standard MD simulation 
protocol. These modifications and restraints were implemented in the OpenMM program2. 
 

Force field: We employed the AMBER ff19SB force field, refined by CUFIX corrections3, which 
improve inter-molecular interactions for charged residues, especially enhancing conformational sampling 
for loops and inter-domain contacts. 
 

Restraint potentials: We utilized a combination of three restraint potentials: 
(a) Distogram-based restraints: The distogram information generated by the DeepFold-server was 
converted into a restraint energy function to improve agreement between the predicted structure and the 
distogram. 
(b) Side-chain torsion restraints: A flat-bottom Lorentzian-type potential energy function was applied to 
further improve the agreement of the side-chain torsions with the prediction made by DeepFold. 
(c) Position restraints: A restraint potential was applied to prevent significant positional changes in the C-
alpha atoms of the protein. 
 

Production for refinement: First, using the DeepFold-predicted structure as an initial input, we 
performed restraint MD simulations, typically running for 50 ns. Structures were saved every 10 ns, 
followed by clustering using the agglomerative clustering algorithm. Finally, the centroid of the largest 
cluster was selected as the refined structure. This structure then underwent final energy minimization for 
submission. 
 

Production for ensemble: For R1260 (solvent shell) and T1200/T1300 (inter-domain ensemble) 

mailto:newton@kias.re.kr
mailto:jejoong@skku.edu
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targets, we performed the AMBER-based MD simulations with CUFIX corrections for 40 nanoseconds 
and 20 microseconds, respectively, to obtain thermodynamic conformational ensemble at room 
temperature. The ensembles generated from these MD simulations were submitted without further 
refinement. 
 
Results 
 
The TM-score comparison between the initial and refined structures shows that the global structure 
remains largely unchanged. However, the side-chain geometry exhibited improvements, as evidenced by 
an enhanced MolProbity score. 
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We present an enhanced version of our bioinformatics platform designed for the prediction of the 3D and 
4D structures of proteins and other biomolecules, incorporating advanced machine learning algorithms 
and innovative methodologies. While our previous work laid the groundwork for predicting protein 
folding patterns along with local substructures and domains, we recognize the significant opportunity for 
improvement in modeling long-range amino acid interactions through the integration of structural insights 
from protein structural knowledge bases. 

 
In prior CASP rounds, our approach combined traditional homology modeling with our unique 

method involving spectral analysis of amino acid sequences based on their physicochemical properties 
[1,2]. These methodologies have been instrumental in identifying the overarching folding families of 
target sequences; however, accurately predicting amino acid and atomic long-range interactions remains 
crucial for achieving near-native structural fidelity. Notably, results from CASP-15 demonstrated that 
AlphaFold’s[3] sophisticated stereochemical treatment of proteins yields remarkable accuracy. As a 
consequence, we introduced AlphaFold-predicted structures in CASP-16 to enhance our predictions. 

 
This approach has proven especially beneficial in predicting protein quaternary structures and 

complexes. Whenever feasible, we incorporated AlphaFold-generated structures alongside those derived 
from our original methodology to model these higher-order assemblies. We employed energy 
minimization and molecular dynamics simulations to refine atom placements and rank the final structural 
predictions. 

 
Methods 

 
Our multi-platform automated system initiates with the identification of optimal homologs using 
established methodologies. In instances where no homologs are available, we pivot to a spectral analysis 
of sequences, producing outputs that are analyzed in conjunction with the target sequence. The 
construction of the requisite 3D structure follows, facilitated by our platform, which subsequently 
conducts loop and structural stability analyses. The most promising candidate structures undergo 
molecular dynamics simulations and minimization processes, culminating in energetic ranking. 

For predicting protein assemblies, we leverage MIAX[4,5], our system for protein interaction 
assessment. This component encompasses binding site prediction and the docking of predicted structures. 
For hetero-multimer structure predictions, we have developed a novel approach to assess the interaction 
order among subunits, enhancing the accuracy of our multimer configurations. 
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Here we describe the methods we used for modeling ligand targets from CASP16. We heavily rely on the 
physics-based ligand docking protocol, Rosetta GALigandDock1,2, for predicting protein-ligand complex 
structures and ranking ligands.  

Methods 

Small molecule ligand preparation: Initial ligand conformation is generated from SMILES strings using 
UCSF Chimera3. Ideal bond geometry and partial charges are computed using the MMFF944 force field 
in OpenBabel 3.1.05 for small molecules.  Small molecule parameter files for Rosetta GALigandDock1,2 
are generated using a utility script “mol2genparams.py” distributed with Rosetta. 

Protein receptor preparation:  

Crystal structures with 100% sequence identity to the provided target sequence are downloaded from the 
RCSB database (http://www.rcsb.org). Solvent molecules, ions, and ligands are removed if they exist in 
the crystal structure. The apo structures are then relaxed with coordinate constraints added to all heavy 
atoms to remove potential clashes.  

Pocket selection:  

For L1000-L4000 targets, the pocket is selected based on the known ligand binding site from the crystal 
structure. For target L5000, we use the Chai-16 model to first predict the protein-ligand complex structure, 
and the predicted binding site is used as the pocket for ligand docking using GALigandDock. 

Ligand Docking:  

Docking of small molecule ligands is performed using Rosetta GALigandDock, which employs a physical 
energy model with genetic algorithm optimization. The flexible docking mode “dockflex” is used to 
simultaneously model the ligand and pocket side chain conformations. Binding affinity of the docked 
structure is estimated in GALigandDock with the “Simple” entropy model2. Sixteen independent docking 
runs are performed for each putative receptor structure. All the docked structures of the same ligand are 
first ranked by the predicted binding affinity (dG), and the top five structures are manually examined in 
PyMol7 for submission.  

Binding affinity estimation:  

We use Rosetta GALigandDock “eval” mode2 to estimate the binding affinities on the provided 
experimental determined protein-ligand complexes in stage two. Binding affinities are estimated with the 
“Simple” entropy model, and we convert the binding affinity value from GALigandDock to relative 
ranking for submission.  

https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=43624408284283067&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:16b99665-c3fb-4b2f-9532-6989916b7bda,67245f95-791c-40ad-84d0-2f4dff1119b7:40057b02-ad27-4137-817b-c5bd535bb78c
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=09024933327856766&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:C2B2E645-5975-16AD-4FB2-E49B148177A0
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=304468696065445&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:7334ada9-6b9a-4784-8c9a-e84189fb5b5e
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=9063838558439933&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:37223ff1-00a3-47b5-840b-b8d041844722
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=5842319035746657&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:16b99665-c3fb-4b2f-9532-6989916b7bda,67245f95-791c-40ad-84d0-2f4dff1119b7:40057b02-ad27-4137-817b-c5bd535bb78c
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=6064863225394573&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:c7c0d314-6f73-43a4-bd7e-0bbe331bc224
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=029025640143772513&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:40057b02-ad27-4137-817b-c5bd535bb78c
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=7151085938236253&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:AB50917B-F7ED-447D-B036-30D87C5C0933
https://app.readcube.com/library/67245f95-791c-40ad-84d0-2f4dff1119b7/all?uuid=7538360710187797&item_ids=67245f95-791c-40ad-84d0-2f4dff1119b7:40057b02-ad27-4137-817b-c5bd535bb78c
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Availability 

Rosetta is freely available at https://github.com/RosettaCommons/rosetta for non-commercial usage. 
Chai-1 model is freely available at https://github.com/chaidiscovery/chai-lab for non-commercial usage. 
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RNAs play fundamental roles in living cells, with the biological functions largely determined by their 
tertiary structures. However, accurately modeling 3D RNA structures remains a significant challenge. To 
address this, we propose a novel method, DRfold2, that combines an RNA language model, pre-trained 
using composite likelihood maximization, with end-to-end RNA structure learning. The proposed method 
demonstrates improved structural modeling ability based solely on single-sequence information.  
 

Methods 
The proposed method consists of three main steps: (1) RNA sequence embedding through the RNA 
Composite Language Model (RCLM), (2) end-to-end structure and geometry prediction, and (3) structure 
selection, optimization, and refinement. 
 The traditional Masked Language Model (MLM) typically uses cross-entropy loss summed over 
masked tokens to approximate the full negative log-likelihood, which may ignore higher-order interactions 
between masked tokens. To address this limitation, we introduce a pairwise composite likelihood1 to 
model RNA sequences. This approach can better approximate the full likelihood by considering pairs of 
observations, while avoiding the high computational cost of calculating the full joint likelihood. We have 
designed a transformer-based module that simultaneously models both sequential and pairwise 
representations. The predictions consist of two components: token-level (marginal) distributions and 
pairwise (joint) distributions. Given an input sequence, RCLM generates both sequential and pairwise 
representations, which are then used as input embeddings for structure modeling, 

The end-to-end folding model is similar to the previous version2, but with a modified FAPE loss 
function, which assigns greater weight to nucleotide contacts. Additionally, a reference term is introduced 
to encourage frames to move outward from their initial positions. The deep learning model also predicts 
inter-nucleotide geometries for the construction of a hybrid energy function, as FAPE does not perfectly 
correlate with structural evaluation indices and may require further optimizations. 
 The predicted conformations are selected using a hybrid energy function that integrates end-to-end 
frames and predicted geometries. These selected conformations are further optimized using a similar 
hybrid potential, where only the conformations and corresponding geometries from the top 5 selected 
models are used for the hybrid potential construction. Conformation optimization is performed using the 
L-BFGS algorithm with a differentiable potential function implemented in PyTorch. The resulting 
structures are then refined using Arena3 and OpenMM4 to correct possible incorrect bond lengths and 
angles, base and base-pair conformations, and atom clashes. 
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To objectively assess our approach, we predicted all monomer RNA structures in CASP16 solely based 
on DRfold2. For Target R1281, an RNA 6-helix bundle dimer, we constructed the dimer structure by 
incorporating some conformations from other group predictions of Target R0281. 
 

Availability 
The web server will be made available at https://zhanggroup.org/  
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Foldit1 is a citizen science game where people from around the world can log on and contribute to scientific 
discovery of structural biology tasks. Recently the Foldit interface has been expanded to include drug 
discovery tools (“Drugit”), allowing Foldit players to diversify and redock molecules. For CASP16 these 

tools have been repurposed to allow Foldit players to “design” within a limited subset of molecules, with 
the aim of finding the best binding position of a suite of small molecules to a given protein target. 
 

Methods 
Structures of full-length target proteins were created with RosettaCM2 using pre-existing structures of the 
protein as targets. In cases where multiple template structures were available, each was modeled 
independently. A relaxation with restraints3 was then performed to reduce the deviation of the RosettaCM 
generated structure to the input structure. Low energy structures thus obtained are used as the protein 
model for puzzle setup.  
 Ligand docking was performed by Foldit Players through the Foldit game interface. Players were 
presented with a series of puzzles which allowed them to manipulate the protein-ligand complex, 
searching for the best scoring structure. In addition to the standard tools for optimization (gradient descent, 
conformer sampling, internal bond rotation, and global rotation/translation of the ligand), players were 
allowed to change the chemical identity of the existing ligand to one of the other molecules. Throughout 
the week-long puzzle, players alternated between optimizing the current ligand and switching the identity 
of the ligand to a different molecule. 
 Initial ligand placement were selected from existing crystalized ligands. (In general, the starting 
molecule was not one of the experimental ligands.) Only the “primary” ligand was provided to the players. 
Ligands deemed to be crystallization adducts were omitted. Experimental ligands were provided to the 
users through the “Ligand Queue”, “Reaction Design” and “Compound Library” tools. Ligand Queue 
provides a small set of compounds to the local machine which players can cycle through to replace the 
current working molecule, and was used for most puzzles. This is limited to a small number of compounds 
(< 20), so the Reaction Design tool was repurposed for larger compound sets. Normally intended for 
combinatorial libraries, for CASP16 it was populated with sets of single-component “reactions” which 
yielded the experimental compounds. The size of target L3000 induced us to also make the Compound 
Library search tool available, which allowed players to search for similar compounds. Using the Ligand 
Queue and subsequent Compound Library search access to all ligands was possible.  
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 Full backbone and sidechain flexibility was permitted to players, although strong C alpha restraints 
were included to keep the backbone from moving too far. Scoring was primarily the Rosetta energy 
function, though the protein-ligand contribution was upweighted by a factor of 20 to favor results with 
good protein-ligand interactions. A torsional quality objective (based on the Rarey torsional library4) was 
added to ensure that the ligand conformations were not improperly strained. Foldit is typically based 
around coming up with a single “best” structure per puzzle, however structures with different compounds 

identities are captured due to “shares” by the players as well as regular intermediate updates. To better 
capture the top results for the different small molecules, facilities were added to better capture the top-
scoring structures on a per-compound rather than per-puzzle basis.  
 All structures submitted by the Foldit players to the Foldit servers were collected and separated 
out on a per-ligand basis. Post processing was deliberately constructed to prioritize Foldit player results 
and minimize judgement calls and discretion from the scientists involved in post-processing For each 
chemical identity, structures were ranked based on Foldit puzzle score. Iterating through the list, the best 
three structures that were (a) not more than 2 Ang protein C alpha rmsd from the input backbone and (b) 
more than 2 Ang automorphic ligand rmsd from any previously selected structure were selected. The 
global list of structures was re-ordered based on predicted protein-ligand interaction energy, and the 
process repeated to obtain up to two additional structures. As absolute Foldit score is not necessarily 
comparable between puzzles with different settings, for targets with multiple puzzle rounds the lists of 
five selected structures from each round were combined by prioritizing those puzzles with highest ligand 
interaction scores in their set of three total score results. The two interaction score candidates were selected 
based on absolute interaction score. Selected structures were made full length (where size considerations 
required us to trim the structures before presenting it to the players) and converted to CASP format prior 
to being submitted.     
 

 

Availability 
The Foldit client is downloadable from https://fold.it. Rosetta can be obtained from 
https://rosettacommons.org/ or through https://github.com/RosettaCommons/rosetta. 
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Proteins are the workforce of all living organisms and thereby play a crucial role in a large number of 
biological processes. In order to understand how proteins function, it is vital to understand their structure. 
Additionally, proteins rarely act alone. Instead, they interact with each other in order to fulfill their tasks. 
In the Elofsson lab, we focus on using machine learning methods for protein structure and protein-protein 
interaction (PPI) prediction, in order to uncover the mysteries of proteins. In addition, we have recently 
started exploring methods for RNA structure prediction. Compared to models for protein structure 
prediction, methods for RNA still have a long way to go until they become well-established, mostly due 
to the lack of RNA data and limited information obtained from RNA sequences1. 

Methods 

The highest-performing machine learning model for predicting protein structure and protein-protein 
interactions is AlphaFold2 as shown in previous CASP competitions as well as previous benchmark 
studies2-4. However, despite its high performance, there are still parts of the AlphaFold2 model that can 
be optimized. One aspect that the lab is looking at is the time consumption. Due to the time it may take to 
predict a single protein-protein interaction it is currently not feasible to utilize AlphaFold2 to look at 
millions of pairwise interactions. Therefore, the Elofsson group is investigating several ways to optimize 
AlphaFold2 using the traininable open-source version called OpenFold5. 

AlphaFold2 relies on co-evolutionary information in the form of multiple sequence alignments 
(MSAs) for its structure prediction6. However, other methods have tried to replace the MSA generation 
step and instead rely on protein language models. There are also methods that try to predict protein-protein 
interactions based on sequences instead of structures. The methods included in this benchmark are 
AlphaFold26, OmegaFold7, ESMFold28, and 3 different versions of D-Script9. These methods cover both 
protein language models with OmegaFold and ESMFold2 and sequence-based methods with the different 
versions of D-Script. The benchmark study only includes dimers and not multimers of higher 
stoichiometry due to the fact that the different D-Script methods are only applicable to dimers.       

In order to make AlphaFold2 more efficient, we located the parts of AlphaFold that are the most 
time-consuming. Disregarding MSA generation, the most time-consuming part of AlphaFold2 is the 
Evoformer. In order to speed up the entire AlphaFold2 model, we are therefore looking at ways to make 
the Evoformer more efficient. One approach that is being tested in the lab is to retrain AlphaFold2 with a 
smaller version of the EvoFormer and investigate whether the model is still able to separate interacting 
and non-interacting pairs. Inspired by a recent 12-block release by AlphaFlow, the lab is testing whether 
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a monomer 12-layer version of OpenFold is able to perform similarly to a monomer version of AlphaFold2 
on PPI prediction. In order to predict multimers with a monomer version of OpenFold the input is changed 
in the same fashion as in FoldDock, released by the Elofsson lab in 202110.   

Other than changing the amount of blocks in the Evoformer, we are also working on other 
optimizations. At the core of the Evoformer, we find transformers11, a popular neural network component 
that has shown great results in various domains thanks to its ability to extrapolate valuable relationships 
in long sequences. A major drawback is that this component scales quadratically with the sequence length 
making it difficult to perform efficiently for long sequences. AlpfaFold2 uses a modified version of 
transformers, called Invariant Point Attention (IPA) that scales cubically with the sequence length. A 
recent alternative to transformers has been State Space Models (SSM) and in particular, the Mamba 
architecture12 has shown promising results obtaining a linear scaling with the sequence length while 
keeping similar performances. The lab is now testing a modified version of Openfold, where the 
transformer layers in the Evoformer are substituted with Mamba layers in order to try to improve the 
Openfold computational efficiency, especially for proteins with longer sequences. 

The question of predicting RNA structure is often divided in two parts consisting of inferring RNA 
secondary structure and predicting RNA 3D structure. Recent Ribonanza challenge at Kaggle enabled 
participation, training, and evaluation of different deep-learning models and led to state-of-the-art 
performance in RNA secondary structure prediction13. Therefore, we aim to utilize secondary structure 
information obtained from this model in combination with diverse machine learning models such as 
AlphaFold314, HelixFold315, and RosettaFoldNA16 for predicting 3D RNA structure to benchmark and 
evaluate results across different models.   

Results 

The unpublished results of the PPI benchmark study show that AlphaFold2.3 is the highest-performing 
model. It also shows that the structure-based models perform better than the sequence-based models. 
Interestingly, it also shows that there is a clear difference in performance of AlphaFold2 between 
homodimers and heterodimers. Future research in the lab will try to understand what could be behind this. 
It may be that the method used for the benchmarking was flawed or AlphaFold2 for unknown reasons 
simply does not perform equally well on heterodimers and homodimers.    

Availability 

This research is currently unpublished but all code related to the project will be up on Github or likewise.  
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We use AlphaFold 3 server, FoldSeek, and ChatGPT as primary tools in our pipeline.  
 
For regular monomers and complexes, we submit prediction tasks to AlphaFold3 server with at least 4 
different seeds and select the best 5 prediction results as the final predictions based on the ranking score. 
 
For multi-conformations, run at least 8 seeds for each target. Select the top prediction as conformation 1. 
Cluster the remaining predictions into two clusters based on TM-score relative to conformation 1. Then, 
select the top 5 predictions from each cluster as the final predictions. 
 
 For stage 2 targets: 

• Use AlphaFold 3 to predict the target structure. 
• Use FoldSeek to search the PDB template library. 
• Use the protein ID to query GPT-4 for relevant structural information. 

 
Based on the retrieved templates and GPT-4 responses, infer possible assembly strategies. 
 
For each assembly strategy, use AlphaFold 3 to predict the structure and select the top 5 rank scores as the 
final prediction results. 
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Key: Auto:Y; CASP_serv:N; Templ:N; MSA:N; DeepL:N; AF:Y; EMA:Y; MD:Y 
 
We participated as predictors and scorers in the 70 targets of the 6th joint CASP-CAPRI Assembly 
Prediction challenge (CAPRI Round 57), as part of the CASP16 Assembly category. As human predictors, 
we participated in all targets (39 distinct targets plus 31 ones where the same target was released after 
providing MassiveFold dataset). We also participated in all 31 proposed targets for the scorers CAPRI 
experiment. We explored here new protocols to score the models generated by different versions of 
AlphaFold1 with the energy-based scoring function in pyDock2. 
 
Methods 
In most of the targets, the models of each proposed assembly submitted as predictors were built by 
AlphaFold2 (AF2)-Multimer3 and AlphaFold3 (AF3)4.  

AF2-Multimer models: In the case of AF2-Multimer, for each of the three available versions 
(Version 1: v2.1.0; Version 2: v2.2.0; Version 3: v2.3.0) we run five trajectories. For each trajectory we 
kept the intermediate models generated in 21 recycling steps (r0 to r20) plus the top model selected and 
minimized by AlphaFold (22 models x 5 trajectories x 3 versions: 330 models in total per target). All 
recycling steps were further minimized using OpenMM. During the first targets, we observed that AF2 
Version 1 produced an excessive number of clashes. To ensure consistency in the number of final models, 
in most targets after H1217/T258), Version 3 was run twice with different seeds, while Version 1 was not 
used. 

AF3 models: In the case of AF3, we ran one job in the web server (https://alphafoldserver.com) to 
generate five models (by default). These models were added to the pool of models generated by AF2-
Multimer as above described. In some targets, where AF2 produced significant clashes (e.g. 
M1239v1/T264, M1239v2/T265, M1282/T304, M1276/T306, M1287/T308), we used only AF3, 
generating a higher number of AF3 models by running several jobs (between 72 and 120) on the web 
server. In target H1227/T272, we used AF3 to generate partial models, which yielded a global model by 
superimposition. In the case of protein-DNA targets M1228v1/T254, M1228v2/T255, protein models 
generated by AF2 were superimposed onto the global AF3 protein-DNA model. 

Checking structural quality: The pool of generated models (including the ones from MassiveFold 
dataset) were evaluated with different ad-hoc quality measures, like number of unstructured regions in the 
protein, maximum length of these regions, total number of clashes and their distribution across chains, 
percentage of residues in each chain with a pLDDT score below 50, cyclic symmetry between subunits, 
or presence of knots between chains. This filtering step aimed to discard models with significant symmetry 
discrepancies or critical unstructured regions, ensuring that the final models were of high quality. 

Scoring: Then, all the generated models were sorted based on a new scoring function that 
combined AF model confidence (computed as 0.8*ipTM + 0.2*pTM, hereinafter called AF-MC) and 
pyDock-1VDW score (which uses 100% van der Waals, instead of 10% van der Waals by default). To 
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combine these two heterogeneous values, we normalized them first by computing their z-scores and then 
summed them up, after changing the sign of the pyDock scores to have them in the same scale:  

 
 

 
In the targets released after providing the MassiveFold dataset, all the models were sorted based 

only on pyDock-1VDW score. The same strategy was applied for the scorers CAPRI experiment to 
evaluate the scorer set plus the models from MassiveFold dataset. 

Docking: In targets H1204/T240, M1282/T304, the AF2-Multimer/AF3 models were 
complemented with docking models generated by pyDock2, using FTDock (electrostatics on; 0.7 Å grid 
resolution) on AF2 models of the subunits (for the nanobodies in T240 we used different MSA depths to 
increase conformational variability), to generate 10,000 rigid-body docking poses. For submission, we 
combined (in alternative order) the top 5 docking models from AF (AF/pyDock-1VDW scoring) and the 
top 5 models from pyDock (default scoring). 

Clustering: Finally, a clustering strategy was developed during the first targets and was applied 
after target H1204/T240 (but discontinued after T1237/T282 due to lack of time). We grouped the models 
according to ligand RMSD similarity, using a 2 Å cutoff. If any of the top 5 ranked models were part of a 
large-sized cluster (> 10 models), the models were submitted without grouping them. Otherwise, we 
removed redundant models within 2 Å ligand RMSD. This approach ensured that, if the models built by 
AF clearly converged, the top 5 submitted models should be very similar, whereas if the AF models did 
not clearly converge, the 5 submitted models would be sufficiently varied.    
 

Availability 
The pyDock 3.0 program is available for academic use as a GNU/Linux binary and as a web server 
(https://life.bsc.es/pid/pydock/). 
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In CASP16, we used the dPPAS alignment method based on PSI-blast1 profile information and some 
structural information. And the database that consist of log-odds profile, relative solvent accessibility, and 
three-state secondary structure information of templates were constructed, and alignment between the 
target and the template was performed based on the dPPAS alignment method. Then, the quaternary 
structure of the target was modeled by MODELLER2. 
 

Methods 
To obtain the log-odds profile of a target sequence, we used PSI-blast against the lastest Uniref50 database. 
To predict the three-state secondary structure information and relative solvent accessibility value of a 
target sequence, we used FTBiot method that is based a deep learning model. 
Then, we used the profile, the three-statue secondary structure information, relative solvent accessibility 
value of target and template sequence with the dPPAS alignment method, to obtain pair alignment between 
a target and template sequence. The weight coefficients of this dPPAS alignment method were optimized 
through RNN models. 
In our 3D-model construction step, wo used MODELLER2 with the result of the pair alignment between 
a target and template sequence and PDB entry file of templates.  
 

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

2. Webb,B. and Sali,A. (2016) Comparative protein structure modeling using MODELLER. Curr. Protoc. 
Bioinforma., 2016, 5.6.1-5.6.37. 
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In CASP16, we used ab initio docking(zdock3), template-based modeling(MODELLER5), symmetry 
constraints. 
 

Methods 
For each assembly, the models of the individual subunits were taken from server models of the AlphaFold 
and Baker servers. 
First, we searched template of target sequence against the PDB database2 by using PSI-blast1. If the target-
like template is identified in PDB, we simulated the quaternary structure of the target using the multi-
chain method of MODELLER. Here we use homo-types. 
And for targets with a small number of subunits (2 ~ 3), initial models were obtained using zdock3, and 
excellent models were selected from them. 
In addition, for targets in which subunits are in symmetrical conformations, symmdock4 was used to 
assemble the structures of subunits presented in the target, and excellent models were selected from the 
results. 
In the final result model selection stage, the three-dimensional structure of the templates from the PSI-
blast search results for the PDB database2 was analyzed and final models were selected from the various 
docking results. 
 
1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 
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Acids Res. 25, 3389-3402. 
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3. Chen,R., Li,L., Weng,Z. (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins. 52, 80–
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4. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers 

for rigid and symmetric docking. NAR, 33: W363-W367, 2005. 
5. Webb,B. and Sali,A. (2016) Comparative protein structure modeling using MODELLER. Curr. Protoc. 
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Structured RNA and DNA molecules are the master regulators of cells. They are involved in many 
molecular processes: They can transmit genetic information, sense cellular signals, relay responses, and 
catalyze chemical reactions. Their function, particularly their ability to interact with other molecules, is 
encoded in the sequence. Understanding how structured nucleic acid molecules perform their biological 
tasks requires detailed knowledge of spatial structure and dynamics, which determine how RNA/DNA 
folds and interacts in the cellular environment.  

 

Methods 

Our workflow for computational modeling of RNA and DNA 3D structures and their interactions with 

other molecules is based on a suite of methods developed in our laboratory, including PARNASSUS for 
remote homology detection, MeSSPredRNA and SQUARNA1 for the prediction of canonical and non-
canonical base pairs, ARTEM2 and ARTEMIS3 for 3D structure alignment and tertiary motif search, 
ModeRNA4 for template-based RNA 3D structure modeling, the SimRNA-family5 of programs for the 
modeling of RNA or DNA 3D structure and its complexes with other molecules, and QRNAS6 for 
structure refinement.  

Our automated SimRNA-server method involved RNA secondary structure prediction with 
SQUARNA and using the predicted structures as restraints for 3D simulations with SimRNA. Our 
automated GeneSilico-server method involved initial RNA 3D structure predictions with third-party 
programs, e.g., trRosettaRNA7, Nufold8, and Vfold9, that were then used to derive consensus distance 
restraints for SimRNA simulations. The results of the restrained simulations were submitted as the 
predicted models.  

The workflow of the GeneSilico-Human group involved a substantial level of human intervention. 
Here we describe a general approach for typical RNA targets. Once we had a target RNA sequence, we 
started with a sequence search among known 3D structures in the RCSB database10 and well-studied RNA 
families in the Rfam database11. If no homologs were found, we performed RNA secondary structure 
prediction using SQUARNA1 and MeSSPredRNA. Additionally, we tried to identify known sequence 
motifs in the target sequence, e.g., U1A-binding sites, kink-turns, etc., and use them to guide the secondary 
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structure predictions. Subsequently, we used the predicted structures for remote homology detection using 
PARNASSUS. Then we proceeded to RNA 3D modeling. If close homologs with known 3D structures 
were present, we first performed template-based modeling with ModeRNA4. We carried out 
conformational space sampling with the SimRNA-family5 of tools using restraints obtained at all the early 
stages of the analysis. Additionally, we also run third-party 3D structure prediction tools, e.g., 
RNAComposer12, RNA-BRiQ13, RNAJP14, trRosettaRNA7, and AlphaFold315. We used their results as 
starting models for our simulations and as alternative models.  

The final set of models was ranked by scoring with tools such as cgRNASP16 and our in-house 
scoring functions, and based on discussions in our team. For visualizations and manipulations with 
structures we commonly used ChimeraX17. For the refinement of selected models, we used QRNAS6. If 
time permitted in the context of CASP deadlines, we optimized the models with RNA-BRiQ13. For 
formatting the final models we used rna-pdb-tools18 and ARTEMIS3 along with other custom scripts. 

  

Availability 

SimRNA is available as a standalone tool at http://genesilico.pl/software/stand-alone/simrna 

SimRNA is available as a web server at https://genesilico.pl/SimRNAweb  

SQUARNA is available as a standalone tool at https://github.com/febos/SQUARNA  

ARTEMIS is available as a standalone tool at https://github.com/david-bogdan-r/ARTEMIS  

ARTEM is available as a standalone tool at https://github.com/david-bogdan-r/ARTEM  

ModeRNA is available as a web server at https://www.genesilico.pl/moderna/  

QRNAS is available as a standalone tool at https://genesilico.pl/software/stand-alone/qrnas  

Other elements of our computational workflow are experimental and are not yet available. 
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The protein structure prediction of the GHZ-ISM and GHZ-MAN group in CASP16 is based on a pipeline 
combining UniFold, AlphaFold2, AlphaFold2.3, AlphaFold3 and updated DMFold. We selected the 
structures predicted by these methods, performed energy optimization scoring, and chose the top five 
models as the prediction results. 
 
Methods 
The full pipeline contains three steps: (1) the protein monomer and complex structure prediction through 
UniFold, AlphaFold2, AlphaFold2.3, AlphaFold3 and updated DMFold, (2) all structures were put 
together and near-native structure selection was performed using SPICKER, (3) the selected structures are 
optimized and scored. 
 
Availability: 
https://github.com/dptech-corp/Uni-Fold 
https://github.com/google-deepmind/alphafold 
https://alphafoldserver.com/ 
https://zhanggroup.org/DMFold/ 
https://zhanggroup.org/SPICKER/ 
 
1. Li Z, Liu X, Chen W, et al. Uni-Fold: an open-source platform for developing protein folding models 

beyond AlphaFold[J]. bioRxiv, 2022: 2022.08. 04.502811. 
2. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. 

nature, 2021, 596(7873): 583-589. 
3. Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer[J]. biorxiv, 

2021: 2021.10. 04.463034. 
4. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with 

AlphaFold 3[J]. Nature, 2024: 1-3. 
5. Zheng W, Wuyun Q, Freddolino P L, et al. Integrating deep learning, threading alignments, and a 

multi‐MSA strategy for high‐quality protein monomer and complex structure prediction in CASP15[J]. 
Proteins: Structure, Function, and Bioinformatics, 2023, 91(12): 1684-1703. 

6. Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near‐native protein folds[J]. Journal 
of computational chemistry, 2004, 25(6): 865-871. 
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We have collected the available experimental data (domains, binding sites, surface residues, interactions 
etc.) about the target protein/complex from the literature. The structures were predicted using existing 
tools and the best-predicted models were selected by comparing experimental data, domain-knowledge 
and human expertise. The structures were tailored to fulfill the constraints and optimized using energy 
minimization. The best structures were selected based on the adaptability of physical interactions, 
disorderness, as well as predicted free energy of binding and stability. 

 Methods 

Protein structure: Initially, detailed information about target proteins were obtained using 
BLASTp against the UniProt database, and homologous structures, if available, were identified from the 
Protein Data Bank (PDB) [1,2]. We used the template if similar structures were reported in PDB and 
utilized different prediction methods, such as AlphaFold3, I-TASSER, GalaxyWeb, ESM Fold, and 
trRosetta for generating initial structures [3-7]. Further, the structures were energy minimized and loops 
were refined using the MODELLER loop optimization option [8]. Finally, the top five models were 
selected based on information gathered from the literature and domain knowledge. In addition, the stability 
of the proteins was predicted using FoldX and other in-house methods such as TMH Stab-pred, and TMB 
Stab-pred for membrane proteins [9,10]. 

RNA structure: Initially, we collected secondary structures from literature if available, or 
predicted using IPknot, RNAFold, and CentroidFold [11-13]. Utilizing this information, tertiary structural 
models were obtained using trRosetta, and FARFAR2 methods [14,15]. In addition, tertiary structures 
were also generated using AlphaFold3 [16]. Final models were selected based on structural homologs or 
evidence from the literature, such as the presence of higher-order structures such as pseudoknots gathered 
from experiments. 

  Protein-protein complexes: In the case of protein-protein complexes, we initially identified the 
binding site and stoichiometry (for the Phase 0 targets), based on either homologous PDB structures or 
the experimental evidence available in the literature. In addition, for the antigen-antibody binding site, we 
predicted the CDR regions from the ANARCI server [17]. Further, the monomers were modeled using 

mailto:gromiha@iitm.ac.in
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similar procedures mentioned above, and the complexes were docked using docking platforms such as 
GRAMM, LZerD, SymmDock, SAM, and ClusPro with the binding constraints obtained from the 
literature [18-22]. Final models were selected based on binding free energy, binding site residues, and 
acceptable physical interactions.  

  Protein-ligand docking: For the ligand targets, we identified the ligand binding sites from the 
literature and performed rigid docking at the site using AutoDock [23]. Multiple poses were generated for 
each ligand, and the final models were selected based on their binding affinities and interactions with the 
target.  

RNA/DNA-ligand docking: For the nucleic acid ligand targets, the ligand binding sites were 
identified from the literature, and rigid docking was performed on the site using rDock [24]. When the 
binding site was unknown, such as in the case of ZTP riboswitch, the position of catalytic magnesium ion 
in the template PDB structure was used to select the binding site through the rDock blind docking protocol. 
Multiple poses were generated for each ligand, and the final models were selected based on their binding 
affinities and interactions with the target.  

Quality assessment: For the quality assessment, we sorted the high-quality structures based on the 
percentage of residues with prediction confidence above 0.75 and the highest average confidence score. 
Models with the highest average scores and percentage of residues with confidence above 0.75 were 
selected to be the top models.  

 Results 

         We have followed the methodology discussed above to predict the structures of proteins, RNA as 
well as protein-protein, protein-DNA/RNA, protein-ligand and RNA-ligand complexes. It is mainly based 
on experimental data available in the literature, domain-knowledge, predicted structures from existing 
software, adaptability of physical interactions and energetic contributions. The top five models obtained 
were submitted to CASP16. Based on the released PDB structures, our predicted structures for H1202 and 
R1203 targets showed RMSD values of 0.81 Å and 2.96 Å, respectively.  
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In CASP16, we assessed our scoring techniques specifically developed for small-molecule docking. These 
include docking scoring functions Convex-PLR 1,2, KORP-PLw, and KORP-PL3.  
 
Methods 
We have submitted predictions for Stage 2 affinity prediction experiment only, targets L1000_exper, 
L2000_exper, L3000_exper, and L4000_exper. We used experimentally-determined models of protein-
ligand complexes. For all targets, we computed docking scores  with Convex-PLR 1 (Convex-PL-R team), 
KORP-PLw 3 (KORP-PL-W team) and KORP-PL3 (GruLab team). Parametrization of the molecules was 
done using the built-in Knodle atom types4. We then converted the scores, based on our previous 
analysis1,3, into binding affinities. 
 
Availability  
Our methods are available on our website at https://grulab.imag.fr/#software. 
 
 
1. Kadukova,M., Chupin,V., & Grudinin,S. (2021). Convex-PLR-Revisiting affinity predictions and 

virtual screening using physics-informed machine learning. bioRxiv. 
2. Kadukova,M., & Grudinin,S. (2017). Convex-PL: a novel knowledge-based potential for protein-

ligand interactions deduced from structural databases using convex optimization.  J. Comput. 
Aided Mol. Des. 31, 943-958. 

3. Kadukova,M., Machado,K.D.S., Chacón,P., & Grudinin,S. (2021). KORP-PL: a coarse-grained 
knowledge-based scoring function for protein–ligand interactions. Bioinformatics 37, 943-950. 

4. Kadukova,M. & Grudinin,S. (2016) Knodle, a Support Vector Machines-based automatic perception 
of organic molecules from 3D coordinates, J. Chem. Inf. Model., 56, 8, 1410–1419. 
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The accurate prediction of RNA three-dimensional (3D) structures is crucial for deciphering their 
biological functions. Here, we present the method we used in CASP16. For targets with homologous 
templates identified through literature review and sequence search, we employ MSA-based homology 
modelling for prediction. Conversely, for those without identifiable homologous templates, we refine 
predictions from open-access RNA 3D prediction software by incorporating human expertise in functional 
RNA 3D structures, adjusting the topology to better reflect a presumed functional state. 

Methods 

Targets with homologous templates 

For targets where homologous templates can be identified through comprehensive literature review and 
sequence searches, we utilize multiple sequence alignment (MSA)-based homology modeling to predict 
RNA 3D structures. This approach involves aligning the target sequence with known homologous 
sequences to construct a consensus model. The structural information from the homologous templates is 
then used to guide the modeling process, allowing for the accurate prediction of the target's 3D 
conformation. The strategy leverages evolutionary conservation and structural similarities to enhance the 
reliability of the predicted models. Based on high-accuracy manual multiple sequence alignment, we edit 
the homologous templates which download from PDB(Burley et al. 2022) while maintaining the global 
topology unchanged. Additionally, refinement techniques such as energy minimization and BRIQ(Xiong 
et al. 2021) have been employed to further improve the accuracy and stability of the predicted structures. 

Targets without homologous templates 

For targets lacking homologous templates, we employ multiple RNA structure 3D prediction software, 
such as AlphaFold3(Abramson et al. 2024), to generate initial models. Based on the expertise of structural 
biologists, we acknowledge that these preliminary models, while aligning with the secondary structures 
defined by Rfam4, their global topology often lacks the characteristics of functional RNA 3D structures. 
Therefore, it is necessary to refine the global topology of these initial structures to achieve a more 
organized and functionally relevant conformation. Tools such as PyMOL(DeLano 2002) and Coot(Emsley 
et al. 2010) are utilized in this refinement process. This approach enhances the accuracy and reliability of 
RNA 3D structure predictions, particularly in scenarios where homologous templates are unavailable. By 
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integrating computational predictions with expert-guided structural adjustments, we aim to produce 
models that more accurately reflect the functional states of RNA molecules. 
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Accurately predicting RNA three-dimensional (3D) structures is essential for elucidating their biological 
functions. Our strategy for the CASP16 experiment involved a synergistic application of various 
techniques to predict the structure of RNA molecules. We utilized a comprehensive set of structural 
constraints to discern and select the top five most plausible 3D models." 

 Methods 

Collect structure information: We first collect constraint information that can be used to judge the 
prediction of RNA targets, such as the template structure, secondary structure prediction information, or 
multiple sequence alignments of homologous RNA sequences. 

 Generation prediction structure: Multiple advanced RNA structure prediction tools 
(DeepfoldRNA(Pearce, Omenn, and Zhang 2022), trRosettaRNA(Wang et al. 2023), 
AlphaFold3(Abramson et al. 2024), FARFAR2(Watkins, Rangan, and Das 2020), 
RNAComposer(Biesiada et al. 2016), etc.) were run on a given sequence, and then the prediction results 
were screened based on the collected structural restriction information and functional description. 

 Filter Submission structure: The selection criteria primarily focused on thermodynamic stability, 
evolutionary conservation, and recognized structural motifs. We then identified the most plausible 
structure or integrated results from various predictive algorithms to formulate the five submitted models. 
For DeepfoldRNA and FARFAR2, local installations were used with default parameters for predictions. 
Other tools are accessed through online servers, as detailed below: 

 

Availability 

trRosettaRNA online server: https://yanglab.qd.sdu.edu.cn/trRosettaRNA/ 

AlphaFold3  online server: https://alphafoldserver.com/ 

RNAComposer online server:https://rnacomposer.cs.put.poznan.pl/ 
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In CASP16 experiment, we developed a pipeline for protein multimer structure modeling focusing on the 
paired MSAs construction based on deep learning. We first developed a sequence-based deep learning 
model to predict protein-protein structural similarity (pSS-score) and inter-action probability (pIA-score). 
These predicted scores were used to efficiently construct diverse paired MSAs for multimer prediction by 
integrating them with species information. Subsequently, we fed the paired MSAs into AlphaFold-
Multimer1,2 and our previously developed DeepAssembly3 to generate a series of multimer structures. 
Finally, our in-house multi-model quality assessment methods were used for model scoring and selection. 
 

Methods 
The key components of our method include: 1) a sequence-based deep learning model for predicting 
protein-protein structural similarity (pSS-score) and inter-action probability (pIA-score); 2) MSA 
sampling and pair-MSA construction using pSS-score and pIA-score; and 3) model quality assessment for 
model scoring and selection.  
 

structural similarity and inter-action probability prediction 
Pair-MSA is crucial for protein multimer structure modeling. However, the construction method that only 
uses traditional sequence similarity combined with existing complex structure information may still face 
difficulties in providing high-quality paired MSAs. In order to efficiently construct paired MSAs, we 
developed a sequence-based deep learning model to capture the relationships between sequences. Firstly, 
it extracts sequence-based physicochemical features and combines them with the feature obtained from a 
protein language model (PLM)4. Then, the input features are encoded into sequence representations 
through a self-attention module. Finally, the sequence representations of two query sequences are decoded 
through a cross-attention module to predict their structural similarity (pSS-score) and interaction 
probability (pIA-score). 
 

MSA sampling and pair-MSA construction  
In order to obtain more diverse MSAs, we first search multiple sequence databases (UniRef30, UniRef90, 
UniProt5, BFD6, MGnify7, and the ColabFold DB8) to obtain the MSAs of each monomer. Then, we use 
the predicted pSS-score as a supplement to the traditional sequence similarity in the ranking and selection 
of the searched MSAs. For multimers, we use the developed deep learning model to predict the pIA-scores 
for each pair of sequence alignments from different subunit MSAs. The subunit MSAs are then 
concatenated based on these interaction probabilities to construct paired MSAs. Additionally, we use 
information from multiple sources, such as species annotations, UniProt accession number, and protein 
complexes from the Protein Data Bank (PDB), to further construct a series of paired MSAs. The paired 



106 

MSAs constructed above are used in the structure predictor to enhance diversity and prevent prevent 
falling into local optimum. 
 

Model quality assessment 
We use our in-house developed model quality assessment methods for scoring and selection, as detailed 
in the method QA3 of GuijunLab-QA. 
 

Availability 
DeepAssembly is available at http://zhanglab-bioinf.com/DeepAssembly/ 
 

1. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. 
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3. Xia Y, Zhao K, Liu D, et al. Domain-based multi-domain protein and complex structure prediction 
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4. Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a 
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In this CASP16, we developed a protein complex assembly method based on the predicting inter-chain 
interactions using deep learning and traditional docking methods. First, the monomer and the 
corresponding complex structure are predicted using the Guijunlab-complex, AlphaFold21, AlphaFold32, 
and HDOCK3. Then the inter-chain distances of the complex structure were extracted and input into 
DeepAssembly4, together with the monomer structures to predict the complex structure. Finally, the 
models were selected using our in-house model quality assessment method. 
 
Methods 
The key components of our method include: 1) protein complex structure assembly, and 2) model quality 
assessment. 
 
Protein complex structure assembly 
In this method, we first predicted the complex structures using Guijunlab-complex, AlphaFold21, 
AlphaFold32 To further ensure the diversity of the complex structures, we employed the traditional 
HDOCK3 (monomer structures generated by AlphaFold3) method to generate 100 additional complex 
structures. Subsequently, the predicted complex structures from these methods were ranked using our in-
house model quality assessment (GuijunLab-QA:QA4). From the ranked results, the top 50 structures 
were selected, split into monomers as the basic units and extracted the inter-chain distance as the 
interaction constraints for assembly. During the protein modeling process, the monomer structures are fed 
into the DeepAssembly4, and the protein monomers are rotated and translated using an evolutionary 
algorithm under the guidance of different interaction constraints to generate a series of complex structures. 
Finally, the model quality assessment (GuijunLab-QA:QA4) used to select the six best structures from the 
multiple structures generated. 
 
Model quality assessment 
We use our in-house developed model quality assessment methods for scoring and selection, as detailed 
in the method QA4 of GuijunLab-QA. 

 

Availability 
DeepAssembly is available at http://zhanglab-bioinf.com/DeepAssembly/ 
 

http://zhanglab-bioinf.com/DeepAssembly/
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In CASP16, we used enhanced MSA and model quality assessment techniques to improve the accuracy 
of protein structure prediction. Starting from the query sequence of the target protein, the three-
dimensional structure is first modeled by AlphaFold2, and remote homologous structures of the target are 
searched from the AlphaFold DB library through the Foldseek. Sequence information was then extracted 
from the searched homologous structures to construct high-quality MSA. At the same time, 10 MSAs 
were obtained with various cutoffs for e-value and coverage, and high-quality homologous templates were 
searched using our proposed PAthreader. Finally, multiple models were predicted by AlphaFold2 using 
enhanced MSA and homologous template, and the best model was selected through our in-house single-
model quality assessment method and AlphaFold2's self-assessment.  
 

Methods 
 

MSA generation 
In the case of highly distant evolutionary relationships, sequence similarity may become difficult to detect. 
However, the three-dimensional (3D) structure of proteins is often constrained by their functional 
requirements and remains more conserved. Even if the sequence changes greatly, the overall 3D shape of 
the protein may remain relatively stable. Therefore, detecting similarities between protein through 3D 
structure alignment can provide higher sensitivity.  

We used two different methods to generate MSAs of targets. The first one used the structure predicted 
by AlphaFold2 as the input of Foldseek, and searched the AlphaFold DB database of 214 million structures 
to obtain a large number of remote homologous structures [1]. Then, sequence information was extracted 
from them to construct a high-quality MSA. The second one was to search uniclust30, uniref90, MGnify 
and BFD data. 10 MSAs were obtained from this search with various e-value cutoffs (10−40, 10−20, 10−10, 
10−3, 1) and coverage (50%, 80%). A total of 11 MSAs were generated by the two approaches.  
 
Template recognition 
Remote homologous templates were recognized by our proposed PAthreader [2][3]. First, multi-peak 
distance profiles are obtained by our in-house DeepMDisPre, which may predict multiple possible 
distances for flexible protein regions. Structural profiles were extracted from PAcluster80, a master 
structure database constructed by clustering PDB and AlphaFold DB with a structural similarity threshold 
of 80%. Then, the query sequence was aligned with each cluster seed of PAcluster80 by a three-track 
alignment algorithm, where the protein-specific score matrix was first calculated by residue alignment 
and profile alignment, and then the optimal sequence alignment was searched by dynamic programming 
and the maximum alignment score (alignScore) was obtained. Subsequently, physical and geometric 
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features were extracted from the aligned structure and input into a convolutional network with self-
attention to predict the DMScore, a global structural scoring metric that is complementary to the 
alignScore and linearly weighted with the alignScore for template ranking.  
 
Model quality assessment 
The final 5 models were selected by linearly weighting the scores of our in-house single model quality 
assessment [4] and AlphaFold2's self-assessment [1]. The details of the model quality assessment method 
are described in the GuijunLab-QA group.  
 
Availability 
PAthreader is available at http://zhanglab-bioinf.com/PAthreader 
 
1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589 

(2021).  
2. Zhao K, Xia Y, Zhang F, Zhou X, Li SZ, Zhang G. Protein structure and folding pathway prediction 

based on remote homologs recognition using PAthreader. Commun Biol. 2023 Mar 4;6(1):243.  
3. Zhao K, Zhao P, Wang S, Xia Y, Zhang G. FoldPAthreader: predicting protein folding pathway using 

a novel folding force field model derived from known protein universe. Genome Biol. 2024 Jun 
11;25(1):152.  

4. Liu D, Zhang B, Liu J, et al. Assessing protein model quality based on deep graph coupled networks 
using protein language model[J]. Briefings in bioinformatics, 2024, 25(1): bbad420.  
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In this CASP, we developed different protein model quality assessment and selection methods for five 
GuijunLab groups. This series of methods uses model quality assessment and structure prediction 
techniques including deep learning networks, structural consensus, protein language models, AlphaFold, 
ultrafast shape recognition, and combined methods. 
 

Methods 

Model quality assessment and selection of GuijunLab-QA (QA1)  
For complex model quality assessment (MQA), we develop a multi-model approach based on global and 
local views using structural consensus to predict quality scores (Method A). For global view, we uses 
different scales to represent proteins and inputs a multi-level graph neural network to predict the overall 
quality of the complex (see Method E of QA3). For local view, we uses the embedding representation of 
the protein language models and AlphaFold2, supplemented by sequence and structural features, to predict 
the quality of the local interface score by an attention-based graph encoding and decoding module (see 
Method B of QA2). These methods evaluate all protein models to jointly select high-quality structures, 
which are used as references to predict the quality of complex models through structural alignment.  

For MassiveFold1 model selection, we developed a two-stage model evaluation approach. In the first 
stage, for eight structure prediction methods, we screened out eight high-quality candidate pools (Pool-
Eight) through their self-assessed confidence score. In the second stage, the eight structure pools are 
aggregated into one model pool, and Method A is used to select the top 5 structures in this pool. 

For complex structure prediction, we collect models from the structure prediction groups and 
AlphaFold2,3 to build a candidate structure pool. For the models in the structure prediction group, we 
selected structures submitted by the server group and the human group in phase 0/1. For models of 
AlphaFold, we predicted multiple structures using Alphafold2 and online server Alphafold3. Finally, we 
use Method A to evaluate all models and select the best five models. 

 

Model quality assessment and selection of GuijunLab-PAthreader (QA2)  
For complex MQA, we developed three single-model quality assessment methods for SCORE, QSCORE, 
Local evaluation metrics. For SCORE, based on our in-house MQA method GraphCPLMQA4, we 
improved the network architecture of the decoding module to capture the relationship between topological 

mailto:zgj@zjut.edu.cn
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structure and global quality, and used transfer learning way to train the network model (Method B). For 
QSCORE, we intercept interfaces on protein models and extract their sequence, structural, and 
physicochemical features, which are input into a transformer-based network to predict the quality scores 
of interactions (Method C). For Local, we introduced the representation of residue nodes and edges 
between residues of AlphaFold2 in GraphCPLMQA and improved the network architecture to combine 
protein language model (PLM)5 embedding and AlphaFold2 representation (Method D).  

For MassiveFold model selection, inspired by VoroIF-jury6, we develop a multi-model evaluation 
method based on iterative structural consensus. First, we predict the quality of the models in Pool-Eight 
by these three MQA methods to obtain three different quality rankings for each pool. Secondly, in every 
pool, these differently ranked models were used to calculate the quality scores through iterative structural 
alignment, which is building scalable model pools based on ranking scores for structural consensus. 
Finally, between each model pool, we iteratively align different models to calculate the scores and select 
the top 5 models. 

 
Model quality assessment and selection of GuijunLab-Complex (QA3)  

For complex MQA, we developed a single model quality assessment method based on multi-scale protein 
representation using hierarchical networks (Method E). To represent the protein, we extract physical and 
geometric properties of residues at the 1D scale, interaction relationships of residues at the 2D scale, and 
structural topology at the 3D scale. These representations at different scales are fed into a multi-layer 
network module, including graph attention, transformer, and convolutional network, to predict model 
quality, where the output of the network can be changed according to the SCORE、QSCORE and Local 
evaluation of the downstream task. 

For MassiveFold model selection, we develop a multi-model evaluation method based on structural 
consensus using Method E. First, this method uses AlphaFold2 and AlphaFold3 to generate multiple 
candidate conformations and selects the Top N predicted models as the high-quality model pool (Pool-N) 
through Method E. Secondly, all prediction models are aligned with the high-quality model pool to 
calculate the quality of each model, and the Top 5 high-quality models are selected.  

 
Model quality assessment and selection of GuijunLab-Human (QA4) 

For complex MQA, we use the Method A variant of QA1, only replacing the global and local view single 
model methods and some hyperparameters. 

For MassiveFold model selection, we developed a multi-model quality assessment method based on 
structural consensus using GraphCPLMQA to select Top5 models. We first structurally clustered all 
models to select the structure of the cluster center. Secondly, we used our in-hourse modeling methods, 
which generated many candidate structures. Then, the structure of the cluster center and the candidate 
structure are input into the improved methods based on GraphCPLMQA to predict the quality score, where 
a high-quality model pool is constructed according to the score. Finally, the structure of the cluster center 
is aligned with the high-quality model pool to calculate the score, and the five models with the best quality 
are selected.  
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Model quality assessment and selection of GuijunLab-Assembly (QA5) 

For complex MQA, we deployed two different quality assessment methods to evaluate the accuracy of 
models in SCORE, Local metrics. For SCORE, we used the MSA from Guijunlab-Complex as input of 
AF2, generating node and edge representations. These embeddings, combined with ESM2 embeddings, 
are then fed into a graph encoder-decoder module to predict the global quality of the protein model. For 
Local, we employed Voronoi diagrams6 to characterize atomic interaction interfaces for physical 
interactions, while utilizing distance and orientation between residues for geometric structures. 
Furthermore, these features are combined with the PLM embedding and feeding into a graph neural 
network to predict residue level quality. In addition, for QSCORE, we weight the outputs of Method D 
and Method F as the interface quality score. 

For model selection, all structures in the Pool-Eight were evaluated by Method B of QA2 and 
GraphCPLMQA to jointly screen out high-quality prediction models. These models were ranked by 
weighted global quality and local interface quality, and the five models with the best scores were 
submitted. 

 

1. Brysbaert G, Raouraoua N, Mirabello C, et al. MassiveFold: unveiling AlphaFold’s hidden potential 
with optimized and parallelized massive sampling[J]. 2024. 

2. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. 
nature, 2021, 596(7873): 583-589. 

3. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with 
AlphaFold 3[J]. Nature, 2024: 1-3. 

4. Liu D, Zhang B, Liu J, et al. Assessing protein model quality based on deep graph coupled networks 
using protein language model[J]. Briefings in bioinformatics, 2024, 25(1): bbad420. 

5. Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a 
language model[J]. Science, 2023, 379(6637): 1123-1130. 

6. Olechnovič K, Venclovas Č. VoroIF‐GNN: Voronoi tessellation‐derived protein–protein interface 
assessment using a graph neural network[J]. Proteins: Structure, Function, and Bioinformatics, 2023, 
91(12): 1879-1888. 
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Correctly identifying protein-ligand conformations that resemble natural states is crucial for obtaining 
reliable protein-ligand complexes. Accurate protein-ligand conformations are essential for subsequent 
target-based drug design and predicting structural protein-ligand affinity. Currently, effectively 
representing protein-ligand interaction space and physicochemical information as inputs for deep learning 
models is key. Many previous input representations suffer from information loss, sparsity, high 
dimensionality, and difficulty in ensuring rotational invariance. 

In this CASP competition, we developed three models: SGraph_RMSD (for predicting the RMSD 
of docked protein-ligand complexes), Graph_RG (for predicting affinity when no complex is available, 
using separate graphs for the pocket and ligand), and SGraph_affinity (for predicting affinity based on the 
given protein-ligand complex interface). These models innovatively use a single graph to comprehensively 
represent the entire protein-ligand interface, aiming to preserve both the physicochemical properties of 
amino acids/atoms and spatial information. By leveraging powerful graph transformers, we efficiently 
identify critical interaction information. This results in SGraph_RMSD identifying near-natural binding 
conformations among a large set of UniDock-generated conformations. These models are expected to 
significantly enhance structure-based drug design screening. 

SGraph_RMSD was used to predict RMSD values. Graph_RG was employed to predict affinity 
when no complex was available. SGraph_affinity was utilized to predict protein-ligand affinity after the 
protein-ligand complex was provided. 
 
Methods 

 
SGraph_RMSD 
  

Data Preparation 
We downloaded the PDBbind2020 database and used UniDock1 for docking protein-ligand pairs. Each 
pair generated up to 100 conformations, with DockRMSD computing RMSD values against the native 
ligand to serve as labels. Conformations resulting in docking failures or with RMSD values exceeding 5Å 
were excluded, leaving a total of 990,000 conformations for training and 14,896 conformations for testing. 
 

Input Data Representation 
We represented interface amino acids and small molecule atoms as nodes in our graph. Edges were formed 
based on adjacency: an edge was defined between amino acids if the distance between Cα atoms was 

less than 5 Å, and between amino acids and small molecule atoms if the distance was less than 9 Å. For 
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ligands, edges were based on bond information. Amino acids were represented with 30-dimensional word 
vectors retrained using mol2vec, while small molecules were encoded similarly to one-hot encoding. To 
integrate amino acid and small molecule nodes into a unified graph, we standardized their vector lengths 
to 75 dimensions: amino acid vectors were padded from the back and small molecule vectors were padded 
with zeros from the front. 
 

Model architecture 
We adopt a Graph to represent the interface amino acids and small molecule atoms as nodes, using their 
adjacency relationships as edges. The model was built using PyTorch and PyTorch Geometric. The 
architecture includes two Transformer Convolution layers (TransformerConv) to capture complex 
interactions between nodes. The first Transformer Convolution layer has 5 attention heads, with both input 
and output dimensions set to num_features_xd. The second Transformer Convolution layer has 10 
attention heads, with an input dimension of 5 times num_features_xd and an output dimension of 10 times 
num_features_xd. Each Transformer Convolution layer incorporates a dropout rate of 0.1 to prevent 
overfitting and accounts for edge dimensions (edge_dim_xd). 
 
SGraph_affinity is an affinity prediction model based on interface conformation with single graph 
representation. 
 
We developed an affinity prediction model called SGraph_affinity using the PDBbind V2020 database2. 
This model employs the same architecture and input representation as the previously described 
SGraph_RMSD model. The affinity labels are represented as -log(P*10^(-9)), where P represents the KD, 
KI, or IC50 values in nM. The native protein-ligand interface was used to construct the graph 
representation for the input. We constructed the input graph representation based on the native protein-
ligand interface. During application we use: affinity=10^(-float(predict_value))*(10^9) formula to convert 
the prediction back to nM unit. 
 
Graph_RG is an affinity prediction model not dependent on protein-ligand interface. 
 
Graph_RG uses training data similar to that of SGraph_affinity but operates independently of protein-
ligand complex information. It separately uses the protein pocket and ligand as inputs. This approach is 
similar to our previously published model, DeepBindGCN_RG3, but it employs a graph transformer 
instead. The label unit is same as SGraph_affinity. During this competition, we have use: affinity=10^(-
float(predict_value))*(10^9) formula to convert the prediction back to nM unit. 
 
Availability 
The proposed models and the scripts are available in GitHub public repositories 
(https://github.com/haiping1010/haiping_methods ). 
 
1. Yu, Y. et al. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening. Journal of 

Chemical Theory and Computation (2023) doi:10.1021/acs.jctc.2c01145. 
2. Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. 

Bioinformatics 31, 405–412 (2015). 
3. Zhang, H., Saravanan, K. M. & Zhang, J. Z. H. DeepBindGCN: Integrating Molecular Vector 

Representation with Graph Convolutional Neural Networks for Protein&ndash;Ligand Interaction 
Prediction. Molecules 28, (2023).  
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We applied a template-guided ensemble docking strategy for LG tasks in CASP 16. AlphaFold3 and 
AlphaFold-Multimer were used for de novo structure modeling of proteins and nucleic acids. Modeller 
was used for homology modeling of proteins, resulting in a structure ensemble of the receptor in each 
target. If a reliable template complex exists, LSalign was used to generate aligned poses of small 
molecules. For targets where no suitable template can be found, the complex structure was generated 
directly by XDock or Autodock Vina. A knowledge-based scoring function, ITScore, was used to score 
ligand poses against the structure ensemble of the receptor. After scoring and sorting, combined with the 
manual selection, five optimal models were submitted. 
 

Methods 

For the tertiary structure prediction of the receptor in each target, we used AlphaFold1 for monomer 
proteins and AlphaFold-Multimer2 for the assembly proteins. For nucleic acid receptors, we used 
AlphaFold33 for structure modeling. Considering the phosphate groups of nucleic acids make them 
negatively charged, and the metal ions have a certain contribution to the stability of the 3D structure of 
nucleic acids, we also added 2~6 magnesium or potassium ions together with the nucleic acids during the 
modeling process to improve the modeling accuracy. We selected the top-ranked models based on the 
confidence score produced by AlphaFold. Modeller4 was used for homology modeling of proteins. 
Proteins with sequence identity higher than 30% in the Protein Data Bank (PDB)5 were selected as 
template structures. A study of the receptor protein in T1214 shows that it shares structural similarity with 
the ferric citrate transporter FecA (sequence identity < 30%), including a compact positively charged 
substrate-binding site6. Thus, we also used structures of FecA as templates for modeling. For each target, 
the protein or nucleic acid structures modeled by the above methods were used to construct a 3D structural 
ensemble of the receptor.  

In the complex prediction stage, we combined a template-guided strategy with an energy-based 
evaluation process to generate potential binding poses of each ligand. Firstly, up to 500 conformations of 
each ligand were generated by RDKit7. We filtered protein-ligand (rna-ligand) complexes in PDB 
according to three rules: the sequence identity is higher than 30% (60%), the similarity of the ligand is 
higher than 0.3 and the maximum common substructure (MCS) coverage score of the ligand is over 0.5. 
Similarity and MCS were calculated and detected by RDKit. The MCS score was calculated by dividing 
the sum of the number of atoms and bonds in the searched MCS by the total number of atoms and bonds 
of the target ligand. Once a qualified template was detected, a flexible alignment of the target ligand and 
the template ligand was done by LSalign8. A knowledge-based scoring function ITScore9,10 was used to 
score these aligned poses on the receptor structure ensemble, which resulted in our first set of predicted 
structures of the complex (Set1_align). These conformations were optimized by MDock (ligand-rigid 
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minimization) and XDock11 (ligand-flexible minimization) on the receptor ensemble, resulting in the 
second set of candidate conformations (Set2_min). If no acceptable template complexes were found, 
MDock and XDock were used for rigid and flexible ensemble docking, respectively. Thus, the third set of 
potential structures of the target complex has been generated (Set3_dock). Finally, ITScore was used to 
evaluate each predicted structure in the three sets, and the top 20 complexes with the lowest score were 
selected from each set. After manual inspection, we submitted the best five models as our final results. If 
the binding affinity is requested, the lowest score among the five models has been used for affinity ranking. 
For covalently binding ligands in the L4000 target, another docking program HCovDock is used to predict 
binding poses12. The top 100 conformations from HCovDock were rescored based on the pharmacophore 
similarity on acceptable template ligands using an in-house script. Then, the final models were manually 
selected based on docking and pharmacophore scores. For RNA targets, we used a similar process for 
complex structure prediction. The only difference is that MDock is not involved in the docking and 
optimization process of RNA targets, because MDock is a docking program developed only for protein-
small molecule systems. 

 

 

4. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. 
Nature. 2021;596(7873):583-589. 

5. Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv, 
2022: 2021.10.04.463034. 

6. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with 
AlphaFold 3. Nature. 2024;630(8016):493-500. 

7. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Current protocols in 
bioinformatics, 2016, 54(1): 5.6. 1-5.6. 37. 

8. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-
242. 

9. Grinter R, Lithgow T. The crystal structure of the TonB-dependent transporter YncD reveals a 
positively charged substrate-binding site. Acta Crystallogr D Struct Biol. 2020;76(Pt 5):484-495. 

10. RDKit: Open-source cheminformatics. https://www.rdkit.org 
11. Hu J, Liu Z, Yu DJ, Zhang Y. LS-align: an atom-level, flexible ligand structural alignment algorithm 

for high-throughput virtual screening. Bioinformatics. 2018;34(13):2209-2218. 
12. Huang S-Y, Zou X. An iterative knowledge-based scoring function to predict protein-ligand 

interactions: I. Derivation of interaction potentials. J Comput Chem. 2006;27(15):1866-1875. 
13. Huang S-Y, Zou X. An iterative knowledge-based scoring function to predict protein-ligand 

interactions: II. Validation of the scoring function. J Comput Chem. 2006;27(15):1876-1882. 
14. Wu Q, Huang S-Y. XDock: a general docking method for modeling protein-ligand and nucleic acid-

ligand interactions. Submitted, 2024. 
15. Wu Q, Huang S-Y. HCovDock: an efficient docking method for modeling covalent protein-ligand 

interactions. Brief Bioinform. 2023;24(1):bbac559. 
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In this CASP experiment, we enhanced AlphaFold-Multimer's sampling by using different versions and 
inputting various MSAs. Additionally, for targets where a high ipTM model could not be achieved with 
num_recycle set to 3, we increased num_recycle to 20. For targets where AlphaFold-Multimer struggled 
to make predictions, we utilized docking algorithm HDOCK and the AlphaFold3 server to assist with 
complex structure prediction. 
 

Methods 

Inspired by the participants of CASP151-3, we tested the impact of various parameters on the quality of 
AlphaFold-Multimer models 4. The results indicated that differences in versions and the input of multiple 
sequence alignments (MSAs) significantly affect the quality of the AlphaFold-Multimer models. 
Therefore, we enhanced the sampling by using different versions of AlphaFold-Multimer (v1, v2, v3) and 
inputting different MSAs. For the input MSAs, in addition to using the default MSAs of AlphaFold-
Multimer (comprising block-diagonalized MSAs and paired MSAs), we also utilized MSAs with only 
paired sequences and those with only block-diagonalized MSAs. Furthermore, considering that many 
sequences in the input MSAs are highly similar, we employed MMseqs25 to reduce redundancy in the 
MSAs for different chains based on sequence identity thresholds of 30%, 40%, 50%, 60%, 70%, 80%, 
and 90%. Subsequently, we paired the MSAs for different chains according to their sequence similarity to 
the target sequence, generating a total of seven distinct paired MSAs. 

To save time, the default num_recycle for AlphaFold-Multimer is set to 3. However, if no model with 
an ipTM greater than 0.8 is generated with num_recycle set to 3, we increase num_recycle to 20. Due to 
the high structural redundancy among AlphaFold-Multimer-generated models, we applied a redundancy 
reduction process to these mdoels, using an interface rmsd threshold of 2 Å. If fewer than five models 
remained after this process, we applied a more stringent threshold of 1 Å. If more than one model with an 
ipTM greater than 0.8 remained after redundancy reduction, we re-ranked them using our HITScorePP 
scoring function6. For targets where AlphaFold-Multimer could not generate high-ipTM models, we 
utilized HDOCK2 to obtain docking models6. For targets with too many amino acids to be processed by 
AlphaFold-Multimer, we used the AlphaFold3 server to generate structures7. We submitted five tasks 
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under different random seeds, yielding a total of 25 models, which were then ranked by considering both 
ipTM and HITScorePP scores. 

For protein-nucleic acid complexes, we first predicted their structures using the AlphaFold3 server, 
submitting five separate tasks and selecting the highest ipTM model from each, yielding a total of five 
models. Next, the protein and nucleic acid components of the complexes were separated, and the five 
proteins and five nucleic acids were recombined in pairs. Using HDOCK8,9, we generated 25 docking 
results. All docking results were ranked using the HITScorePR scoring function, which incorporates a 
desolvation term. Finally, both the AlphaFold3-generated models and the docking models were submitted 
together. 

 

Availability 

HDOCK is freely available for academic users at http://hdock.phys.hust.edu.cn/. 
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We developed a novel MSA(Multiple Sequence Alignment) search pipeline that leverages protein 
embeddings to efficiently perform MSA searches without the need to examine each amino acid 
individually. Traditional MSA search techniques often rely on comparing individual amino acids, which 
can be computationally expensive and time-consuming. 
 Protein embeddings typically represent protein sequences in a fixed-dimension vector, focusing 
on patterns within the primary amino acid sequence. However, this approach does not consider MSA, 
which contains crucial coevolutionary information important for structure prediction. Due to this 
limitation, we propose enhancing protein embeddings through contrastive learning to improve them, 
allowing the embeddings to include the information from MSAs. 
 In this work, we introduced a method for enhancing protein embeddings through contrastive 
learning and described how this enables a simple similarity-based approach for MSA search.  
 
Methods 
We propose a novel method for finding MSAs based on the similarity between the representations of 
individual proteins, as an alternative to the traditional MSA construction approach based on sequence 
search. To achieve this, we introduce a method for learning sequence representations for proteins. Our 
approach is based on contrastive learning to enhance the similarity between sequences within an MSA. 
Figure 1 illustrates the overall structure of the proposed method. 
 

 
 

Figure 3. This is the overall structure for enhancing embeddings through contrastive learning. Through this 
approach, we can obtain protein embeddings that consider MSA, allowing us to perform MSA search based on the 
similarity within the embedding space 
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Enhance embedding & MSA search pipeline 

For the baseline of protein embedding, we used a standard BERT model trained with a masked language 
model1 to capture the patterns and features of each protein sequence. By passing a protein sequence 
through this model, we obtain amino acid-level embeddings, which can then be averaged to produce the 
overall representation for the whole protein. 
 Through this approach, the protein embedding was able to aggregate and encapsulate the features 
of individual proteins, which is composed of amino acids, and capturing unique characteristic information. 
In addition to this, we can obtain embeddings that consider the MSA in the embedding space of proteins 
by applying a few layers of MLP and contrastive loss. To define the loss, let 𝐼𝐼 = {1,2, … ,𝐵𝐵} which represent 
the index of MSAs within the batch and use 𝐽𝐽 = {1,2, … ,𝑁𝑁𝑝𝑝} to index the proteins belonging to each MSA. 
The data can be expressed as �𝑥𝑥(𝑚𝑚,𝑛𝑛)�𝑚𝑚 ∈ 𝐼𝐼,𝑛𝑛 ∈ 𝐽𝐽} where {𝑥𝑥(𝑚𝑚,𝑛𝑛)|𝑛𝑛 ∈ 𝐽𝐽} is a set of positive data with respect to 
each other. The loss function2 for contrastive learning is defined 𝐿𝐿 as follows, where 𝑧𝑧(𝑚𝑚,𝑛𝑛) is the baseline 
embedding vector of protein 𝑥𝑥(𝑚𝑚,𝑛𝑛). 
 
 𝐿𝐿 =  −∑ ∑ log (

∑ exp (𝑠𝑠𝑠𝑠𝑚𝑚(𝑧𝑧(𝑖𝑖,𝑗𝑗),𝑧𝑧(𝑖𝑖,𝑙𝑙)))𝑙𝑙∈𝐽𝐽

∑ ∑ exp (𝑠𝑠𝑠𝑠𝑚𝑚(𝑧𝑧(𝑖𝑖,𝑗𝑗),𝑧𝑧(𝑘𝑘,𝑙𝑙)))𝑙𝑙∈𝐽𝐽𝑘𝑘∈𝐼𝐼
)𝑗𝑗∈𝐽𝐽𝑠𝑠∈𝐼𝐼  

 We used the OpenProteinSet3 dataset, which consists of approximately 270,000 MSAs generated 
by HHblits4, to perform contrastive learning. Using this trained network that produces enhanced 
embedding, we precomputed and stored the embeddings for the protein sequences in UniRef505, which 
contains around 60 million sequences. Finally, for the query sequences provided in CASP 16, we obtained 
their representation and searched the precomputed database for the most similar sequences, using these 
sequences as the MSA. 
 
Training (Positive and Negative) 
To apply Contrastive Learning to protein representation learning, we first need to define positive and 
negative pairs. To incorporate MSA information, we define sequences belonging to the same MSA as 
positive pairs and sequences belonging to different MSAs within the same batch as negative pairs. In other 
words, we train the model so that the representation of proteins within the same MSA are represented as 
similar vectors, while the embeddings of proteins form different MSAs have low similarity. 
 Therefore, we constructed the batches as follows. Each of the 𝐵𝐵 proteins has an associated MSA, 
and from each MSA, we randomly select 𝑁𝑁𝑝𝑝 − 1 sequences, excluding the query sequence. In other words, 
within a single batch, 𝑁𝑁𝑝𝑝 sequences from the same MSA are defined as positive pairs, and the remaining 
𝑁𝑁𝑝𝑝 ⨯ 𝐵𝐵 − 𝑁𝑁𝑝𝑝 sequences are considered as negative pairs. 
 
Results 
For CASP 16, we developed protein embeddings that incorporate MSA information through contrastive 
learning. By enhancing the embeddings in this way, we aimed to capture the evolutionary relationships 
between proteins more effectively. Using these enhanced embeddings, we proposed a novel MSA search 
method that leverages the improved representation to identify similar sequences. 
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Availability 
A github repository for contrastive learning and search pipeline is getting ready. 
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To predict the structures of proteins, we experimented with three models. For structures with lower 
pLDDT scores, we optimized them using Rosetta. Finally, we compared the TM-scores of structures with 
higher pLDDT scores and selected those with significant differences for submission.  
 

Methods 
To predict the structure of proteins, we employed three protein structure prediction models: 

AlphaFold2, AlphaFold3, and EsmFold. Each model was tested with specific parameters, especially 
AlphaFold2, we varied the num_recycles parameter using values of 6, 12, 24, 40, 70, and 80. The random 
seed parameter was tested with 100 randomly generated values to explore diverse conformations.  

Then all the predicted structures were ranked based on their pLDDT scores. For structures with 
low pLDDT scores, we applied Rosetta to refine the predictions and enhance structural accuracy. We 
focused on structures with higher pLDDT values and calculated the TM-score for each. Structures with 
significant TM-score differences were selected for submission. 

 
Results 
The models produced multiple predicted structures for each protein, ranked by their pLDDT scores. The 
use of Rosetta improved the confidence and quality of structures with initially low pLDDT scores, leading 
to a final set of optimized structures for submission. 

mailto:wanglei94@hust.edu.cn
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Finally, one EsmFold-generated structure, the top three structures generated by AlphaFold2, and one of 
the highest-scoring structures generated by AlphaFold3 were submitted.  
 
Availability 
 

1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 
(2021). 

2. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. 
Nature 630, 493–500 (2024). 

3. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. 
Science 379, 1123–1130 (2023). 

4. GitHub - RosettaCommons/trRosetta2: Repository for publicly available deep learning models 
developed in Rosetta community 

  

https://github.com/RosettaCommons/trRosetta2/tree/main
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To explore the interactions between small molecule ligands and targets such as RNA or proteins, we 
performed computationally assisted molecular docking predictions. Docking analysis is a commonly used 
tool in drug design, which simulates the binding of small molecule ligands to their targets, predicting 
binding sites and interaction energies. We utilized RDKit to generate the structure of the small molecule, 
employed Open Babel for file format conversion, and finally carried out molecular docking using 
AutoDock Vina. 
 
Methods 
In predicting the docking of small molecule ligands with targets, we first utilized RDKit to convert the 
given SMILES string into the corresponding molecular object. Subsequently, Open Babel was used to 
convert the molecule's .mol file into a format compatible with AutoDock Vina (.pdbqt), while hydrogen 
atoms were added to the target's .pdb structure file and converted to the corresponding .pdbqt format. 
During the docking simulation, AutoDock Vina was employed to model the interactions between the small 
molecule ligand and the target. Vina utilizes a global search algorithm based on energy scoring to identify 
the optimal binding conformation. The docking parameters, including the coordinate range and grid center 
for the ligand and receptor, were specified in a configuration file. Finally, after the docking was completed, 
the pdbqt file was further converted into mol format for subsequent structural analysis and visualization. 
 
Results 
We successfully generated the structural files for small molecule ligands and completed molecular docking 
simulations with the target using AutoDock Vina. During the docking process, Vina provided a detailed 
simulation of the interactions between the small molecule ligand and the target, producing predicted 
binding conformations and their corresponding energy scores. These predictions not only reveal potential 
binding modes between the ligand and the target but also offer quantitative information regarding the 
binding strength. 
 
1. Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational 

protein–ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 
905-919. 
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To predict the structures of RNA monomers and complexes, we employed two advanced 
computational methods: Rosetta and AlphaFold3. Each method has its own strengths: Rosetta excels in 
energy calculation and conformation sampling, while AlphaFold3 offers unique advantages in deep 
learning and large-scale data training. Ultimately, we selected structures with significant differences from 
the results for submission. 
 
Methods 
To achieve structural prediction of RNA monomers and complexes, we first analyzed the RNA sequences. 
We employed two advanced RNA secondary structure prediction tools, RFold and RNAFormer. These 
tools, based on different algorithms, accurately predicted the base pairing and secondary structure 
formation of the RNA sequences, generating high-quality RNA secondary structure models. 

After obtaining the RNA secondary structures, we conducted a search for multiple sequence 
alignments (MSA). MSA can reveal co-evolutionary relationships and sequence conservation during the 
evolutionary process, providing crucial constraint information for structure prediction. By searching 
relevant databases (NR, RNACentral) and selecting data with similarity ranges of 30±5% or 90±5%, we 
identified homologous sequences related to the target RNA sequence and constructed an MSA suitable for 
subsequent structural prediction. 

Next, we used Rosetta to predict the RNA structures. Rosetta generated constraint conditions based 
on the previously obtained MSA and secondary structures, which were essential for ensuring the accuracy 
and plausibility of the three-dimensional structure. Utilizing these constraints, Rosetta carried out a 
comprehensive prediction of the RNA three-dimensional structures, ultimately producing several potential 
structure models. 
 
Results 
We utilized two advanced computational methods, Rosetta and AlphaFold3, to generate multiple three-
dimensional RNA structures. First, we employed Rosetta to perform conformation sampling and energy 
optimization, producing a variety of potential RNA structures. Simultaneously, we conducted 
supplementary predictions using AlphaFold3, leveraging its deep learning algorithm to model the RNA 
sequence, further enhancing the prediction coverage and accuracy. After obtaining these structures, we 
performed a detailed comparative analysis of the results generated by the two methods, with a focus on 
identifying significant differences between them. Ultimately, we selected the structures with the most 
pronounced differences as the final results for submission. 
 
1. Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., ... & Yang, J. (2021). The trRosetta server for fast 

and accurate protein structure prediction. Nature protocols, 16(12), 5634-5651. 
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Our group participated in the TS (Tertiary Structure), H (Heteromeric assembly), M (Protein-Nucleic 
Acids complex), and LG (Ligand) prediction categories for both protein and nucleic acid targets.  
 
Methods 
 

Protein structure modeling: For protein-only targets, we used AlphaFold21 as the core of the 
pipeline. Multiple sequence alignments (MSAs) were generated using the standard AlphaFold2 pipeline, 
utilizing UniRef30 (2023_03), BFD (latest)2, UniRef90 (2024_02)3, UniProt (2024_02)4, and MGnify NR 
(2023_02)5 as the sequence databases. For the template database, we used the Protein Data Bank (PDB)6 
as of April 17, 2024. Additionally, we integrated an enhanced in-house MSA, incorporating metagenomic 
and viral sequence data from Logan contigs7, and metagenome assemblies from NCBI8. DNA sequences 
were translated into protein sequences using prodigal9 as preprocess for those databases, and 
JackHMMER10 was employed for sequence searching and MSA construction. 

Both the default and enhanced MSAs were used for AlphaFold2 inference. For multi-chain 
complex targets, we employed three published versions of AlphaFold2 model weights, each with their 
default settings. For monomeric protein targets, the AlphaFold2 monomer model was used with standard 
configurations. After May 9, 2024, the AlphaFold311 web server was also integrated, with the generated 
models added to our structure pool. 

Various ad hoc strategies were applied to optimize the results for each target. If the MSA was 
sparse, we reinforced it by combining structure-based MSAs from Foldseek12, or incorporating mutation 
databases to construct MSAs manually. If the inference process was computationally impossible due to 
the size of the target, or if a reasonable model could not be generated by normal inference, we reduced 
stoichiometry or divided the target into more manageable domains or chunks. The resulting models were 
combined using Modeller13 or PyMOL to ensure it matches to target sequence. 

Finally, all the available models were pooled, and ranked using the VoroIF-jury (Voronoi-based 
InterFace jury) scoring pipeline14. We supplemented this pipeline with GOAP15, DFIRE16, and 
ITScorePro17, which were components of the ranksum score used in our LZerD method18,19, incorporating 
these as external scores. After the initial rank was generated, each target was meticulously reviewed 
against relevant literature, and the final models for submission were selected by human experts through 
thorough visual inspection. 
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RNA structure modeling: For monomeric RNA targets, we used our RNA structure prediction 
method, NuFold20. Additionally, we employed DeepFoldRNA21, DRfold22, RosettaFold2NA23, 
RhoFold24, and trRosettaRNA25. The baseline MSA input was generated using the rMSA pipeline26, 
supplemented by three variants of metagenome MSAs used in NuFold. After AlphaFold3 became 
available, AlphaFold3 models were also generated and included as part of the structure pool. These 
structures were ranked by combining Rosetta score27 and ARES28 score. As the same as protein targets, 
the final submission models were selected through visual inspection and comparison with literature 
information. 

 
RNA complex and protein-NA complex modeling: For multi-chain RNA targets and protein-

nucleic acid complex targets, RosettaFold2NA and AlphaFold3 were used to generate structures. For very 
large complexes, various manual modeling techniques were used as needed. These included breaking 
down the complex into smaller sets of chains, predicting only part of a chain, or applying symmetry 
operations to monomer structures. Model selection was based on both the scores generated by each method 
and manual review by human experts. 

 
Ligand docking prediction: For small molecule ligands, GLIDE XP29 and Induced Fit Docking 

(IFD)30 tools from the Schrödinger software suite were used for ligand docking. For docked ligands, 
pocket locations were identified vis SiteMap31. For some targets, the pocket location and docking pose 
were estimated using homologue information from the PDB as a template or by inputting ligand analogues 
into AlphaFold3. To refine and diversify submitted structures, some models were subjected to MD 
relaxation via Desmond32 using the OPLS4 forcefield32. 

 
Automatic server: Our kiharalab_server participated in protein targets (T/H), complex targets (M), 

and RNA targets (R), but not ligands (L). The server group used the same components as our human group, 
but used an automated pipeline without any human intervention to generate and submit predictions. The 
server group used minimum stoichiometry for phase 0 targets. 
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We investigated ligand target affinity and pose predictions of four distinct target-ligand sets, including 
L1000: Chymase, L2000: Cathepsin_G, L3000:Autotaxin, and L4000:Mpro using model1:Open-
ComBind, model2:GNINA, model3: re-scoring of Dynamicbind predicted ligand poses by GNINA and 
model4: Dynamicbind.  

 GNINA1 is a deep learning docking method that utilizes an ensemble of convolutional neural 
networks (CNNs) as a scoring function on top of conventional Monte Carlo search. 

 Open-ComBind2 is an open-source pose prediction pipeline leveraging the understanding that 
different ligands will bind to a receptor in similar ways. GNINA is used to generate a set of highly likely 
poses for a set of ligands binding to the same receptor. Then, interaction fingerprints are calculated for the 
set of poses. The Tanimoto similarity of interaction fingerprints and the RMSD of the maximum common 
substructure (MCSS) is calculated between all pairs of poses. Poses are selected for all ligands such that 
they maximize the Open-ComBind objective which simultaneously ensures high similarity between poses 
and biases the predicted poses towards higher GNINA scores. 

 DynamicBind3 is an advanced geometric deep generative model tailored for "dynamic docking." 
Unlike conventional docking methods that often consider proteins as rigid structures, DynamicBind 
dynamically refines the protein conformation, transitioning it from its initial AlphaFold-predicted state to 
a more realistic, holo-like state, enabling more accurate interaction modeling. 

 

Methods 

For all models, we utilized a single, holo receptor structure; where possible an experimentally determined 
structure was used. We utilized the experimentally determined structures 1T32, 1KLT, and 7D3I for 
Cathepsin_G, Chymase, and MPro, respectively. Since Autotaxin lacked an experimentally determined 
holo structure, we ran ColabFold to create an apo structure then ran DynamicBind with a single ligand to 
morph the apo structure into a holo structure and determine the pocket. 

Model1: Open-ComBind: we generated a set of 10 conformations for each ligand SMILES, using 
RDKit to generate a set of 50 conformations and then minimizing each conformation with UFF to get the 
10 lowest energy conformations. We then docked each conformation against the static receptor structure, 
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using the cognate ligand to determine the pocket location in the case of experimentally determined 
structures. The docking predictions of each conformation were pooled and sorted by the CNNscore. 
Ligands for each target set were clustered on the Hamming distance of their Morgan fingerprint using 
average-linkage agglomerative clustering with a maximum cluster size of 15. Any clusters with less than 
5 members were combined with their nearest cluster until no clusters with less than 5 members remained. 
We then calculated the hydrophobic contacts of the top 100 predicted poses. The Tanimoto similarity of 
the hydrophobic contacts and the RMSD of the MCSS was calculated between all pairs of poses in the 
cluster. The poses were selected by maximizing the Open-ComBind objective for each cluster of ligands. 
Affinity values were determined by converting the reported CNNaffinity value of the selected ligand 
conformation from pK to Kd. In the case of multiple ligands in the binding site, we followed an 
autoregressive docking procedure. In complexes with 2 identical ligands in the binding pocket, we 
followed the Open-ComBind procedure above and then docked the second ligand (with knowledge of the 
placement of the first ligand) using Open-ComBind on the set. For complexes containing other ligands in 
the binding site, the additional ligands were placed with knowledge of all larger ligands using the top 
ranked GNINA pose.  

Model2: GNINA: we generated a set of 10 conformations for each ligand SMILES, using RDKit 
to generate a set of 50 conformations and then minimizing each conformation with UFF to get the 10 
lowest energy conformations. We then docked each conformation against the static receptor structure, 
using the cognate ligand to determine the pocket location in the case of experimentally determined 
structures. The docking predictions of each conformation were pooled and sorted by the CNNscore. For 
complexes containing multiple ligands in the binding site, we performed an auto-regressive docking 
procedure in which the ligands were docked in order of their size. Affinity values were determined by 
converting the reported CNNaffinity value of the top ranked ligand conformation from pK to Kd. 

Model3: DynamicBind + GNINA: The protein structures (in PDB format) and ligand structures 
(in SMI format) were input into the Dynamicbind. For complexes containing multiple ligands in the 
binding site, predictions were performed for only the first ligand. The ligand-target complexes generated 
by DynamicBind were processed using the GNINA. Utilizing GNINA's --minimize option, all ligand 
poses generated by DynamicBind were energy-minimized. The top-scoring conformations, sorted by 
pose_sort_order based on the CNNscore, were reported as the predicted binding poses and the conversion 
of their CNNaffinity values to molar concentration values were used as affinities for the intended ligand-
target pairs. 

Model4: Dynamicbind: The top-ranked complex predicted by DynamicBind was selected to 
determine the binding pose, and the predicted affinity of the best pose was converted to molar 
concentration, which was then reported as the predicted affinity. 

 

Results 

The success rates of different approaches in predicting ligand poses with an RMSD below 2 Å across 
various ligand-target pairs were evaluated. The model1: Open-ComBind showed low success rates, 
achieving 5.9% for Chymase, 100% for Cathepsin_G, 2.1% for Autotaxin, and 4% for MPro. The model2: 
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GNINA docking yielded slightly varied results, with success rates of 5.9% for Chymase, 100% for 
Cathepsin_G, 2.6% for Autotaxin, and 8% for MPro ligands. 

The model3: DynamicBind + GNINA approach demonstrated improved performance, particularly 
for some targets. For Chymase, the success rate was 47.1%, while for Cathepsin G, it was 50%. The 
success rate for Autotaxin was 6.3%, and for MPro, it was 8%. The model4: DynamicBind achieved the 
best success rate of 64.7%, and 14.8% among all four models for Chymase and Autotaxin, respectively. 
For Cathepsin_G, it successfully predicted poses for both ligands but it dropped to 0% for MPro. 

 

1. McNutt,A.T., Francoeur,P., Aggarwal,R. et al. (2021). GNINA 1.0: molecular docking with deep 
learning. J. Cheminform. 13, 43. 

2. McNutt,A.T., Koes, D.R. (2024). Open-ComBind: harnessing unlabeled data for improved binding pose 
prediction. J. Comput. Aided. Mol. Des. 38, 3. 

3. Lu,W., Zhang,J., Huang,W., Zhang,Z., Jia,X.,Wang,Z., Shi,L., Li,C., Wolynes,P.G., Zheng,S., (2024). 
DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant 
generative model. Nat. Commun. 15, 1071. 
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 In CASP16, we proposed a new protein-ligand complex structure prediction protocol. This method uses 
a modified version of AlphaFold2 (AF2)1 to predict the optimal structure of protein-ligand complexes by 
searching experimental data with more than 70% identical amino acid sequences in the Protein Data Bank 
(PDB)2  From the structure list, we use the protein structure as a template if the ligand is similar to the 
given SMILES. After the receptor structure prediction, a protein-ligand docking is performed, and then 
rescoring the docked poses was followed. 

 

Methods 

Template Selection 

 We used PSI-Blast3 to search for similar protein sequences among the experimentally determined 
structures in the PDB. The sequence similar proteins were further filtered by the compound similarity, 
between the co-crystallized ligand and the query, using SHAFTS4. The selected protein structure was 
provided as a template for AF2, instead of giving multiple sequence alignment5. 

Protein Structure Prediction 

 We used AF2 to generate the protein structure based on the template. Additionally, we used 
OpenMM6 to relax the generated structure. Both the original AF2-generated structure and the relaxed 
structure were used in the subsequent steps. 

Protein-Ligand Docking 

 We performed protein-ligand docking using the generated protein structure in the previous step 
and the ligand's three-dimensional coordinates obtained from the template if available. To determine the 
binding site, we used TM-align7 to align the template and the model. After the alignment, the binding 
ligands from template were copied to the modeled structure, and the binding site of the model was 
determined from the copied molecules. If the ligands lie within 5 Å, their binding sites were classified as 
identical pockets.  The average coordinates of these ligands was used to determine the binding site. To the 
determined binding pockets, Autodock-GPU8 was employed to dock the query molecules. 

 

mailto:whshin@korea.ac.kr
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Complex Scoring and Refinement 

 AutoDock-GPU generated 1000 conformations per ligand. The poses were rescored using AK-
Score29. We selected the top 5 complexes based on AK-Score2 and minimized them using UCSF 
Chimera10 with Amber ff14SB11 to obtain the final structures. 
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583-589. 
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5. Song, J., et al. (2024) “Applying multi-state modeling using AlphaFold2 for kinases and its application 

for ensemble screening” bioRxiv, doi:10.1101/2024.04.04.588044. 
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RNA molecules play crucial roles in various cellular processes, often interacting with proteins, small 
molecules, and other RNAs to form complex functional units. Accurate modeling of RNA and its 
complexes is essential for understanding RNA structure-function relationships. The CASP16 experiment 
provided an opportunity to test and refine methods for RNA structure prediction and RNA-protein/ligand 
complex modeling on a set of blinded targets. In this study, we applied a comprehensive workflow that 
integrates multiple computational tools to predict RNA secondary and tertiary structures and RNA 
complexes based on the target sequences provided by the CASP organizers.  

Methods 
As a first step, databases such as Rfam1 and RNAcentral2 were utilized to search for sequences or 
structures similar to the target RNAs. Multiple sequence alignments and family information were retrieved 
where applicable, enhancing the context for structural predictions. We employed a suite of tools—
ViennaRNA3, RNAStructure4, CentroidFold5, ContraFold6, and IPknot7—to predict RNA secondary 
structure, leveraging distinct algorithms and statistical models. Conservation analysis, a crucial step in 
RNA modeling, was performed using alignments generated by rMSA28, with conservation scoring from 
RNAalifold, alifoldz, and RNAz. This process allowed us to identify conserved and functionally critical 
regions, which helped refine the secondary structure and provide valuable restraints for 3D modeling.  

 For 3D structure predictions, we utilized various methods, including SimRNA9, DeepFoldRNA10, 
FARFAR211, RhoFold12, Vfold213, trRosettaRNA14, NuFold15, and AlphaFold 316 (AF3). Both restrained 
and unrestrained simulations were conducted to explore the conformational landscape of the RNA 
molecules. Models were evaluated for convergence to ensure structural fidelity and high-resolution 
refinements were applied to top-scoring models to reduce potential errors introduced during coarse-grain 
modeling.  

 For long RNA sequences or RNA targets with complex stoichiometry, we explored the 
performance of AF3, alongside other methods. Protein-DNA complexes were modeled using AF3 with 
different stoichiometries, followed by manual post-processing to ensure correct interactions. Additionally, 
small molecules (e.g., ATP, NADPH, and metal ions) were included in the AF3 simulations to explore 
possible conformations. For the RNA target with the local solvent shell (water and ions), the structures 
were modeled based on homology, and molecular dynamics simulations were performed with the amber 
force field.  

 For RNA-protein complexes, the interfaces were aligned with experimentally derived structures 
when available, ensuring biologically relevant interaction sites. For RNA-ligand complexes, we used 
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RLDOCK17 and AutoDock Vina18 programs to predict potential docking poses by identifying conserved 
pockets based on structural homology and secondary structure conservation. The top-ranked models from 
these predictions were selected for further optimization. Ligand positions within the complexes were 
refined through energy minimization, ensuring accurate binding interactions and enhancing the overall 
accuracy of the RNA-ligand complex models.  

 
Results 
We participated in the TS and LG categories of CASP16 as group LCBio, with group number 189. We 
submitted a total of 292 models for TS and LG targets. For the ribozyme target, an ensemble of 1,000 
conformations of the RNA, including the solvent shell, was submitted.  

Availability 
The various methods used in this study are publicly available.  
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For a CASP16 ligand target, we employed a dual approach starting with a template search. If templates 
were found, we performed the template-based docking protocol. When templates are not detected, we 
docked ligands into predicted ligand binding pockets using the ensemble of docking tools. All docked 
poses were subsequently re-evaluated using AI-based protein-ligand scoring methods. For nucleic acid 
complexes, we used AlphaFold3 (AF3) to generate initial complex structures. Using the AF3 results as 
initial templates, we docked a query ligand to the ligand docked site of AF3 results using Glide. 
 

Template-based docking: For a given target-ligand pair, we searched for a template complex 
structure in the PDB, considering both target and ligand similarities. A template complex structure was 
identified if a protein has sequence identity higher than 70% or E-value is smaller than 10-3 to a target 
sequence. Ligand similarity was measured by the Tanimoto similarity between the query ligand and the 
template ligand using ECFP41 1024-bit fingerprints. When the similarity exceeded 0.3, template-based 
docking was performed using Glideʼs restrained docking and pharmacophore docking functionalities2. 

For covalently bonded ligands, Glideʼs CovDock was used to generate covalently docked poses. 
 
 Ensemble docking and AI-based re-scoring method: When no suitable template complex 
structure was found, we generated a large number of protein-ligand binding poses (> 10,000) using the 
ensemble of various docking tools such as AutoDock-GPU3, AutoDock-Vina4, PLANTS5, and LeDock6. 
To identify native-like bound poses, we combined four AI-based scoring functions—AK-score27, 

RTMScore8, and two in-house protein-ligand RMSD prediction models—to evaluate and select the 
optimal binding pose for final submission. AK-score2 is a graph neural network (GNN) based scoring 
function designed to predict protein-ligand binding affinity and bound pose RMSD. RTMScore is a deep-
learning based ligand pose scoring function using a mixture density network.  
 

Furthermore, two in-house protein-ligand RMSD prediction models were integrated: one is a GNN 
that directly predicts the binding RMSD, while the other is a binary classification model that predicts 
whether the RMSD is within 2 Å. After combining these models into a final scoring function, we selected 
the binding pose with the best score. To ensure pose diversity, we selected additional poses that were more 
than 2 Å apart from the best pose. Once additional poses were selected, we ensured further diversity by 
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picking ligands that were more than 2 Å apart from all previously selected poses. For tasks requiring 
binding affinity prediction, we submitted predictions using a GNN model designed to directly predict 
protein-ligand binding affinity based on the 3D structure of the selected poses. 

 
 Nucleotide-specific docking: Ligand docking to nucleic acids was approached by first generating 
protein structures using AlphaFold3, which produced 500 models per protein. We targeted proteins with 
the most similar ligands among ligands supported by the AF3 server to a query ligand, resulting in initial 
guesses for the docked poses of CASP16 query ligands. Based on the AF3 predicted nucleic acids 
structures, query ligands were docked using Glide. Both induced-fit and rigid dockings were performed 
to consider the flexibility of nucleic acid. Following initial docking, all poses underwent redocking with 
Glide to refine their accuracy. Submission models were then selected based on Glide docking scores, 
ensuring that only the most reliable poses were advanced for final evaluation. 
 

Availability 

Binding RMSD prediction model parameters available at: https://github.com/eightmm/BindingRMSD.  

Binding affinity prediction parameters available at: https://github.com/eightmm/BAPred. 
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We used coarse-grained molecular dynamics simulations to predict the conformational ensemble of ZLBT-
C and capture the interdomain orientations between the ZLBT and C domains in challenges T1200 and 
T1300. Using the cg2all machine-learning model, we then reconstructed the all-atom structures from the 
coarse-grained simulation trajectories. The following section outlines the approach in detail. 
 

Methods 
We performed coarse-grained molecular dynamics simulations of the wild-type and mutant protein targets 
using CALVADOS 31. We used AlphaFold2 predictions2 as the initial structures for simulations. 
Simulations were performed in openMM3 as described previously1. We assigned a partial charge of -0.25 
to the charged beads of D54, D58, E62 and E65 (PDB CODE: 2lr2) to compensate for the absence of an 
explicit Lanthanide ion with a +3 charge. We back-mapped our coarse-grained simulations to an all-atom 
representation using cg2all4. 

To ensure that the backbone RMSD of the two folded regions fall within 0.5 Å of the experimental 
structures, we used the following approach: 

1. Superpose the two experimental structures to each frame of the all-atom simulation trajectories. 
2. Delete the folded domains from our original simulation trajectory. 
3. Combine the remaining part of the simulation trajectory with the superposed experimental 

structures. 
4. Fix the local geometry by relaxing each trajectory structure with position restraints on the folded 

domains using Charmm36 in GROMACS5. 
 

Availability 

Code to run CALVADOS3 simulations is available open-source at https://github.com/KULL-
Centre/CALVADOS. openMM and cg2all are available open-source at 
https://github.com/openmm/openmm and https://github.com/huhlim/cg2all, respectively. References for 
the tools used in this task can be found below. 
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We used coarse-grained molecular dynamics simulations to predict the ensemble of structures and capture 
the interdomain orientations between the ZLBT and C domains in challenges T1200 and T1300. Using 
the cg2all algorithm, we then generated the all-atom structures. The following section outlines the 
approach in detail. 

Methods 

We performed coarse-grained molecular dynamics (MD) simulations of the wild-type and mutant protein 
targets using Martini 31 with the strength of protein-water interactions increased by 10%2. We used 
AlphaFold2 predictions3 as the initial structures and performed MD simulations using Gromacs  2021.14 
as previously described2. We assigned a partial charge of -0.25 to the charged beads of D54, D58, E62 
and E65 (PDB CODE: 2lr2) to compensate for the absence of an explicit Lanthanide ion with a +3 charge. 
We back-mapped our coarse-grained simulations to an all-atom representation using cg2all5. 

To ensure that the backbone RMSD of the two folded regions fall within 0.5 Å of the experimental 
structures, we used the following approach: 

1. Superpose the two experimental structures to each frame of the all-atom simulation trajectory. 
2. Delete the folded domains from our simulation trajectory. 
3. Combine the remaining part of the simulation trajectory with the superposed experimental 

structures. 
4. Fix the local geometry by relaxing each trajectory structure with position restraints on the folded 

domains using Charmm366 in Gromacs4. 
 

1. Souza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grünewald, F., Patmanidis, I., 
Abdizadeh, H., Bruininks, B. M. H., Wassenaar, T. A., Kroon, P. C., Melcr, J., Nieto, V., Corradi, V., 
Khan, H. M., Domański, J., Javanainen, M., Martinez-Seara, H., Reuter, N., … Marrink, S. J. (2021). 
Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 
18(4), 382–388.  
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The results of CASP15 have shown that increasing the number of predictions while including diversity in 
the inference process led to a significant improvement for multimer predictions1. However, this massive 
sampling strategy requires access to a large GPU infrastructure to be able to generate the predictions in a 
short period of time, and is therefore not accessible to all predictor groups. 

For CASP16, we used MassiveFold2 (https://github.com/GBLille/MassiveFold), which allows 
massively expanding the sampling of structure predictions by optimizing the computing of AlphaFold3,4 
based predictions. It improves the parallelization of the structure inference by splitting the computing on 
CPU for alignments, running automated batches of structure prediction on GPU, and gathering the results 
in a single output directory, with a consolidated ranking and a variety of plots. MassiveFold uses 
AFmassive (https://github.com/GBLille/AFmassive) inference engine, an updated version of AFsample6 
that offers additional diversity parameters for massive sampling. MassiveFold can also use ColabFold5. 

We used a large GPU cluster to generate 8040 predictions for the majority of the targets, submitted 
our top 5 and made the ensemble of predictions available to all predictors for a CASP16 phase 2 prediction 
round where they could use our predictions in any way they wanted to submit an updated top 5. 

Methods 

In collaboration with the IDRIS national french GPU supercomputing center of GENCI for the structure 
inference and the PLBS/SINBIOS platform for data storage, we generated massive sampling data based 
on AlphaFold and ColabFold. The inference integrated diversity following mainly Björn Wallner’s 
parameterization used in CASP151 but exploiting the three neural network models currently available for 
AlphaFold for multimers. In addition, the last CAPRI conference in Feb 2024 showed that generating a 
high amount of structures with default AlphaFold parameters in many instances also leads to an increase 
in good quality models7, thus we added this condition. 

Therefore, to integrate the maximum number of parameters in a massive sampling strategy but 
limiting the structures to a reasonable amount, we predicted, for multimers, 67 structures per AlphaFold 
neural network model (5 NN models x 3 NN versions = 15 for multimers) with AFmassive, resulting in 
1005 structures per condition for the 6 first sets of parameters listed in Table 1, for a total of 6030 
structures. To complement them with more diversity in particular with the ColabFold_DB and MMseqs2 
approach for alignments, we computed an extra 1005 predictions with ColabFold for an additional two 
sets of parameters, adding 2010 ColabFold predictions to the total (Table 1). 

 

https://github.com/GBLille/MassiveFold
https://github.com/GBLille/AFmassive
http://www.idris.fr/eng/index.html
https://www.genci.fr/en
https://sinbios.plbs.fr/index_en.html
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This results in a total of 8040 structure models for each target, except for the largest ones which would 
require too many GPU hours. For these, we reduced the number of predictions according to the size of the 
target. 

 

For monomers, because only one neural network version was published by DeepMind and not three like 
multimers, we compensated by computing 67x3=201 predictions per neural network model, therefore 
obtaining 8040 structure models as well for each target, again except for the largest targets for which we 
reduced the number of predictions according to their size. 

Predicted structures were not relaxed. 

All predictions were ranked based on the AlphaFold confidence score and the top 5 structures were 
submitted to CASP16-CAPRI phase 1 as a MassiveFold baseline. All our predictions were then made 
available to all the predictors for phase 2. For the specific case of targets presenting alternative 
conformations, human input was involved in structure selection for the top 5. 

 

Setup Dropout 
Evoformer 

Dropout 
structure 
module 

Templates Recycles 
Structure 
inference 

engine 

afm_basic   X 21 AFmassive 

afm_woTemplates    21 AFmassive 

afm_dropout_full X X X 21 AFmassive 

afm_dropout_full_woTemplates X X  21 AFmassive 

afm_dropout_full_woTemplates_r3 X X  3 AFmassive 

afm_dropout_noSM_woTemplates X   21 AFmassive 

cf_woTemplates    21 ColabFold 

cf_dropout_full_woTemplates X X  21 ColabFold 

Table 1: Sets of parameters used for massive sampling in CASP16-CAPRI 
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Results 

We computed massive sampling with MassiveFold for 73 targets (34 monomers and 39 multimers). 8040 
predictions were generated for each target, except for the following ones because of their large size: 

- H1217 (5878 residues): 395 predictions 
- H1227 (5689 residues): 45 structures were generated and the top 5 were submitted for phase 1, but 

for phase 2, the structure was trimmed to 2101 residues and 8040 predictions were generated 
- H1258 (3092 residues); T1257 (3789 residues) and H1265 (3924 residues): 2040 predictions 
- T1271 subunits: 2680 predictions each 
- T1295 (3752 residues) and T1269 (2820 residues): 4080 predictions 

 

In total, 510475 structures were produced. 

 

Availability 

MassiveFold is available here: https://github.com/GBLille/MassiveFold 
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For our manual predictions, we used several components from our recent IntFOLD1 and ModFOLD2 
servers and the newest versions of our quaternary structure modelling and scoring servers, MultiFOLD1 
and ModFOLDdock3 (see our MultiFOLD2 and ModFOLDdock2 abstracts). For our tertiary and 
quaternary structure predictions (TS format), we made use of our MultiFOLD2 models, the CASP-hosted 
3D server models and AlphaFold34 models, which we ranked using either our ModFOLD92 or 
ModFOLDdock2 methods and then refined with our AlphaFold2-Multimer_Refine (AF2MR)5 method. 
The likely ligand binding sites (LG format) were predicted with our latest version of FunFOLD6 and 
ensembles were generated using our latest ReFOLD5 method.   

 

Methods 

Tertiary and Quaternary Structure Predictions:  

For Phase 0 (T0/H0 targets), no stoichiometry information was provided for the multimers, so 
this was predicted by MultiFOLD2 and manually checked  (see our MultiFOLD2 abstract). The quaternary 
structure server models were ranked using our ModFOLDdock2R method (see our ModFOLDdock2 
abstract). The top 10 models were then selected and used as input templates for the AF2MR5 pipeline (see 
our MultiFOLD2 abstract), which used the LocalColabFold7 1.5.2 method with the “--custom-template-
path” option. We used 12 recycles and relaxation for targets <=2000 residues or 3 recycles without 
relaxation for larger targets. 

For Phase 1 (T1/H1 targets), the stoichiometry information for each target was provided. If the 
stoichiometry was incorrectly predicted at Phase 0, then the MultiFOLD2 protocol was rerun with the 
corrected stoichiometry and additional server models were collected. The tertiary structure Phase 1 server 
models and the quaternary structure Phase 1 server models were ranked using the ModFOLD92 and 
ModFOLDdockR methods respectively (see our ModFOLDdock2 abstract). The top 10 models were then 
selected and used as input templates for the AF2MR5 pipeline. 

For Phase 2 (T2/H2 targets), the stoichiometry information and models from all groups and 
MassiveFold8 were available. For the multimer targets, ModFOLDdock2R (see our ModFOLDdock2 
server abstract) was used to select the top 5 ranked models from all groups. For the monomer (A1) targets 
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a quick version of our ModFOLD92 method (ModFOLD9Q) was used to select the top 5 ranked models 
from the MassiveFold set (see below). Again, the top 10 models were selected and used as input templates 
for the AF2MR5 pipeline. 

For each TS format prediction, the final model rankings and the predicted per-residue quality 
scores  (plDDT*100) from LocalColabFold were added to the B-factor column for each set of atom 
records. For some of the very large complexes (>6000 residues), due to our limited GPU resources, we 
had to divide sequences up into overlapping fragments for submission to MultiFOLD2. The resulting 
modelled fragments were then manually assembled, using structural superposition in PyMOL 
(https://www.pymol.org), to form larger, more complete models. 

 

Model Quality Assessment (QA QMODE3): Due to the lack of time for processing the MassiveFold data, 
quicker versions of our ModFOLD92 method (ModFOLD9Q) and ModFOLDdock2 method 
(ModFOLDdock2Q) were used to manually score and rank the monomeric and multimeric MassiveFold 
models respectively for QA QMODE3. The ModFOLD9Q method used the top 40 ModFOLD9 ranked 
server models for Phase 1 (T1) targets as reference sets for comparison against the MassiveFold models. 
OpenStructure9 version 2.7 was used to obtain the global scores for each pairwise model comparison 
(using the “ost compare-structures” action). MassiveFold models were ranked by the mean of the Oligo-
GDTJury and lDDTJury scores (see our ModFOLDdock2 server abstract) and the top 5 models were 
returned in the QMODE3 file. The ModFOLDdock2Q method used the same approach as the 
ModFOLDdock2R method for ranking (see our ModFOLDdock2 server abstract) however, no local scores 
were generated and MassiveFold models were ranked by the mean of the lDDTJury, DockQ-waveJury 
and VoroIF(weighted_average_pcadscore) scores. Additionally, in the first stage the top n models were 
selected using VoroIF(sum_of_gnn_scores) and these models served as a reference set against which all 
other models were compared (where n=40 for targets with a total sequence length of <=500 amino acids 
(aa), n=30 for lengths >500aa & <=1000aa, n=20 for lengths >1000aa & <=1500aa, n=10 for lengths 
>1500aa& <=2000aa, n=5 for lengths >2000aa). 

 

Ligand binding predictions (FunFOLD5): Our top five manually selected TS models in the human 
prediction category were used to locate the target ligands in the individual subunits by using the template-
based and blind docking pipelines. For the template-based pipeline, the relevant template list was 
generated using Foldseek10 for the related MultiFOLD2 models. Then FunFOLD6 was run to find the 
biologically relevant binding sites and ligands based on the template list. The chemical properties of the 
ligands predicted by FunFOLD5 were then compared to those of the CASP target ligand. For the blind 
docking method,  AutoSite11 , Fpocket12 , P2rank13 were run to identify potential binding sites and Gnina14, 
DiffDock15 RoseTTAFold-All-Atom16 and AutoDock Vina17 were run to identify potential binding poses 
for the target ligand without relying on any specific templates. These potential binding sites and poses 
were also interpreted with the FunFOLD predictions, and then the most common binding sites were 
selected to re-dock the target ligands. For each target, the ligand pose, LScore and affinity data were 
generated by redocking with  Gnina14 and AutoDock Vina17  for the top five TS models (the corresponding 
protein receptor), which were then submitted in LG format. 

https://www.pymol.org/
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Ensembles: The 3D models produced by MultiFOLD2 for T1200 and T1300 underwent further refinement 
through our ReFOLD4 pipeline to capture conformational shifts in the associated models. Subsequently, 
ModFOLD92 scored all models generated by ReFOLD45. The ModFOLD9 scores were then normalized 
by the total score for all models and used as probabilities for the populations.txt file. 

 

Availability 

Server methods are available via: https://www.reading.ac.uk/bioinf/. Software is free to download via: 
https://www.reading.ac.uk/bioinf/downloads/. 
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The MIEnsembles-Server group in CASP16 is designed for modeling a wide range of targets, including 
protein monomers, nucleic acids (DNA or RNA), nucleic acid-nucleic acid complexes, protein-protein 
complexes, protein-nucleic acid complexes, ensemble targets, and model quality assessment (QA) targets. 
Nucleic acid-related targets are predicted using the newly developed deep learning method, DeepProtNA, 
which integrates pre-trained language model embeddings, multiple sequence alignments (MSA), predicted 
secondary structures, and structural templates as inputs for modified Evoformer blocks. Protein monomer 
and multimer targets are modeled using a modified version of DMFold1. Ensemble targets are predicted 
using a clustering approach based on model structural similarity, and QA targets are assessed by selecting 
the best DMFold model as a reference. 

 

Methods 

Protein monomer and multimer modeling. Protein monomer and multimer targets are predicted using a 
modified DMFold approach, which involves three steps.  

The first step is MSA construction, which builds on the previous DeepMSA2 pipeline. Compared to 
the version used in CASP15, this updated DeepMSA introduces two key improvements: (i) a larger in-
house metagenomic sequence database, incorporating data from IMG/M, NCBI, and EBI, and (ii) a multi-
domain MSA assembly method that merges domain-level MSAs into a full chain-level MSA. Similar to 
DeepMSA2, the new pipeline also contains three MSA construction sub-pipelines: dMSA, qMSA, and 
mMSA. These three sub-pipelines are iteratively used to collect homologous sequences from genomic and 
metagenomic databases, including Uniclust30, UniRef90, Metaclust, Mgnify, BFD, and an in-house huge 
metagenomics database. MSAs generated from these sub-pipelines are input into AlphaFold2 (1-
embedding) to predict a set of models. These MSAs are then ranked by their associated pLDDT scores 
from AlphaFold2. For multi-domain targets, the same MSA generation method is used to construct 
domain-level MSAs based on predicted domain boundaries, which are then assembled into full-length 
MSAs by linking sequences from the same species. The ranked MSAs are either directly used in protein 
monomer modeling or paired as multimer MSAs for protein complex modeling. For heteromeric 
complexes, an additional selection process generates an optimal set of paired MSAs by combining 
individual constituent MSAs. The top N ranked MSAs for each constituent protein are chosen to form 
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potential paired MSAs, and for a heteromeric complex with M constituent proteins, NM distinct paired 
MSAs are generated and evaluated based on a combined score of the depth of the MSAs and pLDDT score 
of the monomer chains. To ensure the pipeline completion within three days, N is selected to satisfy NM≤
64. 

The second step is template detection based on a new version of LOMETS (LOMETS4). Compared 
to LOMETS32, which was used in CASP15, the major update in LOMETS4 is its ability to handle protein 
complexes. For protein heteromers, templates are identified as follows: first, homologous templates for 
each constituent chain in the target complex are identified using LOMETS3, which includes six profile-
based threading methods, five contact/distance-based threading methods, three protein language model-
based threading methods, and one structure-based threading method. Notably, templates for individual 
chains that have already been considered in previous steps are excluded to prevent the similar query 
constituent chain from hitting identical templates. The templates are ranked by quality (e.g., Z-score). 
Finally, if at least two constituent chains share templates from the same protein complex and have a high 
sum Z-score, these complexes are considered potential templates. 

The third step is structure model generation, which utilizes a modified AlphaFold2 modeling engine. 
The MSAs from the first step and the structure templates from the second step serve as input features for 
this modeling engine. Key modifications to the AlphaFold2 modeling engine include: (i) using templates 
or not, (ii) adjusting the dropout rate, (iii) applying different versions of AlphaFold2 pre-trained weights 
(v1-v3), (iv) generating a higher number of decoys than the default setting (25 models), (v) applying or 
omitting the early stop strategy in AlphaFold2 (v2.3), and (vi) extending the modeling iterations, (vii) 
MSA sampling for ensemble targets. The final models are ranked based on the pLDDT score for monomer 
targets, or by confidence scores (0.8pTM + 0.2ipTM) for complex targets. 

For targets with unknown stoichiometry, a newly developed method is used to determine 
stoichiometry information. This method uses two pipelines: one derives stoichiometry from top ranked 
LOMETS4 templates, the other predicts stoichiometry directly by DMFold confidence scores, where the 
oligomeric state is predicted based on the model with the highest confidence. 

 

Nucleic acid-related target modeling. DeepProtNA is an end-to-end deep learning algorithm designed for 
predicting protein-nucleic acid complex and nucleic acid complex structures. The method integrates pre-
trained language model embeddings, multiple sequence alignment information, predicted secondary 
structure, and structural templates to directly generate three-dimensional coordinates of the complexes 
from input sequences through a set of modified Evoformer blocks and a structure module similar to 
AlphaFold23. Protein and RNA sequences are input respectively into the pre-trained language models, 
ESM4 and RNA-FM5, to generate high-dimensional sequence embeddings. MSA is generated for both 
protein and nucleic acid sequences using the modified version DeepMSA21 and rMSA6. The MSA-derived 
features are combined with the language model embeddings to enhance the understanding of sequence 
interactions. Structural templates are selected from PDB by LOMETS4 for protein or BLASTn7 for RNA. 
Additionally, the predicted secondary structures of nucleic acids are also selected as inputs of the deep 
learning networks. The main trunk of DeepProtNA processes the embeddings for proteins and nucleic 
acids, leveraging self-attention mechanisms to capture long-range dependencies within each sequence. 
Cross-attention mechanisms are used to handle interactions between protein and nucleic acid sequences, 
allowing the model to focus on key interaction sites. A structure decoder network takes the embedded 
representation to generate the three-dimensional coordinates for the complex. This network translates 
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sequence information directly into spatial coordinates for each residue and nucleotide, producing the final 
structure. DeepProtNA also outputs a confidence score that measures the reliability of the predicted 
interactions, and the confidence score is also used for predicting the oligomer states for those RNA targets 
with unknown stoichiometry. 

Ensembles modeling. For ensemble targets, the SPICKER8 method is used to cluster the decoys based on 
structural similarity for protein monomers, RNAs, protein-protein complexes, and protein-nucleic acid 
complexes. The centers of clusters with a large number of members and high confidence scores are 
selected as models representing potential alternative conformations. 

Model accuracy estimation. For model accuracy estimation targets, the best model from DMFold is 
selected as the reference model, and the quality of decoys is assessed based on this reference. The TM-
score9 between the reference model and each decoy is used to predict overall fold accuracy, while the 
DockQ10 score is used to predict overall interface accuracy. 
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The ModFOLDdock2 server is our new web resource for the Quality Assessment (QA QMODE2) of 
protein quaternary structure models. Three variants of ModFOLDdock2 were tested at CASP16, which 
were optimised for the different facets of the quality estimation problem. 

Methods 

The ModFOLDdock2 server uses a hybrid consensus approach for producing both global and local 
(interface residue) quality scores for predicted quaternary structures. In brief, the main differences from 
the original ModFOLDdock1 server were the addition of new scores and a neural network to predict local 
scores. The ModFOLDdock2 variants use various combinations of global and local scores (detailed in the 
sections below), which are calculated using the output from 12 individual scoring methods: QS-bestJury, 
DockQ-waveJury, TM-scoreJury, Oligo-GDTJury, lDDTJury, CADJury, PatchQSJury, PatchDockQJury, 
VoroMQA, VoroIF, CDA,  and ModFOLDIA. 

For the QS-bestJury, DockQ-waveJury, TM-scoreJury, Oligo-GDTJury, lDDTJury, CADJury, 
PatchQSJury, and PatchDockQJury scoring methods, selected pairwise comparisons were made between 
each quaternary structure model and every other model and then the mean scores were calculated. 
OpenStructure2 version 2.7 was used to obtain the QS3, DockQ4, TM-score5, GDT5, lDDT6 and CAD7 
scores for each pairwise comparison (using the “ost compare-structures” action). The VoroIF(VoroIF-
GNN)8 and VoroMQA(voronota-js-voromqa)9 methods were used off-the-shelf, VoroIF with the “--as-
assembly true” and “--local-column true” options, and  VoroMQA with the “--inter-chain” and “--output-
dark-scores” options. 

The CDA score was based on the original Contact Distance Agreement (CDA) score10,11, which 
relates to the agreement between the residue contacts predicted from the sequence and the measured 
Euclidean distance (in Å) between residues in the model. In this case, we used the contact prediction 
profiles that resulted from generating LocalColabFold12 version 1.0.0 multimer models. 

The  ModFOLDIA method was also used to carry out structure-based comparisons of alternative 
oligomer models and it produced both global and local/per-residue interface scores. The first stage of the 
ModFOLDIA method was to identify the interface residues in the model to be scored (defined as <= 8Å 
between Cβ atoms, or Cα for GLY) and then obtain the minimum contact distance (Dmin) for each 
contacting residue. The second stage was to locate the equivalent residues in all other models and then 
obtain the mean minimum distances of those residues in all other models (MeanDmin). The final Interface 
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Accuracy (IA) score for each of the interface residues in the model was the absolute difference in the Si 
from the mean Si : IA = 1-|Si-MeanSi|, where Si = 1/(1+(Dmin/20)2) and MeanSi = 1/(1+(MeanDmin/20)2). 
The global ModFOLDIA score for a model was then taken as the total interface score (sum of residue 
scores) normalised by the maximum of either the number of residues in the interface or the mean number 
of interface residues across all models for the same target. 

ModFOLDdock2: This variant produced predicted scores optimised for positive linear correlations with 
the observed scores, i.e., the predicted quality scores correlated well with the observed quality scores, 
according to the assessors’ formulae for CASP15 multimer models13. In the first stage the top n models 
were selected using VoroIF(sum_of_gnn_scores) and these models served as a reference set against which 
all other models were compared (where n=40 for targets with a total sequence length of <=2000 amino 
acids (aa), n=10 for lengths >2000aa & <=8000aa, n=5 for lengths >8000aa). The overall fold accuracy 
(column 2 in the QA file) was calculated from the mean of the TM-scoreJury and Oligo-GDTJury scores. 
The overall interface accuracy (column 3) was calculated from the mean of the QS-bestJury, DockQ-
waveJury and VoroIF(weighted_average_pcadscore) scores. Additionally, confidence scores for the 
interface residues in each model were calculated from the mean of the lDDTJury(local), CADJury(local), 
PatchQSJury and PatchDockQJury scores. 

ModFOLDdock2R: This variant produced predicted scores optimised for ranking, i.e. the top-ranked 
models (top 1) should have higher observed overall accuracy, but the relationship between predicted and 
observed scores may not be linear. The overall fold accuracy (column 2) was calculated from the mean of 
the lDDTJury, DockQ-waveJury and VoroIF(weighted_average_pcadscore) scores. The overall interface 
accuracy (column 3) was calculated from the mean of the VoroMQA, DockQ-waveJury and 
VoroIF(weighted_average_pcadscore) scores. The confidence scores for the interface residues in each 
model were also calculated from the mean of the lDDTJury(local), CADJury(local), PatchQSJury and 
PatchDockQJury scores. 

ModFOLDdockS2: This variant used a quasi-single model approach to score models. Sets of reference 
multimer models were first generated from the input sequences using our MultiFOLD2 method (see our 
MultiFOLD2 abstract for details) then each model was compared individually against the reference set 
using the individual scoring methods described above. The local scores were fed as inputs into a neural 
network (NN), implemented using the MLP (multi-layer perceptron) from the RSNNS package to predict 
the interface residue scores. The MLP was trained to predict the mean of the local lDDT, CAD, PatchQS 
and PatchDockQ scores as the target score. The MLP input data consisted of the local VoroMQA, VoroIF,  
lDDTJury, CADJury, PatchQSJury, PatchDockQJury, CDA,  and ModFOLDIA scores for each interface 
residue as well the 5 nearest contacting (<=8.0Å) interface residues in order of their proximity, and the 
output was a single quality score (8 local scores * 6 residues = 48 input neurons, 6 hidden, 1 output). The 
MLP was trained and tested on the CASP15 model data using three-fold cross-validation. The overall fold 
accuracy (column 2) was calculated from the mean of the TM-scoreJury, 
VoroIF(weighted_average_pcadscore) and global NN output scores. The overall interface accuracy 
(column 3) was calculated from the mean of the QS-bestJury, VoroIF(weighted_average_pcadscore) and 
global NN output scores. Confidence scores for interface residues in each model were the local NN output 
scores.  
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Note: Quicker versions of our ModFOLD914 method (ModFOLD9Q) and ModFOLDdock2 method 
(ModFOLDdock2Q) were used to manually score and rank the monomeric and multimeric MassiveFold 
models respectively for QA QMODE3 (see our McGuffin group abstract). 

Availability 

The ModFOLDdock server is available at: 

https://www.reading.ac.uk/bioinf/ModFOLDdock/ModFOLDdock_form.html 
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While remarkable progress has been recently achieved on protein tertiary structure prediction, accurate 
prediction of protein quaternary complex structures remains a significant unsolved problem. To address 
the challenge, development of effective methods, to assess the precision of the protein complex structural 
models and recognize the best from conformational decoys created by current structural prediction 
approaches, becomes increasingly important. In CASP16, we developed and tested three model accuracy 
estimation programs, named MQA_base, MQA_server, and MQA, respectively, to evaluate both the 
global and the interface realities of the predicted protein complex models. 
 
Methods 
We developed the three programs by extending the previous method of DeepUMQA31,2. These programs 
use the same input features and network architecture but have major differences in the training strategies 
and the evaluation score processing. 
 Training data collection: The training protein complexes were collected from the PDB database 
with the following criteria: a resolution of ≤9 Å, no more than 10 chains, each chain with a maximum 
length of 1500 amino acids, and a total complex length of ≤3000 amino acids. Complexes with the same 
number of protein chains were clustered based on 30% sequence similarity. One complex was selected 
from each cluster, and for each complex, multiple structural models were generated using AlphaFold-
Multimer3 and Hdock4, respectively. These protein complexes were then combined with protein complex 
from CASP15 to form the final training dataset, where for the CASP15 complexes, the structural models 
predicted by the CASP15 predictors are used as the training models. 

Feature collection: Features are extracted exclusively from the protein complex model itself to 
predict both per-residue accuracy and overall model accuracy. These features can be categorized into three 
groups: (1) sequence-based attributes, including amino acid sequence encoding and positional encoding; 
(2) structural attributes, including inter-residue constraints across the entire complex, residue-level local 
and topological structural information, and inter-monomer residue topology; (3) physicochemical 
attributes, including energy terms for individual residues and residue pairs within the monomer. 

Accuracy prediction: A transformer-based network model was trained to predict both the lDDT5 for 
individual residues and the TM-score6 for the global protein complex. The network comprises three 
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components. The first component processes and integrates input features into pairwise representations. 
The second component updates these representations through transformer blocks. In the final component, 
residual networks are used to predict the inter-residue distance deviation map and a mask map with a 15 
Å threshold to compute residue-level lDDT, while a multi-layer perceptron (MLP) is employed to predict 
the global TM-score. 

Difference between the three programs: MQA_base computes residue-level lDDT and extracts 
interface residue scores utilizing the complete distance deviation map and mask map. Its training loss 
function comprises cross-entropy loss for the distance deviation map, binary cross-entropy loss for the 
mask map, L2 loss for lDDT, and L1 loss for the TM-score. MQA_server calculates residue-level lDDT 
using the inter-chain distance deviation map and mask map, with the distance deviation loss and mask 
map loss specifically considering only inter-chain residue pairs. Additionally, MQA_server evaluates 
protein models generated by the GHZ-ISM group and selects high-scoring models for submission. Finally, 
MQA utilizes MQA_server to evaluate all models, with the score for each interface residue defined as the 
average score of that residue across all models. 
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MRAFold performed fully automated protein tertiary structure predictions for protein monomer and 
complex targets. MRAFold aims to improve protein structure prediction performance by realigning 
MSAs, with the goal of enhancing their quality. 
 
Methods 

The overall structure prediction pipeline includes the following steps:  

  1) MSA Generation. We utilized the default MSA generation process of AlphaFold21-2 to search 
for MSA, in BFD3, updated UniRef304, updated UniRef905, and updated MGnify6 databases. 

Simultaneously using Jackhmmer7 to search JGI metagenomic database8 to address the situation where 
relatively few MSAs constructed by AlphaFold2. 
  2) MSA Realignment. We realigned the MSAs generated in step 1 using an in-house sequence 
alignment tool. This tool accepts protein sequences as input and employs neural networks to learn the 
similarity between these sequences, thereby outputting higher-quality sequence alignments. 
 3) Protein Structure Prediction. The MSA from steps 1 and 2 were fed into the AlphaFold2 model 
to predict protein structures. The predicted structures were sorted based on the confidence score provided 
by AlphaFold2 and the consistency score of the predicted structures. The top 5 structures were then 
selected for submission. 
 
For protein complexes longer than 3000 residues, we divided the protein into protein components smaller 
than 3000 residues, ensuring that one chain was identical between each component. Finally, we used TM-
align9 to reassemble these components into a complete complex. 
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During CASP16, we applied our latest MULTICOM4 protein structure prediction system (an upgrade of 
MULTICOM31,2) built on top of AlphaFold23 and AlphaFold-Multimer4 as well as AlphaFold35 to 
generate a large number of tertiary structural models for monomer targets. The structural models were 
evaluated using multiple quality assessment (QA) methods, including global plDDT scores, GATE (a 
Graph Transformers for Estimating Protein Model Accuracy), GCPNet-EMA6, EnQA7, average pairwise 
similarity scores, and DeepRank38. MULTICOM4 was implemented as three server predictors 
(MULTICOM_AI, MULTICOM_GATE, MULTICOM_LLM) and two human predictors (MULTICOM, 
MULTICOM_human), participating in the tertiary structure prediction in CASP16. 

 
Methods 
 
1. Phase 1 monomer structure prediction 
 

Tertiary structural model generation for a single protein chain (monomer) 
 

Multiple sequence alignment (MSA) sampling. The sequence of a monomer was searched against various 
sequence databases, including UniRef30, UniRef909, BFD10,11, MGnify clusters12, UniProt9, JGIclust13, 
TaraDB14 and MetaSourceDB metagenome databases15 using HHblits16,17, JackHMMER18 to generate a 
diverse set of multiple sequence alignments (MSAs).  
 

Template identification. In addition to using the structural templates identified by the default AlphaFold2, 
the MSA generated from UniRef90 was used to search our inhouse template database curated from Protein 
Data Bank (PDB)19 to identify alternative templates.  
 

Structure generation with AlphaFold2 and AlphaFold3. A customized version of AlphaFold2 was used to 
generate structural models using the MSAs and templates generated from the previous steps. Each 
combination of a MSA and a set of templates is used to generate 25 ~ 1000 predictions. Multiple 
combinations of MSAs and templates are usually used to 750 - 300, 000 models generated for each target 
in total. In addition, the AlphaFold3 server was also used to generate hundreds (or thousands) of models 
for each monomer target.  
 
The difference between the human predictors (MULTICOM and MULTICOM_human) and the server 
predictors (MULTICOM_AI, MULTICOM_GATE, and MULTICOM_LLM) is that the former generated 
many more models in the human prediction window on top of the models already generated by the latter 
in the server prediction window. 
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Model ranking  
A set of quality assessment methods, including the global plDDT score, the quality score predicted by 
GATE, GCPNet-EMA, EnQA, average pairwise similarity score and DeepRank3 methods 
(DeepRank3_Cluster, DeepRank3_SingleQA, DeepRank3_SingleQA_lite) are used to rank the 
AlphaFold2 and AlphaFold3 models generated above as follows. 
 

• MULTICOM_AI ranked structural models using the global plDDT score.  
• MULTICOM_GATE ranked structural models based on the quality scores predicted by GATE. 
• MULTICOM_LLM used the average score of GATE and global plDDT to rank the structural 

models. It also used AlphaFold3 ranking scores to rank AlphaFold3 models.  
• MULTICOM_human ranked structural predictions using the global plDDT score. The ranking was 

subjected to human intervention. 
• MULTICOM used AlphaFold3 ranking score, global plDDT score, GATE, GCPNet-EMA, EnQA 

and the average pairwise TM-scores to rank structural models separately. The ranking was 
subjected to human intervention.  

 

Different strategies were then applied to select the final 5 models for submission as follows.  
• For MULTICOM_AI and MULTICOM_human, the no. 1 ranked model was automatically selected, 

with the remaining four chosen from top ranked models that have less than TM-score of 0.8 with 
the already selected models. If fewer than five models met this criterion, the remaining one were 
selected by the model ranking without considering the similarity between the selected models. If 
none of the Top 5 selected models came from AlphaFold3, the No. 5 model was replaced with a 
top-ranked AlphaFold3 model. 

• MULTICOM_GATE used K-means clustering to group structural models into five clusters and 
selecting a top-ranked model from each cluster. If none of the Top 5 selected models came from 
AlphaFold3, the No. 5 model was replaced with a top-ranked AlphaFold3 model. 

• For MULTICOM_LLM, the no. 1 model was no. 1 AlphaFold3 model selected by the AlphaFold3 
ranking score. Its other 4 models were selected from the top-ranked models from model clusters.  

• MULTICOM’s final 5 models were selected in sequential order from the no. 1 models ranked by 
the average of GATE and AlphaFold3 ranking scores, average of GATE and global plDDT scores, 
GATE scores, GCPNet-EMA score, EnQA scores and average pairwise TM-scores, with identical 
models removed.  

 
Tertiary structure prediction for monomer targets that are a part of a multimer target 
The tertiary structural models for monomer targets that are a part of a multimer target were extracted from 
the top ranked structural models predicted for the multimer target. The method for multimer (quaternary) 
structure prediction is described in the MULTICOM QS abstract in the CASP16 abstract book.  
 
2. Phase 2 monomer structure prediction 
 

Only our two human predictors (MULTICOM and MULTICOM_human) participated in the Phase 2 
monomer structure prediction. They did not generate additional models. Instead, they combined our in-
house AlphaFold3 models, top MassiveFold models, and CASP16 server models together and then ranked 
and refined them as the final predictions.  
Model collection and redundancy reduction. Our top 20 in-house AlphaFold3 models ranked by 
AlphaFold3 ranking score, top 10 MassiveFold models selected by the global plDDT score, and CASP16 
server models were collected and filtered to remove highly similar structures with TM-score equal to 1.  
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Model ranking. The models were evaluated and ranked using multiple quality assessment (QA) methods, 
including the global plDDT, GATE, GCPNet-EMA, EnQA, average pairwise similarity score, and 
DeepRank3 methods. 
 

Model combination. To further enhance the quality of the top-ranked predictions, each of the top-ranked 
model was combined with similar structures in the model pool with a TM-score higher than 0.95 to 
generate a refined model by Modeller. If the TM-score between each top ranked model and the refined 
model is >= 0.95, the refined model is kept. Otherwise, only the top ranked model is used as a template to 
generate a refined model.   

Final model selection. For MULTICOM, the models were ranked based on the average scores of pairwise 
GDT-scores, global plDDT scores, GCPNet-EMA scores, DeepRank3_SingleQA, and 
DeepRank3_SingleQA_lite first. The in-house AlphaFold3 prediction most similar (e.g., with a TM-score 
higher than 0.95) to the top-ranked predictions was used as no. 1 model, while the remaining refined 
models were chosen according to the ranking.  
For MULTICOM_human, the no. 1 model was selected according to the average score of GATE, GCPNet-
EMA, and average pairwise lDDT scores. The remaining four models were selected sequentially from the 
no. 1 refined models ranked by the average score of three methods (GATE, GCPNet-EMA, and average 
pairwise lDDT scores), GATE, EnQA, DeepRank3_Cluster, GCPNet-EMA, and average pairwise TM-
scores, with identical models removed.  
 
Tertiary structure prediction for monomer targets that are a part of a multimer target 
Similarly, as in Phase 1, the tertiary structural models for monomer targets that are a part of a multimer 
target were extracted from the top ranked Phase 2 structural models predicted for the multimer target. The 
method for Phase 1 multimer (quaternary) structure prediction is described in the MULTICOM QS 
abstract in the CASP16 abstract book.  
 
Availability 

We will make the source code of the MULTICOM4 prediction system available at GitHub upon 
publication of our CASP16 results. 
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During CASP16, we used our MULTICOM4 system (an enhanced version of MULTICOM31,2 built on 
top of AlphaFold23 and AlphaFold-Multimer4) as well as AlphaFold35 web server to generate a large 
number of quaternary structural models for multimer targets. The structural models were then ranked by 
various model quality assessment methods with our three server predictors (MULTICOM_AI, 
MULTICOM_GATE, MULTICOM_LLM) and two human predictors (MULTICOM and 
MULTICOM_human). The top ranked models were selected as final predictions.  
 
Methods 
 
Model Generation 
 

During CASP16 Phase 0 and Phase 1 experiments, we used both AlphaFold2 and AlphaFold3 to generate 
structural models for a multimer target with predicted or known stoichiometry as follows.   
 

MULTCOM4 pipeline for AlphaFold2-based model generation. The pipeline has the following four 
main steps:  
(1) protein monomer structure generation for each chain of an assembly target (see the detailed 
description in the MULTICOM TS abstract in this abstract book) 
(2) monomer alignments concatenation. The MSAs of the subunits of the multimer target are concatenated 
using potential protein-protein interactions extracted from the species information, UniProt accession IDs, 
the protein-protein interactions in the STRING database6, the protein complexes in the Protein Data Bank 
(PDB)7, and the DeepMSA2 pairing protocol, resulting in a series of MSAs for the multimer. 
(3) monomer templates concatenation. The sequence of each subunit in the multimer target is searched 
against PDB70 and an inhouse complex template database built from PDB by HHsearch8 to identify the 
structural templates. The templates for each subunit are concatenated together if they share the same PDB 
code. Moreover, the predicted tertiary structural model of each unit of the multimer is searched against 
the inhouse structure template database by FoldSeek9 to identify more templates, which are concatenated 
as multimer templates.   
(4) multimer structure generation. Each combination of the concatenated MSAs and templates is fed for 
the customized AlphaFold-Multimer to generate multimer structural predictions, resulting in 1000 ~ 670, 
000 structural models per target for most multimer targets except for very large targets for which fewer 
models can be generated within a short period of time.  
 

AlphaFold3 model generation: AlphaFold3 web server was used to generate hundreds or thousands of 
structural models for each multimer target.  
 

The same model generation protocol above was used in both the Phase 0 and Phase 1 prediction. 
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Phase 0 prediction for multimer targets with unknown stoichiometry information 
 

MULTICOM4 was run to generate templates for each subunit (chain) of a Phase 0 multimer target. Based 
on the template information, a set of candidate stoichiometries was proposed. AlphaFold3 was then used 
to generate 25 to 100 structural models for each candidate stoichiometry. The average and highest 
AlphaFold3 ranking scores of the models for each candidate were calculated. The scores were used to 
select one or a few predicted stoichiometries for the target. If necessary, the stoichiometry information 
from templates and/or related literature was also used to predict the stoichiometry of the target. 
 

Once the stoichiometry was predicted, the MULTICOM4 model generation pipeline and AlphaFold3 web 
server were used to generate many (e.g., hundreds/thousands of) structural models  for each selected 
candidate stoichiometry. The main difference between our sever and human predictions was that a lot of 
more models were generated for human prediction during a long two/three-week prediction window than 
for server prediction during a short three-day prediction window.  
 

After the models were generated, a variety of multimer quality assessment methods (e.g., AlphaFold2 
confidence scores, AlphaFold3 ranking scores,  graph transformer (GATE) predicted quality scores (see 
our MULTICOM QA abstract in the CASP16 abstract book for details), VoroMQA scores10, GCPNet-
EMA quality scores11, EnQA quality scores12, and pairwise model similarity scores are used separately or 
together to rank and select models. 
 

MULTICOM_AI server predictor used the AlphaFold confidence score to rank both AF2 and AF3 models.  
MULTICOM_GATE server predictor used the quality score predicted by GATE to rank and select models. 
MULTICOM_LLM server predictor used the average score of GATE and AlphaFold confidence score to 
rank the AlphaFold2 models. It used AlphaFold3 ranking scores to select AlphaFold3 models. 
MULTICOM (a human predictor) used AlphaFold3 ranking score, AlphaFold confidence score, GATE, 
GCPNet-EMA, EnQA and the average pairwise TM-scores calculated by MMAlign to rank structural 
models separately. The ranking was subjected to human intervention. 
MULTICOM_human (a human predictor) used the AlphaFold confidence score to rank models. The model 
ranking was subjected to human intervention.   
 
To increase the diversity of the top 5 selected models for hard targets, MULTICOM_AI and 
MULTICOM_human automatically used the no.1 ranked model as final no. 1 model for submission, while 
choosing the remaining models based on both the ranking and their similarity with the already selected 
models (i.e., TM-score with the selected models < 0.8). If fewer than five models meet this structural 
similarity criterion, the remaining models are selected according to the ranking alone. MULTICOM_GATE 
grouped structural models into five distinct clusters using K-means clustering. The top-ranked structure 
from each cluster was then selected as one of the Top 5 submissions. For MULTICOM_AI and 
MULTICOM_GATE, if none of the Top 5 submissions is predicted by AlphaFold3, replace the No. 5 
submission with a top-ranked AlphaFold3 predicted structure. MULTICOM_LLM used Top 1 AlphaFold3 
predicted structure ranked by the AlphaFold3 ranking score as no. 1 model, while choosing the remaining 
four models from top-ranked models of different model clusters. MULTICOM’s final Top 5 models were 
selected in sequential order from predictions ranked by the average of GATE and AlphaFold3 ranking 
scores, average of GATE and AlphaFold confidence scores, GATE, GCPNet-EMA, EnQA, GATE 
without using AlphaFold features, and average pairwise TM-scores, with identical structural models 
removed. Finally, if a target is predicted to have multiple possible stoichiometries, models for the different 
stoichiometries were included into the final top-5 models with the no. 1 model selected from the most 
likely stoichiometry.   
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Phase 1 prediction for multimers with known stoichiometry 
 

The same model generation and ranking methods used in the Phase 0 prediction were applied to the Phase 
1 prediction for MULTICOM_AI, MULTICOM_GATE, MULTICOM_LLM, MULTICOM and 
MULTICOM_human. The main difference between Phase 1 and Phase 0 is that the Phase 1 prediction 
combines the new models generated in Phase 1 and the models with the correct stoichiometry generated 
in Phase 0 if available together for model ranking and selection. The number of models for each target in 
Phase 1 is usually more than double that for the corresponding target in Phase 0.  
 
Phase 2 prediction: selecting and combining models in in-house model pool, CASP16 model pool, 
and MassiveFold model pool 
 

Our two human predictors (MULTICOM and MULTICOM_human) participated in the Phase 2 
prediction. They did not generate new models for most targets. Instead, they combined our in-house 
AlphaFold3 models, CASP16 structural models downloaded from the CASP16 website, and top ranked 
MassiveFold models together and applied different methods to rank and refine them to generate final five 
models. The protocols are described as follows.  
 

Model collection and redundancy reduction. Our top 20 in-house AlphaFold3 models ranked by 
AlphaFold3 ranking score, top 10 MassiveFold models selected by AlphaFold confidence score, and 
CASP16 Phase 1 server models were collected. The highly similar models (TM-score = 1) were filtered 
out.  
 

Initial model ranking. The filtered structural predictions were evaluated using multiple quality 
assessment methods to select the top-ranked predictions, including the GATE quality scores, GCPNet-
EMA scores, EnQA scores, average pairwise similarity scores, global plDDT scores, and VoroMQA 
scores. For MULTICOM, models were ranked based on the average scores of pairwise TM-scores, EnQA 
scores, VoroMQA scores, GCPNet-EMA scores. For MULTICOM_human, models were ranked using 
GATE quality scores, GCPNet-EMA scores, EnQA scores, average pairwise similarity scores, global 
plDDT scores, and VoroMQA scores, separately. 
 

Model combination. To further enhance the quality of the top-ranked predictions, each of the top-ranked 
model was combined with similar structures in the model pool with a TM-score higher than 0.95 to 
generate a refined model by Modeller. If the TM-score between each top ranked model and the refined 
model is >= 0.95, the refined model is kept. Otherwise, only the top ranked model is used as a template to 
generate a refined model.  
 

Final model selection. MULTICOM used an in-house AlphaFold3 model most similar (e.g., with a TM-
score higher than 0.95) to the top-ranked prediction as no. 1 model, while choosing the remaining four 
refined models from the model pool according to the ranking generated above.  
MULTICOM_human selected five models sequentially from the no. 1 refined models selected by the six 
quality assessment methods (average pairwise TM-scores, global plDDT scores, EnQA scores, VoroMQA 
scores and the GATE scores), GATE, average pairwise TMscores, VoroMQA scores, GCPNet-EMA 
scores and EnQA scores), with identical models removed.  
 
Availability 

We will make the source code of the MULTICOM4 prediction system available at GitHub upon 
publication of our CASP16 results. 
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Significant progress in protein-ligand structure prediction (PLSP) has recently been made using deep 
learning (DL) methods, with the new AlphaFold 31 method serving as a hallmark example. Such progress 
has the potential to reshape the landscape of modern drug discovery by allowing researchers to precisely 
design drugs for important protein targets with reduced off-target effects. Currently, open-source DL 
algorithms for PLSP are numerous yet disparate, leading to lack of clarity in which methods perform best 
in certain molecular contexts. Furthermore, it remains unclear how to best compare each method’s 
predictions to each other to perform model ranking and how to accurately estimate the binding affinity of 
their top-ranked predicted (multi-ligand) structural complexes. In CASP16, we debuted PoseBench2, our 
recent PLSP benchmark for DL methods, as a standalone predictor in the CASP ligand (LG) prediction 
category. PoseBench enables researchers to predict the structure of protein-ligand complexes using several 
of the most recent DL docking algorithms such as DiffDock-L3 and NeuralPLexer4 using a unified 
software pipeline and to rank-order each predicted structure using a structural consensus heuristic for 
ligand binding modes inspired by previous CASP ranking methods for protein structures5. Furthermore, 
our PoseBench pipeline for CASP16 introduces a new confidence and binding affinity estimation method 
called FlowDock, a geometric generative DL algorithm pre-trained on the Protein Data Bank6 and fine-
tuned on the PDBBind 2020 dataset7 to predict scalar lDDT and binding affinity values given the (multi-
chain) protein sequences, (multi-ligand) SMILES strings, and optional (predicted) structure of a protein-
ligand complex. Combining these top-ranked predicted structures and estimated confidence and affinity 
measures, PoseBench lastly applies a series of molecular sanity checks to its top-ranked predictions using 
the PoseBusters software suite8 to optimize the structural validity of its top-5 structural models. 
 
Methods 
 
Our PoseBench protein-ligand structure prediction pipeline consists of five sequential steps: (1) protein-
ligand structure generation, (2) structural consensus ranking, (3) protein-specific ligand structure 
relaxation, (4) chemical and structural sanity checking, and (5) structure-aware confidence and binding 
affinity estimation. For the nucleic acid-ligand targets presented in the CASP16 competition, we modified 
each step above to instead use AlphaFold 3 and RoseTTAFold-All-Atom9 in a combined manner to predict 
these complex structures, a procedure we describe in detail in the following sections. Notably, both the 
structure generation as well as the confidence and binding affinity estimation components of our pipeline 
are driven by various geometric and generative DL algorithms, with the majority of these DL methods 
using protein structures predicted by AlphaFold 3 as a starting point for molecular docking or structure 
sampling. In the following sections, we describe in detail how we employed our PoseBench pipeline in 
each of the various prediction contexts available in CASP16. 
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1. Context 1: Protein-(super)ligand structure prediction 
 

Protein-ligand structure generation. For each protein-(super)ligand prediction target, the PoseBench 
pipeline first generates 100 protein-binding ligand conformations with DiffDock-L3, 40 with 
DynamicBind10 and NeuralPLexer4 each, and 1 with RoseTTAFold-All-Atom9 (RFAA). The first three of 
these methods are provided with a protein structure predicted by AlphaFold 31 to use an initial protein 
state for docking or structure generation, whereas RFAA relies on its own template search and multiple 
sequence alignment procedures to perform structure prediction for each target. If not already predicted by 
one of these methods, AlphaFold 3’s predicted confidence (i.e., lDDT) scores for each protein atom are 
reported for the resulting complexes. 
Structural consensus ranking. The pipeline then (re)rank-orders each method’s (intrinsically rank-
ordered) top-3 predicted (multi-)ligand structures according to their structural similarity to each other (i.e., 
inter-consistency) using average pairwise (multi-)ligand root-mean-squared deviation as a proxy for 
ligand structural model accuracy. Two important caveats included here are that (1) if a top consensus-
ranked prediction contains any severe atomic steric clashes between protein residues, it is assigned the 
lowest consensus ranking; and (2) if a target contains multiple ligands, the structures produced by 
NeuralPLexer for these targets are automatically designated as our top-3 consensus-ranked predictions 
based on the results of our previous benchmarking study2 for DL docking methods. 
Ligand structure relaxation. The top-5 predictions resulting from this structural consensus ranking 
procedure then have their ligand structures relaxed using protein-fixed molecular dynamics simulations 
driven by OpenMM11. 
Structure sanity checking. The relaxed predictions replace their unrelaxed prediction counterparts in 
rank-ordering if and only if a relaxed ligand prediction passes more of the protein-ligand complex validity 
sanity checks available in the PoseBusters software suite8 than the unrelaxed prediction and if the relaxed 
ligand prediction is less than 5 Å in centroid distance from the unrelaxed prediction. 
Confidence and binding affinity estimation. Once this top-5 ranking of predictions is finalized, the 
PoseBench pipeline runs our new FlowDock model for each top-5 prediction to estimate its average 
(multi-)ligand confidence (i.e., lDDT) scores and binding affinity values. 
 
2. Context 2: Nucleic acid-ligand structure prediction 
 

Structure generation and combination. For the nucleic acid-ligand prediction targets presented in 
CASP16, in contrast to our protein-(super)ligand structure prediction procedure above, we first used 
AlphaFold 31 and RFAA9 to predict the nucleic acid and nucleic acid-ligand complex structures of each 
target, respectively. For each of these targets, we then optimally aligned AlphaFold 3’s predicted nucleic 
acid structure onto RFAA’s predicted nucleic acid-ligand complex structure using the chain alignment 
feature available in Mol*12. Once aligned, we then copied RFAA’s corresponding (multi-)ligand structures 
to form a new nucleic acid-ligand complex using AlphaFold 3’s (aligned) predicted nucleic acid structure. 
When these “combined” AlphaFold3-based complexes did not contain any severe nucleic acid-ligand 
steric clashes, we selected them as our top-1 predictions for such targets and then placed RFAA’s 
predictions as our next best predictions. Otherwise, if severe clashes were present, we instead ranked 
RFAA’s structures as our best predictions. In both cases, this procedure produced 2 predicted complexes 
for each nucleic acid-ligand target in CASP16. 
Confidence and binding affinity estimation. Once the rankings of our top nucleic acid-ligand predictions 
were finalized, we then employed a surrogate protein structure (PDB ID: 5S8I) to temporarily replace our 
predicted nucleic acid structures for each complex to enable us to predict confidence (i.e., lDDT) scores 
and binding affinity values for each predicted (multi-)ligand structure using our new FlowDock model for 
protein-ligand complexes. 
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Context 3: Protein-(multi-)ligand binding affinity estimation 
 

Single and multi-ligand binding affinity estimation for the experimental protein-ligand complex structures 
provided later in the CASP16 competition was performed similarly to Step 5 of our protein-(super)ligand 
structure prediction procedure, with an important caveat being that, in this context, we provided FlowDock 
with the available crystal structure of each protein-ligand complex instead of a structure predicted by a 
DL method. We note that, as a generative model of protein-ligand complexes, FlowDock could produce 
multiple distinct affinity predictions for each given experimental complex, though in this setting, for 
simplicity we chose to report the first predicted affinity value for each ligand. 
 
Availability 

We will make our PoseBench CASP16 pipeline available upon publication. 
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In CASP16, we tested different deep learning-based and traditional model quality assessment (QA) 
techniques as six predictors, including MULTICOM_AI, MULTICOM_GATE, MULTICOM_LLM, 
MULTICOM, MULTICOM_human and MULTICOM_ligand in the regular QA category and/or the 
MassiveFold model selection category.  
 
Methods 
 

1. MULTICOM Predictors for Regular QA 
 

MULTICOM_GATE. Given a pool of models for a target, it first samples a subset of models from the 
pool either randomly or evenly from different model clusters. The subset of models is then used to build 
a model similarity graph, in which a node denotes a model and an edge connects two models that are 
similar to each other. A graph transformer for estimating model accuracy (called GATE) is used to predict 
the quality of each model in the graph. The process is repeated multiple time so that each model in the 
pool is selected at least once. The average predicted quality for a model used as its final quality score. The 
same approach is applied to both tertiary structural models and quaternary structural models except for 
some difference in node features. For tertiary structural models, the node features include average pairwise 
model similarity score, AlphaFold global (average) plDDT score, model quality score predicted by a 
single-model quality assessment method based on equivariant graph neural networks EnQA1, model 
quality score predicted by a single-model quality assessment method based on geometric-complete graph 
neural network GCPNet-EMA2, and model quality score predicted by a consensus deep learning method 
DeepRank33. Additionally, the quality scores used in DeepRank3 are also included as node features. For 
quaternary structural models, the node features include the average pairwise similarity scores, AlphaFold 
global plDDT score, ICPS score4, DProQA score5, EnQA score, GCPNet-EMA score and VoroMQA6 
scores. The pairwise similarity between two similar model is used as the feature of the edge connecting 
them.   
 

MULTICOM_AI uses the single-model QA method - GCPNet-EMA to predict the global quality of a 
model.  
 

MULTICOM_LLM uses the average pairwise similarity score between a model and all other models 
calculated by MMAlign as the predicted quality score.  
 

MULTICOM uses the average of GCPNet-EMA score and GATE score as the predicted quality score.  
 

MULTICOM_human uses the average of EnQA score, GCPNet-EMA score, and GATE score as the 
predicted quality score. 
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2. MULTICOM predictors for MassiveFold model selection 
 

For the phase 2 model selection for monomer targets, MULTICOM_AI uses GCPNet-EMA, 
MULTICOM_GATE uses GATE, MULTICOM_LLM employs the average pairwise model similarity 
score calculated by TMscore, MULTICOM uses EnQA, MULTICOM_human utilizes the average of the 
pairwise lDDT score, GCPNet-EMA score, and GATE score, while MULTICOM_ligand employs the 
average of the GCPNet-EMA score and global plDDT score. 

For the phase 2 model selection for multimer targets, MULTICOM_AI employs GCPNet-EMA, 
MULTICOM_GATE utilizes GATE with additional AlphaFold confidence scores7 as input features, 
MULTICOM_LLM selects models using the average pairwise similarity scores calculated by MMAlign, 
MULTICOM applies EnQA, MULTICOM_human utilizes the average of pairwise CAD-scores, 
GCPNet-EMA, and GATE, while MULTICOM_ligand uses the average of GCPNet-EMA and 
AlphaFold confidence scores. 
 
It is worth noting that the implementation of our predictors above evolved during the CASP16 experiment. 
For the simplicity and clarity, only the final version of each predictor is described above.  
 
Availability 

The source code of our methods will be made available at GitHub upon publication of our CASP16 results. 
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The MultiFOLD2 server is our new integrated pipeline for producing tertiary and quaternary structure 
models of proteins via sampling, quality scoring and refinement. 

 

Methods 

The MultiFOLD2 protocol has 3 main steps: sampling, scoring, and refinement. In brief, the main 
differences from the original MultiFOLD1 version were the inclusion of stoichiometry prediction and 
improved sampling with the addition of AlphaFold2-Multimer including dropout2, RosseTTAFold23 with 
and without dropout, and RosseTTAFold-All-Atom4. Additionally, we improved scoring using the latest 
version of our ModFOLDdock5 method (see our ModFOLDdock2 server abstract for further details). 
Finally, the refinement step was the same as in the original MultiFOLD method. Different approaches 
were used based on prediction phase and target type.  

 For Phase 0 (T0/H0 targets), no stoichiometry information was provided for the multimers, so 
this was predicted by MultiFOLD2 as follows. Firstly, initial 3D models were generated using  
LocalColabFold66 version 1.5.2 with templates. If templates could not be found from the target sequences, 
then Foldseek7  was used with each chain of the top initial 3D model to find templates for each subunit. 
Stoichiometry for each template was then determined using PISA8. If templates were found for all 
subunits, then the most frequent stoichiometries from all templates were assigned to the target sequences 
and then used in subsequent modelling. If no templates could be found, QUEEN9 assigned stoichiometry 
directly from the target sequences.  

Following stoichiometry prediction, in the first step, 3D models of tertiary and quaternary 
structures were built using two different versions of LocalColabFold6 
(https://github.com/YoshitakaMo/localcolabfold). Firstly, LocalColabFold version 1.0.0 was run without 
relaxation for targets with total sequence lengths of <=2500 amino acids. LocalColabFold version 1.0.0 is 
based on the ColabFold/AlphaFold2_advanced notebook integrating the AlphaFold210 (AF2) weights 
(alphafold2_ptm) and modified to produce models for multimers. Secondly, LocalColabFold version 1.5.2 
was run with relaxation, with and without dropout for targets with lengths <=6000. LocalColabFold 
version 1.5.2 is based on the ColabFold/AlphaFold2_mmseqs2 notebook integrating the official 
AlphaFold2-Multimer11 (AF2M) weights (alphafold2_multimer_v3) and is specifically tuned for 
multimer prediction. Additionally, RosseTTAFold23 (RF2) was run for targets with lengths <=1800 with 

https://github.com/YoshitakaMo/localcolabfold
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all possible symmetric and non-symmetric configurations, both with and without dropout. The top 10 
models were selected from the scores in the JSON files. Finally, RosseTTAFold-All-Atom4 (RFAA) was 
run generating 10 models for targets with lengths <=1300. Thus, in the first step of MultiFOLD2 up to 45 
initial 3D models (5xAF2, 20xAF2M, 10xRF2, 10xRFAA) were generated. 

In the second step of the process, the models were scored and ranked using ModFOLDdock2S, 
which is a single-model approach for producing both global and local (interface residue) quality scores 
for predicted quaternary structures (see our ModFOLDdock2 server abstract). 

In the final step, the top 5 ModFOLDdock2S selected models were reformatted to mmCIF files 
using MAXIT12 and then used as input templates for our AlphaFold2-Multimer_Refine (AF2MR) 
protocol13. The AF2MR approach used the LocalColabFold 1.5.2 method with the “--custom-template-
path” option, with 12 recycles and relaxation for targets <=2000 residues or 3 recycles without relaxation 
for larger targets. For each model, the model rankings and predicted per-residue quality scores 
(plDDT*100) from LocalColabFold were added to the B-factor column for each set of atom records. 

For the very large complexes (>6000 residues), due to our limited GPU resources, we had to divide 
sequences up into overlapping fragments for submission to MultiFOLD2. The resulting modelled 
fragments were then manually assembled, using structural superposition in PyMOL 
(https://www.pymol.org), to form larger, more complete models. 

For Phase 1 (T1/H1 targets), the stoichiometry information for each target was provided. If the 
stoichiometry was correctly predicted for the equivalent targets in Phase 0, then the top 5 McGuffin group 
Phase 0 models were returned (see our McGuffin group abstract). If the stoichiometry was incorrectly 
predicted at Phase 0, then the MultiFOLD2 protocol described above was rerun with the corrected 
stoichiometry.  

For Phase 2 (T2/H2 targets), the stoichiometry information and models from all groups and 
MassiveFold14 were available. For the multimer targets, ModFOLDdock2R (see our ModFOLDdock2 
server abstract) was used to select the top 5 ranked models from all groups. For the monomer (A1) targets 
a quick version of our ModFOLD915 method (ModFOLD9Q) was used to select the top 5 ranked models 
from the MassiveFold set (see our McGuffin group abstract).  

 

Results 

MultiFOLD2 is continuously benchmarked using the CAMEO-BETA resource16 where it has been shown 
to significantly outperform other tested methods on multimer modelling according to Wilcoxon tests on 
common subsets (MultiFOLD2 versus MultiFOLD Oligo-lDDT scores, p=9.18E-05; versus Server76, 
p=9.69E-10; versus Server 994(AF3), p=0.01034). 

 

Availability 

The MultiFOLD server is available at:  

https://www.reading.ac.uk/bioinf/MultiFOLD/MultiFOLD2_form.html 

https://www.pymol.org/
https://www.reading.ac.uk/bioinf/MultiFOLD/MultiFOLD2_form.html
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In this proposal, we attempt to provide a folding model suitable for a specific superfamily based on the 
AlphaFold2(*1) pipeline. To achieve this, we apply LoRA (Low-Rank Adaptation) to the attention layer 
of the AlphaFold2 learning model and input the PDB data set of a specific superfamily into the modified 
learning model. This allows us to develop an AlphaFold2 folding model and a trained model suitable for 
the specific superfamily. This abstract presents the specific procedures targeting T1300 and T1200. 
 
Methods 
In our method, we applied LoRA to the Attention Layer of AlphaFold2. This implementation will be made 
available after the CASP16 Conference, as mentioned in the Availability section. Using the modified 
AlphaFold2 with LoRA, we input the PDB data set of the superfamily to which T1300 and T1200 belong 
and created a trained model suitable for predicting the protein structures of this superfamily. This trained 
model is used to predict the structures of T1300 and T1200. The PDB data set of the superfamily to which 
T1300 and T1200 belong was obtained by searching for the amino acid sequence ZLBT-C, common to 
T1300 and T1200, in the SuperFamily database provided by InterPro(*2) at EMBL-EBI. 
 
Availability 
Our method and code will be available at the GitLab. 
 
 
1. Jumper, J. et al. “Highly accurate protein structure prediction with AlphaFold.” Nature, 596, pages 

583–589 (2021). DOI: 10.1038/s41586-021-03819-2. 
2. InterPro database, EMBL-EBI. Available at: https://www.ebi.ac.uk/interpro.  
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The NKRNA-s server group participated in CASP16 with the aim of modeling nucleic acids (DNA or 
RNA), nucleic acid–nucleic acid complexes, protein–protein complexes, and protein–nucleic acid 
complexes. For nucleic acid-related targets, predictions were made using our newly developed deep 
learning method, DeepProtNA, which integrates pre-trained language model embeddings, multiple 
sequence alignments (MSAs), predicted secondary structures, and structural templates as inputs for 
modified Evoformer blocks. Protein–protein complex targets were predicted using a modified version of 
DMFold-Multimer1. 

 

Methods 

Protein-protein complex modeling pipeline  

Our protein–protein complex structures were predicted using a modified DMFold-Multimer 
approach, which involves three primary steps. 

First, MSA construction builds upon the previous DeepMSA2 pipeline. Compared to the version used 
in CASP15, this updated DeepMSA introduces two key improvements: (i) a larger in-house metagenomic 
sequence database that incorporates data from IMG/M, NCBI, and EBI; and (ii) a multi-domain MSA 
assembly method that merges domain-level MSAs into full chain-level MSAs. Similar to DeepMSA2, the 
new pipeline contains three MSA construction sub-pipelines: dMSA, qMSA, and mMSA. These sub-
pipelines are iteratively used to collect homologous sequences from genomic and metagenomic databases, 
including Uniclust302, UniRef903, Metaclust4, Mgnify5, BFD6 and an in-house huge metagenomics 
database. To speed up the search, the in-house database is clustered with a 30% sequence identity cutoff 
using MMseqs27. MSAs generated from these sub-pipelines are input into AlphaFold2 (1-embedding) to 
predict a set of models. These MSAs are then ranked by their associated pLDDT scores from AlphaFold2. 
For multi-domain targets, the same MSA generation method is used to construct domain-level MSAs 
based on predicted domain boundaries, which are then assembled into full-length MSAs by linking 
sequences from the same species. The ranked MSAs are either directly used in protein homomer modeling 
or paired as multimer MSAs for protein heteromer modeling. For heteromeric complexes, an additional 
selection process generates an optimal set of paired MSAs by combining individual constituent MSAs. 
The top N ranked MSAs for each constituent protein are chosen to form potential paired MSAs, and for a 
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heteromeric complex with M constituent proteins, NM distinct paired MSAs are generated and evaluated 
based on a combined score of the depth of the MSAs and pLDDT score of the monomer chains. To ensure 
the pipeline completes within three days, N is selected to satisfy NM≤64. 

Second, template detection is based on a new version of LOMETS (LOMETS4). Compared to 
LOMETS38, which was used in CASP15, the major update in LOMETS4 is its ability to handle protein 
complexes. For protein heteromers, templates are identified as follows: first, homologous templates for 
each constituent chain in the target complex are identified using LOMETS3, which includes six profile-
based threading methods, five contact/distance-based threading methods, three protein language model-
based threading methods, and one structure-based threading method. Notably, templates for individual 
chains that have already been considered in previous steps are excluded to prevent the similar query 
constituent chain from hitting identical templates. The templates are ranked by quality (e.g., Z-score). 
Finally, if at least two constituent chains share templates from the same protein complex and have a high 
sum Z-score, these complexes are considered potential templates. 

Third, structure model generation utilizes a modified AlphaFold2 modeling engine. The MSAs from 
the first step and the structure templates from the second step serve as input features for this modeling 
engine. Key modifications to the AlphaFold2 modeling engine include: (i) using templates or not, (ii) 
adjusting the dropout rate, (iii) applying different versions of AlphaFold2 pre-trained weights (v1-v3), (iv) 
generating a higher number of decoys than the default setting (25 models), (v) applying or omitting the 
early stop strategy in AlphaFold2 (v2.3), and (vi) extending the modeling iterations. The final models are 
ranked by confidence scores (e.g., 0.8pTM + 0.2ipTM). 

For targets with unknown stoichiometry, we developed a new method to determine stoichiometry 
information. This method uses three pipelines: one derives stoichiometry from top-ranked LOMETS4 
templates; the second predicts stoichiometry using a deep learning method combining sequence data and 
embeddings from protein language models9 and text-based language models using UniProt descriptions; 
and the third pipeline predicts directly from DMFold confidence scores, where the oligomeric state is 
predicted based on the model with the highest confidence. 

Nucleic acid-related target modeling pipeline  

DeepProtNA is an end-to-end deep learning algorithm designed for predicting protein-nucleic acid 
complex and nucleic acid complex structures. The method integrates pre-trained language model 
embeddings, multiple sequence alignment information, predicted secondary structure and structural 
templates to directly generate three-dimensional coordinates of the complexes from input sequences 
through a set of modified Evoformer blocks and a structure module similar in AlphaFold210. Protein and 
RNA sequences are input respectively into the pre-trained language models, ESM9 and RNA-FM11, to 
generate high-dimensional sequence embeddings. MSA is generated for both protein and nucleic acid 
sequences using the modified version DeepMSA21 and rMSA12. The MSA-derived features are combined 
with the language model embeddings to enhance the understanding of sequence interactions. Structural 
templates are selected from PDB by LOMETS4 for protein or BLASTn13 for RNA. Additionally, the 
predicted secondary structure of nucleic acids is also selected as inputs of the deep learning networks. The 
core architecture of DeepProtNA processes embeddings for proteins and nucleic acids, utilizing self-
attention mechanisms to capture long-range relationships within individual sequences. To model 
interactions between protein and nucleic acid sequences, cross-attention mechanisms are employed, 
enabling the model to concentrate on key interaction sites. A structural decoder network uses these 
embedded representations to generate the three-dimensional coordinates of the complex. This network 
translates sequence information directly into spatial coordinates for each residue and nucleotide, resulting 
in the final structure. DeepProtNA also provides a confidence score that assesses the reliability of the 
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predicted interactions, which is additionally used to predict oligomeric states for RNA targets with 
unknown stoichiometry.  
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OpenComplex-2 is a state-of-the-art biomolecular foundation model designed to predict the structures of 
proteins, DNA, RNA, small molecules, and their complexes. By leveraging graph-based molecular 
representations and advanced generative techniques, such as diffusion models, OpenComplex-2 surpasses 
traditional structural prediction approaches and enables the prediction of ensemble behaviors of 
molecular complexes. This capability allows the model to estimate probabilistic distributions of 
conformations, offering enhanced potential for downstream tasks (e.g., binding affinity prediction, 
mutation prediction). With an all-atom representation, OpenComplex-2 excels at capturing dynamics of 
flexible regions within biological macromolecules. A detailed technical report on OpenComplex-2 is 
forthcoming. 
 
Methods 
The training of OpenComplex-2 utilizes all available Protein Data Bank (PDB) structural data up to 2023, 
encompassing DNA, RNA, proteins, small molecules, and ions. A visual overview of the model 
architecture is provided in Figure 1. The training process consists of two phases: 

 
Pre-training phase: Each molecule is represented as a molecular graph, encoding atomic-level 

information. The model undergoes diffusion-based pre-training to capture spatial relationships between 
atomic pairs, allowing it to learn possible structural configurations. 

Fine-tuning phase: In this phase, additional information, such as multiple sequence alignments6 
(MSA) and binding affinities, is incorporated to further refine the model for specific tasks. 
 
 
CASP Variation 

Server Group: For the Server group, we selected results based on the model's highest confidence 
score. These results underwent molecular dynamics (MD) relaxation7 to ensure no atomic clashes. 

Human Group: The Human group saw several methodological adjustments based on the server 
version: 1) We conducted more extensive sampling, approximately 10 times that of the Server group. 2) 
A novel sampling selection strategy was employed, based on the cluster centroids of the sampling 
distribution, and refined using bond-level details. 3) For certain tasks, we performed manual cross-
validation to select samples that aligned more closely with the literature, without intervening in the model 
input. 
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Figure 1. Overview of OpenComplex-2 architecture and training flow. OpenComplex-2 consists of two training 
stages: in the pre-training stage, the model focuses on structural relationships between atoms; in the fine-tuning 

stage, it incorporates additional information for specific tasks. 

 

Results 

We employed a single OpenComplex-2 model to predict all tasks for CASP16. The model’s ability to 
understand biomolecular structures spans multiple dimensions, particularly in terms of ensemble 
prediction: structural ensemble, docking position ensemble, and stoichiometry ensemble. 

• Structural Ensemble: OpenComplex-2 demonstrates an exceptional ability to predict secondary 
structures of proteins and nucleic acids without relying on templates. It then folds these into 
tertiary structures, depending on the availability of MSA information (Figure 2A). This allows 
the model to account for conformational flexibility and structural variance, especially in flexible 
regions like protein loops and RNA. 

• Complex Ensemble: OpenComplex-2 excels at identifying intermolecular interaction sites, 
accommodating diverse docking configurations. For instance, in the case of the L1000 series 
protein, which contains a loop at its binding pocket, OpenComplex-2 successfully predicts the 
small molecule binding site and provides plausible ligand positions based on structural variation 
(Figure 2B). Furthermore, due to the fine-tuning phase, OpenComplex-2 can directly predict the 
binding affinity associated with multiple ligand distributions. 

• Stoichiometry Ensemble: Due to no dependency on fixed number of chains during modeling (by 
merging all isomorphic subgraphs to one), OpenComplex-2 gains the ability to predict 
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stoichiometry directly (without finetuning). The predicted number of chains is extracted from the 
latent graph representation by the structure solver. Out of 31 predictions related to protein 
stoichiometry, OpenComplex-2 made correct predictions in 28 cases (Figure 2C). This 
underscores the model’s capability to predict complex macromolecular interactions and 
assemblies. 
 

For the structure prediction track, OpenComplex-2 generated predictions that reflect the possible 
distributions of molecular structures and their complexes. The submission to CASP included the sampling 
cluster centroids of these predicted distributions, providing a robust representation of the most likely 
configurations. 

For the SuperTarget track, we further fine-tuned the model using the LBA dataset. In this track, 
we modified the selection strategy for submitted predictions by incorporating an ensemble of scoring 

functions, including OpenComplex-2’s binding affinity, Cyscore2, LEGO4, and Schrödinger Glide’s 

Gscore3. This multi-faceted approach allowed us to enhance the accuracy and confidence of our binding 
predictions. 

 

 
Figure 2. A illustrative example of of OpenComplex-2’s results across different tasks. A) shows structural 

ensemble predictions of M1276. B) demonstrates small molecule docking ensemble of L1000 series. C) illustrates 
predictions related to protein stoichiometry. 
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Availability 
 

The OpenComplex-2 code and model will be released soon at  
https://github.com/baaihealth/OpenComplex. Please stay tuned. 
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We submit predictions for the protein conformational ensemble targets from a derivative version of 
AlphaFold2 fine-tuned under a generative modeling objective, as described in previously published work.1 
These predictions demonstrate significant variability that aims to capture the structural heterogeneity of 
the protein target in solution. 

Methods 

AlphaFlow is a generative model of protein structures conditioned on sequence and MSA information. It 
is designed for a distributional modeling setting, i.e., to predict a conformational ensemble for a given 
protein sequence, rather than the single-structure prediction paradigm adopted by AlphaFold2 and 
successor models. Specifically, a deep denoising network parameterizes a continuous flow over protein 
structure space that transports a noisy prior distribution to the conformational ensemble for a given 
sequence; this network is trained under the flow-matching generative modeling paradigm.2 The deep 
denoising network is heavily based on the neural network architecture of AlphaFold2,3 except that the 
template input is replaced with the noisy input; the output structure prediction is regarded as the direction 
of the denoising flow. The denoising network is initialized with the pretrained weights of AlphaFold2 and 
fine-tuned on the PDB for 1.3M training examples with OpenFold.4 

Availability 

The source code and parameters of the model are readily accessible at 
https://github.com/bjing2016/alphaflow.  
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This CASP R1260 task is devoted to modeling the solvation shell of a full-length Apo L-21 ScaI 
Tetrahymena ribozyme structure which was deposited in the PDB in 2021 with the PDBid:7ez0 (1). Our 
approach primarily relied on prior-knowledge from several publications of our group, along with 
molecular dynamics (MD) simulations (2-7). 

We opted to generate a single structure that includes both the frozen cryo-EM RNA structure and 
its solvation shell. This structure was derived from MD simulations performed at cryo-EM temperatures 
(77 K). We believe such a model offers a good alignment with experimental data. We assumed that the 
RNA particles used to generate the cryo-EM structure were already sorted and relatively homogeneous, 
which is especially true for the new ribozyme structure, solved at 2.3 Å (CASP target). Based on 
stereochemical insights, we placed several ions in unassigned density spots visible in the 7ez0 map. The 
MD simulations were particularly valuable for positioning water molecules, most of which displayed 
excellent stereochemical characteristics. The solvation shell extends to 5 Å around the RNA as requested. 

Note: due to time constraints, the model we submitted is not as complete or fully refined as we initially 
planned. 

 
Methods 
Several decisions were made to model the RNA solvation shell, all based on the 7ez0 structure. First, we 
inspected the structure using MolProbity and Coot tools. Overall, the structural modeling appeared to us 
to be of good quality and only a few changes were made, primarily in regions with poor atomic B-factors 
that are excluded from the CASP quality assessment process. 

Next, we examined the 27 assigned Mg2+ ions. Their positions were found to be compatible with 
octahedral coordination, as determined using a custom Coot script written by Dr. Naleem Nawavi, one of 
our team members. However, based on previous studies, we reassigned two ions, (ions 506 and 507), as 
Na+ instead of Mg2+. Additional 36 Mg2+ ions were placed at unassigned density peak locations and we 
checked their potential for octahedral coordination. Around 50 Na+ ions were placed at lower-density peak 
locations based on stereochemical intuition. We tentatively assigned one Cl- ion in our model that contacts 
the amino group of G91. 
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Once this partial model was constructed, we used the Coot script written by Dr. Naleem Nawavi, 
to place the water molecules required to complete the Mg2+ ion octahedral coordination shells. This model 
was then subjected to MD simulations following the protocol described below. 

We performed the MD simulations using the GROMACS 2028.8 package with the HB-CUFIX 
force field (8). The model structure was placed in a 16.5 x 16.5 x 16.5 nm box containing 141,947 water 
molecules, along with 145 Mg2+, 356 Na+ and 260 Cl- ions to approximate the experimental conditions. 
The 50 mM HEPES molecules were not considered in our simulation. 

To equilibrate the system, we chose to freeze the structure of the atoms present in the 7ez0 PDB 
structure by using the appropriate options in the Gromacs program. We also froze in a first step the water 
molecules that are part of the cryo-EM Mg2+ ion solvation shells. The additional ions and water molecules 
were allowed to move freely. Given limitations related to the Gromacs “freeze group” option, we used an 
NVT thermodynamic ensemble and ensured the absence of any volume artifacts in the simulation box. 

After equilibration, we generated 4 ns of MD trajectories at room temperature to further  equilibrate 
the solvent particles. This was followed by an additional 2 ns of MD trajectories at cryo-EM temperatures 
(77 K). At this point, we assumed the solvent particles were equilibrated and had settled into positions 
compared to those in the experimental structure. Based on these MD trajectory at cryo-EM temperatures, 
we proceeded to generate atomic densities for the solvent particle. This was accomplished with a custom 
MDAnalysis script developed by Dr. Anja Henning-Knechtel, which averages the snapshots from the 
cryo-EM temperature MD simulations to produce the final densities. Water molecules were then placed 
into the density peaks using the Phenix ”DOUSE” tool. After a final inspection and adjustment of certain 
solvation sites, and due to time constraints, we decided to submit this model to CASP. 

 

Results 
 

The final model consists in a single structure comprising 79 Mg2+ ions, 50 Na+ ions, 1 Cl- ion and 6665 
water molecules.  
 

We are indebted to Prof. Serdal Kirmizialtin for discussions and support in this undertaking. 
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We previously used MELD to predict the structures of single-stranded RNA sequences using server 
predicted structures as initial templates, and base pair distances as restraints. For one of the CASP 15 
targets, our method surprisingly provided the best prediction among all participants. In CASP 16, we 
applied the same methodology to predict the structures of 14 single-stranded RNA sequences. Our criteria 
for choosing the targets were based on the limitations of the web servers we used for the initial structures 
and base pairing predictions. All of our simulations were performed using the HiPerGator supercomputer 
at the University of Florida. 
 

Methods 
MELD (Modeling Employing Limited Data) is an enhanced sampling method that uses a Bayesian 
approach to combine physics-based models (i.e. molecular dynamics force fields) with ambiguous data 
sets.1 For proteins, we have previously used NMR chemical shifts2, cryo-EM data sets3, and core insights 
from secondary structure predictions4 to predict protein structures. These data sets are transformed to 
spatial information such as distance and dihedral restraints for the MD simulations. During the 
simulations, MELD monitors whether the restraints are satisfied, applying energy penalties if they are not. 
Thus, this approach converts the rugged energy landscape of the simulations into a more focused one, 
prioritizing conformations that are compatible with the provided data sets. Due to the ambiguous nature 
of the data sets, different interpretations of the data can arise to different minima. To escape these minima 
and sample all possible interpretations, MELD employs a Hamiltonian and Temperature Replica Exchange 
(H, T-REMD) protocol, where the strength of the restraints is zero in the higher-temperature replicas and 
gradually increases, reaching full strength in the middle replica, and remains constant throughout the 
lowest-temperature replicas. The simulations were performed for 1.5 µs using 30 replicas with a 
temperature range of 300 to 550 K. We used GBneck2 for the implicit solvent5, and the OL3 force field 
for the RNA. 6 
          For the RNA targets, we used RNAfold7 and RNAComposer8 predictions of the secondary structures 
as the data set. We converted these predictions as distance restraints between the predicted base pairs, and 
satisfied only 80% of these restraints during the simulations. In some targets, restraints that correspond to 
tertiary structures (i.e. pseudoknot predictions from IPknot9 and ProbKnot10) were also implemented. For 
all the targets, our simulations started with template structures using webserver predicted structures. Most 
of the targets used three sources for the templates: (1) RNAComposer8, (2) trRosettaRNA11, and (3) 
AlphaFold3.12 These templates were then distributed periodically along the 30 replica ladder.  
          After the simulations, we performed hierarchical clustering on the first five replicas using an epsilon 
value of 5.0 Å. We then visualized the top clusters, and submitted the structures with the best base pairing 
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quality. Along with coordinates, we also reported the RMS fluctuations within the clusters. These values 
were provided in the temperature column of the PDB files. 
 

Availability 
MELD is available as a plugin for OpenMM. All MD engines and force fields are available and free to 
use. Trajectories and clusters are available upon request from the authors. The MELD plugin can be 
accessed at: https://github.com/maccallumlab/meld 
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Our group is engaged in various aspects of method development for biomolecular simulations. In the 
current CASP, we focused on structure prediction for single-domain proteins, following the pipeline 
discussed here. 

For protein structure prediction, we rely on the following hypotheses: (1) AlphaFold2 (AF2) has learned 
a type of "biophysical scoring function" that can accurately rank structure predictions1-2; (2) tweaking 
AF2's input can guide the model towards different regions of its encoded conformational space. This 
approach has been successfully applied to predict more accurate protein complex structures in previous 
CASP challenge3 and to even identify folding intermediate states that resemble experimental 
observations4. In essence, we first sample structures from AF models using different inputs and then select 
the structure with the highest prediction confidence. The accuracy of these predictions heavily depends 
on the quality of the multiple sequence alignments (MSAs), with novel MSA generation pipelines 
significantly improving prediction accuracy5. However, regions with poor MSA coverage tend to be 
predicted less accurately. In such cases, MELD offers the potential to sample alternative conformations 
using a physics-based approach to further refine the structures6-7. We applied this pipeline to 57 protein 
sequences from CASP16, performing all calculations on the HiPerGator supercomputer at the University 
of Florida. 

 

Method 

Our pipeline starts by providing three different inputs to AF2: (1) the query sequence with full and 
clustered MSAs (generated from ColabFold and DeepMSA2 options), (2) running each protocol both with 
and without template information (if available), and (3) utilizing AlphaFold2-ptm, AlphaFold2-multimer 
models8, and DeepFold9, running 50 recycles with 10 randomly generated seeds. We then select the top 
10–20 predictions based on their pLDDT scores. If any of the pLDDT scores exceed 95, the pipeline 
concludes, and the top 5 structures are submitted. If not, we proceed with further refinement to enhance 
the quality of the predictions. 

We have three possible strategies to improve predictions by using the previous model as a template for 
the next round of predictions. Our first approach examines per-residue pLDDT scores to identify regions 
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from independent AF2 predictions that exhibit locally high pLDDT scores. We then create "Frankenstein 
templates" by stitching together high pLDDT regions from different predictions, which are subsequently 
provided to AF2 as templates for further structure refinement. 

The second approach uses the AF2 iterative approach from each of the best templates. We run 50 iterations 
under five different recycling conditions (0, 1, 2, 3, 4), generating 250 predictions for each original 
template. These predictions are then ranked by their pLDDT scores. 

If neither of the previous two methods leads to significant improvement, we turn to MELD to enhance 
conformational sampling. MELD employs a physics-based approach combined with ambiguous and noisy 
data. In this case, we begin with the template structures and enforce contacts between residue pairs with 
pLDDT scores above 85. The simulations are clustered, and the centroids of these clusters are used as 
templates for AF2. Finally, we select the highest pLDDT-scoring structures. 

Through these pipelines, we aim to sample more broadly the “biophysical energy function” that AF2 has 
learned, in search of higher pLDDT score structures. 

Availability 

MELD is available as a plugin for OpenMM. All molecular dynamics (MD) engines and force fields are 
freely accessible. Trajectories and cluster data can be requested from the authors. The MELD plugin can 
be found at: https://github.com/maccallumlab/meld. 
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Our team, PEZYFoldings, demonstrated a remarkable performance at CASP151. However, it was clear 
that there was still room for improvement2. In light of what we learned after the competition, we made 
strategic updates to our pipeline for CASP16. 
 

Methods 
Our pipeline used in CASP16 was largely similar to that used in CASP152. It included extended sequence 
similarity searches, structure prediction using AlphaFold23 (AF2) or AlphaFold-Multimer4 (AFM), 
refinement using a fine-tuned version of AFM5, and relaxation using OpenMM6. Due to space limitations, 
we will focus on the novel aspects introduced in CASP16 that we consider particularly important. 
 

 Identity Threshold for 
Sequence Filtering Template Search Method 

Gap-Rich 
Region 

Masking 

MSA 
Construction 

Method 

A 95%* hmmsearch7 No default 

B 95% hmmsearch Yes default 

C 95% hmmsearch Yes plm_based 

D 95% plm_based No default 

E 95% plm_based Yes default 

F 95% plm_based Yes plm_based 

G None hmmsearch No default 

I None hmmsearch Yes default 

J None hmmsearch Yes plm_based 

K None plm_based No default 

L None plm_based Yes default 

M None plm_based Yes plm_based 

Table 1. Input feature construction methods. *The sequence filtering was done with hhfilter8. 
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Sequence similarity search: Sequence similarity searches were performed using the same tools 
and databases that we used in CASP15, but with more recent versions. In addition, we extended our 
approach to include searches against Sequence Read Archive9 (SRA) entries when initial searches did not 
yield sufficient hits. We selected SRA entries according to the results of Pebblescout10 or taxonomic 
information obtained from literature searches via Google11 or NCBI Entrez9. SRA reads were searched 
directly using blastn, tblastn or tblast12. Blastp12 or PSI-BLASTexB13 searches were also performed 
against translated reads using prodigal14. 

Multiple Sequence Alignment (MSA) Construction: In addition to the default MSA, we 
extended our strategy by implementing a protein-language-model (PLM)-representation-based sequence 
alignment tool15 using sequence representations generated by ESM2-650M-UR50D16. Notably, this PLM 
representation-based aligner was also used to search for templates and generate pairwise alignments 
between query and template. 

Post-processing of MSAs: Prior to input feature construction, we filtered MSAs with a simple 
script to avoid highly skewed MSA depths, one of the problems we mentioned in our CASP15 paper. In 
addition, we created a simple script to mask gap-rich regions in MSAs that were assumed to be low-quality 
alignments. As a result, we constructed several sorts of input features (Table 1). 

Model building: We primarily used AFM v2.3 for model building. When time and computational 
resources allowed, we also used AF2 and AFM v2.2. We also used RoseTTAFold All-Atom17 for T1276 
MODEL 5. 

Model refinement and rescoring: Our model selection step remained identical to the one we used 
in CASP15. The selected models were processed with our refiner. In cases where the refined structure had 
a higher sum of per-residue pLDDTs higher than 70 (we now refer to this metric as ʻsum of pLDDTs > 

70ʼ for brevity) than the input structure, the refined structure was used. Otherwise, the pLDDTs of the 
input structures were modified using the pLDDTs of the refined structure, and the refined structures were 
discarded. For monomeric targets, the rankings were updated based on these adjusted scores. For 
multimeric targets, the ranking was revised if the sum of pLDDTs > 70 of a lower ranked structure 
exceeded that of a higher ranked structure by a factor of 1.1 or greater. 

Large targets: For targets too large to process with our system, we broke input features into small 
pieces and randomly picked up the pieces and modelled partial structures. We then assembled them, taking 
into account interacting residue pairs of partially modelled structures. Model selection was performed 
based on sum of pLDDTs > 70. The assembled structures were again split into small pieces and processed 
with our refiner. The refined substructures were reassembled and assembled structure was treated as a 
'refined structure' described in the 'Model refinement and rescoring' section. 

Manual intervention: While our CASP15 paper emphasized the minimization of manual 
intervention, the process described in the ʻLarge targetsʼ section was in many cases too costly and required 
manual interventions similar to those used in CASP15. It included visual inspection using PyMOL18 
v0.99rc6, identification of interacting regions in large complexes, construction of partial models and their 
subsequent concatenation. In addition, where CASP organizers provided additional information on targets 
(e.g. filaments), a model was selected to match this information. 

It is important to note that our methodology was adaptively refined for individual targets 
throughout the competition period. As a result, the specific processing details varied among targets, with 
each being treated according to its unique characteristics and challenges. We will provide detailed 
information on the processing of specific targets upon request from interested readers. 
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Antibody-antigen complex prediction presented a significant challenge, with CASP15 results 
demonstrating reduced performance of predictions1 for these targets. In response to this challenge, we 
developed a specialized pipeline tailored for antibody-antigen complexes. The summary of our core 
pipeline is described in the PEZYFoldings abstract without parentheses in this issue, hereafter referred to 
as 'our main abstract'. 
 

Methods 
Our methodology consisted of the following steps: 
1. Sequence Collection: The sequence collection procedures were identical to our main abstract. 
2. Initial Structure Prediction: We performed structure predictions for antibodies and antigens 
separately with AlphaFold-Multimer2 (AFM) v2.3. The features named B and G in Table 1 of our main 
abstract were used. The top two models, selected based on criteria consistent with our core pipeline, were 
passed to subsequent stages of the pipeline. 
3. Strategic feature cropping: A critical difference between our core pipeline and this specialized 
pipeline was the strategic cropping of input features based on the initial predicted structures: For antigens, 
a surface residue identified by HSSP3 was randomly selected along with surrounding surface residues and 
non-surface residues that interact with them. For antibodies, only the residues of the variable domain were 
selected for extraction. The input features of these selected residues were concatenated and stored. This 
process was repeated until all antigen surface residues were covered. The stored partial features were 
passed to the next step. 
4. Partial complex structure prediction: Using the partial features constructed in step 3, we 
predicted partial complex structures using AFM v2.3. Our motivation for this approach is based on the 
assumption that restricting the search space could improve prediction and that AFM (and AlphaFold25) 
trained on cropped data would have robust performance in predicting partial structures. When 
computational resources allowed, AFM v2.2 or AFM-based refinement tool4 was also used. The AFM-
based refinement tool was applied to extracted residues in step 3 to obtain refined structures. 
5. Model selection: The predicted structures were ranked according to one of the self-confidence 
metrics of AFM, iptm, between antibody and antigen. Structures with iptm values above a certain 
threshold were selected. We typically set this threshold between 0.4 and 0.7, adjusting it to balance the 
number of selected models with our available time and computational resources. Then TM-scores6 
between predicted models were calculated using US-align7 or MM-align8 and highly similar models were 
filtered out to remove redundancy. If the antigen was too small, DockQ9 was used. Note that prior to 
calculating the TM-score or DockQ score, full length structures were constructed using a simple structure 
alignment technique.  
6. Second stage residue selection and structure prediction: We performed a second residue 
selection process focusing on the interfaces present in the selected structures from step 5. This was done 
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under the assumption that the epitope found in step 5 might be incomplete and a complete epitope might 
improve prediction accuracy. As in steps 3 and 4, features of selected antigen residues and antibody 
variable domains were concatenated and used to predict partial complex structures. 
7. Second stage model selection: Full-length structures were constructed as in step 5. We then 
selected models from both the initial and this second prediction stage, again using iptm between antibody 
and antigen as the primary criterion, with filtering to remove redundancy using US-align, MM-align or 
DockQ. 
8. Final refinement and rescoring: These structures underwent a final round of refinement and 
rescoring, following the same procedure described in our main abstract, except that we used per-residue 
pLDDTs only at the interface between antibody and antigen instead of whole structure pLDDTs. In cases 
where the sum of interface pLDDT greater than 70 of a lower ranked structure exceeded that of a higher 
ranked structure by a factor of 1.1 or greater, we updated the rankings. 
9. Relax: The same as our main pipeline, the selected structures were processed with OpenMM10 
before submission. 

It is important to note that there are various targets in the competition (e.g. antigen of H1222, 
H1223, and H1225 was relatively small compared with ordinary targets), therefore we modified some 
details of the protocol. Detailed information on the processing of specific targets upon request from 
interested readers. 
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PEZYFoldings team, who showed outstanding performance in CASP151, joined CASP16 with updated 
pipeline. The summary of our core pipeline is described in the PEZYFoldings abstract without parentheses 
in this issue, hereafter referred to as 'our main abstract'. In this abstract, we introduce the outline of our 
additional pipeline for challenges newly introduced in CASP16 with restricted or additional resources: 
Phase 0, MODEL 6 in Phase 1, and Phase 2. 
 

Methods 
Please refer to the official CASP16 website for detailed information on the challenges. 

Phase 0: For predictions where stoichiometry information was not available, we inferred 
stoichiometry based on search results from the RCSB PDB2 website or PLM-representation-based 
similarity searches (see our main abstract) against our template database. The remaining procedures were 
the same as the standard pipeline, but used a limited number of input features (B and G in Table 1 of our 
main abstract). 

MODEL 6 in Phase 1: We re-aligned the ColabFold3 baseline Multiple Sequence Alignments 
(MSAs) using the PLM-representation-based sequence aligner (see our main abstract). These MSAs were 
used to predict models with AlphaFold-Multimer4 v2.3 without templates, generating 5 models per target 
(one model per parameter). The top-ranked model was then relaxed using OpenMM5 prior to submission. 

Phase 2: We applied the model selection step described in our main abstract to the combined pools 
of MassiveFold6 and our own models. We also extracted monomers from all models to construct monomer 
pools. Where structurally similar monomers had a higher sum of pLDDTs > 70, the corresponding subunits 
of the selected models were replaced with the monomers. The refinement and rescoring procedures 
described in our main abstract were applied, followed by relaxation using OpenMM5 prior to submission. 

It is important to note that our methodology was adaptively refined for individual targets 
throughout the competition period. As a result, the specific processing details varied among targets, with 
each being treated according to its unique characteristics and challenges. We will provide detailed 
information on the processing of specific targets upon request from interested readers.  
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Protein-ligand bound complex structure prediction is crucial to drug design, enabling more robust in silico 
screening of molecules and development cost reductions. Here in CASP16, we explore using graph-based 
approaches to predict the ligand coordinates within a folded structure. 
 
Methods 
The structure prediction pipeline consists of the following steps: querying PDB for the folded protein 
structure and a bound ligand, generating a conformation of the target ligand, converting the three structures 
into a graphical representation which feeds into 3 separate graph neural networks which then get processed 
by fully connected neural network layers with the final prediction output. However, the model size was 
limited due to hardware constraints. 
 
Results 
A prediction was made on L5001. A future direction could include scaling model size, incorporating  
energy functions for refinement and training on full protein-ligand complexes rather than isolated ligand 
coordinates within a predetermined structure. 
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The PFSC-PFVM (Protein Folding Shape Code1 - Protein Folding Variation Matrix2) approach in protein 
structure fingerprint technology is a single sequence method to predict the conformational ensembles of 
protein structures. First, a set of PFSC is established to cover full folding space of five free connected 
points for five amino acid residues. Then, a database, 5AAPFSC, is established to collect all possible 
folding patterns in PFSC letters for any combination of five amino acids. Subsequently, the PFVM is built 
up, which assembled all possible local folding variations in PFSC along sequence. Based on PFVM, a 
massive number of folding conformations are obtained by PFSC strings for the entire protein with 
combination of various local folding variations. Furthermore, according to these PFSC strings the protein 
multiple conformational structures are constructed as the predicted results. Starting from a protein 
sequence, the PFSC-PFVM provided an effective algorithm with both biological and physical meaningful 
process to predict the conformational ensembles of protein structures. 
 

Methods 
The PFSC-PFVM approach is composed of four modules to predict an ensemble of multiple conformation 
protein structures. The process is presented in Figure 1. 

 PFSC: A protein conformation is able to be completely described by a PFSC alphabetic letter 
string. Mathematically, starting successive five points connection without any constrain, a set of folding 
shapes for five of amino acid residues is obtained completely to cover folding space, which are represented 
by 27 letters including “$” as PFSC. The 27 PFSC letters well character protein folding features, including 
alpha-helix, beta-strand, irregular folds and mixture in various degrees. The PFSC string is able fully to 
describe the folding conformation without gap along sequence, covering secondary structure fragments as 
well as tertiary structure fragments.  

 5AAPFSC: All possible folding patterns for each five amino acid fragment in PFSC letters are 
assembled into the 5AAPFSC database. For 20 amino acids, 3,200,000 permutations of five amino acids 
exist mathematically. The structural data about two-thirds of permutations of five amino acids are 
available in PDB, so their folding patterns are able to be collected. The structures of remnant one-third of 
permutations of five amino acids were computed by MD simulation with CHARMM (Chemistry at 
Harvard Macromolecular Mechanics)3. Then, all folding patterns for five amino acids are converted into 
the PFSC letters and stored in 5AAPFSC database.  

 PFVM: The local folding variations of a protein are fully presented by its PFVM. A PFVM can 
be assembled by extracting the folding shapes for five amino acid residues from the 5AAPFSC database 
according to its sequence. In PFVM, the protein sequence from N-terminus to C-terminus is horizontally 
displayed on top, and the possible folding shapes in PFSC letters for five amino acid residues are listed in 
a column below corresponding five residues. Based on a PFVM, an astronomical number of folding 
conformations in PFSC strings can be explicitly obtained for the protein without ambiguity. A set of most 
possible folding conformations in PFSC are able to be obtained. The PFSC string on first row in the PFVM 
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is one of most possible conformation for protein, and more possible conformations can be formed by 
optimization with replacement of PFSC letters in PFVM.  
 Construct an Ensemble of Protein 3D Structures: An ensemble of multiple conformational 
protein structures can be predicted according to the PFSC strings from PFVM. Based on each PFSC string, 
its protein 3D structure can be constructed by a high throughput screening the PDB database with 
homologous conformation process. For homologous conformation search, a protein is usually divided into 
multiple fragments with length of PFSC string about 50-100 residues. And then fragments are connected 
back for the whole protein. Thus, the protein 3D structure is constructed according to each PFSC string, 
and an ensemble of protein 3D structures for multiple conformations is predicted. 
 

 
Figure 1. Protein structure prediction for conformational ensembles by PFSC-PFVM approach. The cubic contains 
a set of 27 PFSC as folding patterns. The blue arrows indicated the process the PFSC string for a protein with 
known 3D structure. The green arrows indicated the process to construct 5AAPFSC database, which contained all 
folding shapes in PFSC letters for 3,200,000 of permutations of five amino acids. The red arrows indicated the 
process how to obtain the PFVM and to predict an ensemble of protein structures from a sequence. The PFSC 
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letters with red and pink colors are for typical helix and alike-helix local folds; the blue and light blue colors for 
beta strand and alike-beta strand and block color for irregular folds. 
 
 

Results 
We predicted structures for 98 proteins. For some proteins, we provided 3D protein structures for five of 
multiple conformations. 
 

 

Availability 
The PFVM can be generated at a link in http://www.micropht.com/ .  Click “Protein Structure Fingerprint 
Technology” in green bar, then click “Login” with Username = public and Password = public. Then select 
“Prediction” in top menu. User can enter any amino acid sequence as input, and the PFVM will be output 
as result on screen or save into a file as output. 
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In CASP16, we updated our pipeline mainly based on our workflow in CASP15. The first step of our 
pipeline is remote homologous protein search with our alignment-based method. Then, RosettaCM1 is 
used to build the 3D protein structures based on both the outputs of the first step, and ColabFold2 predicted 
models released on CASP site. Then, 3DRobot3 is used to generate decoys which are near top-ranked 
structures. Then, PBEscore, a knowledge-based energy scoring function developed by us, is applied to 
rank and pick plausible structures. This step is repeated for three times. In the end, the picked structures 
are refined by molecular dynamics software OpenMM4 to obtain final predicted models.  

 

Methods 

Given a target sequence, our pipeline has five steps as follows: 

 1. Detecting remote protein homology by alignment-based PairThreading. The quantity and 
quality of homology protein structures, especially remote homology proteins’, largely influence the 
performance of our pipeline. Although there are many alignment methods for remote protein homology 
detection, most of them are based on the assumption that the types of residues at different positions are 
independent of each other. We abolished this assumption in our proposed method, PairThreading, which 
is based on residue pair substitution information. PairThreading obtains position-specific residue pair 
substitution information indirectly from the position-specific score matrices (PSSMs) rather than directly 
from the multiple sequence alignments (MSAs) to avoid statistical non-convergence problem. Thus, 
PairThreading can detect more remote homologous proteins and can generate more accurate alignments. 
For targets with sequences longer than 1000, our method has a dynamic strategy to detect domain regions 
and generate fragments for further 3D modeling and template hybridization.  

2. Constructing 3D-models by RosettaCM1. We use RosettaCM1 to construct 3D-models based on 
the single or multiple templates that are selected by PairThreading along with corresponding alignments. 
In this step, we also include the ColabFold2 predicted structures of the target as the templates for 
hybridization. 

mailto:pan-xm@mail.tsinghua.edu.cn
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3. Generating decoys using 3DRobot3. The constructed 3D models are ranked and selected by our 
energy function PBEscore, and the top-ranked models are used to generate protein structure decoys by 
3DRobot3, many of which have enhanced hydrogen-bondings and compactness. 

4. Ranking 3D-models by PBEscore. PBEscore is a novel knowledge-based energy scoring function, 
simply considering the interactions of peptide bonds, rather than the conventional residues or atoms to be 
the most important energy contributors. Compared to our work in CASP15, the energy function has been 
retrained on an in-house dataset and it shows improved performance on several independent benchmark 
datasets. We apply PBEscore in every ranking step in our pipeline. 

5. Refining 3D-models by OpenMM4. In the end, we run the molecular dynamics simulation to refine 
the final top 5 models. The program PDBFixer is used to add hydrogen atoms, N- and C-terminal patches 
to the selected models. All simulations are run using OpenMM4 under AMBER145 force field. 
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Accurate protein structure prediction is crucial for understanding biological functions and mechanisms. 
Multiple Sequence Alignment (MSA) quality significantly influences the performance of structure 
prediction methods like AlphaFold2 [1]. We introduce PLMFold, a novel approach that enhances protein 
structure prediction by improving MSA quality using a Protein Language Model-based MSA (PLM-
MSA). PLMFold integrates advanced homology search techniques, a bucket-filter algorithm for sequence 
selection, and a query-centered MSA construction method, ultimately leading to more accurate structure 
predictions. 

 
Methods 
 
Homology Protein Search 
We perform extensive homology searches against two comprehensive protein databases to obtain a 

diverse set of homologous sequences. First, we utilize the PLMSearch server 
(https://dmiip.sjtu.edu.cn/PLMSearch/) [2] to search the UniRef50 database [3], capturing well-annotated 
sequences with high coverage. Second, recognizing the limitations of environmental sequences in 
UniRef50, we employ the ColabFold framework to search the ColabFoldDB [4], which includes 
sequences from metagenomic sources, thus enriching our dataset with diverse environmental sequences. 
By merging the search results from both databases, we maximize sequence diversity for subsequent 
processing. 

 
Bucket-Filter Algorithm 
To address redundancy and over-representation of similar sequences, we implement a bucket-filter 

algorithm [4]. Homologous sequences are grouped into identity buckets defined by sequence identity 
ranges (e.g., (0.2–0.3], (0.3–0.4], ..., (0.9–1.0]). In each bucket, we retain up to 1,000 of the most diverse 
sequences, ensuring a balanced representation across different similarity levels. For buckets with fewer 
than 1,000 sequences, all available sequences are included without filtering. Clustering is performed using 
Linclust to select representative sequences, reducing redundancy while maintaining coverage [5]. This 
approach enhances the MSA's capacity to reflect evolutionary diversity and avoids the inclusion of highly 
similar sequences that could bias the alignment. 

 
PLM-MSA Pipeline 
Traditional MSA construction methods often rely on phylogenetic trees and may not adequately 

capture the evolutionary relationships pertinent to a specific query protein. In PLMFold, we develop PLM-
MSA, a query-centered MSA construction pipeline. We leverage the PLMAlign algorithm, which utilizes 
embeddings from protein language models to perform pairwise sequence alignments with improved 
accuracy over classical methods like Needleman-Wunsch [6]. The PLM-MSA pipeline aligns target 
sequences sequentially to the query sequence, sorted by decreasing similarity, ensuring that the alignment 

https://dmiip.sjtu.edu.cn/PLMSearch/
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focuses on accurately representing the query's evolutionary context. Importantly, we avoid introducing 
insertions (gaps) in the query sequence, as these gaps do not contribute to understanding the query's 
structural features. 

 
Structure Prediction with AlphaFold2 
The refined MSA generated by PLM-MSA serves as input to AlphaFold2 [1], utilizing the ColabFold 

team's modified backend for efficient computation [4]. By providing a high-quality, diverse, and 
appropriately filtered MSA, we enhance AlphaFold2's ability to generate accurate structural models of the 
query protein. 

 
Accuracy Estimation using pLDDT 
For local structure confidence estimation, we adopt the predicted Local Distance Difference Test 

(pLDDT) scores calculated by AlphaFold2 [1]. The pLDDT score provides residue-level confidence 
measurements, essential for assessing the reliability of specific regions within the predicted structure. By 
improving MSA quality, PLMFold indirectly enhances the accuracy of pLDDT scores, offering more 
reliable confidence estimations. 

 

 
 
Figure 1. PLMFold Pipeline 
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In CASP16, we evaluated our new ligand binding site prediction (LBSP) method, ISBNet-Pocket, on 
protein-ligand complex structure prediction. This method leverages advanced 3D point cloud instance 
segmentation, enhancing LBSP accuracy by representing proteins as 3D point clouds. Employing deep-
learning-based instance segmentation, ISBNet-Pocket identifies and differentiates specific binding 
pockets, delivering accurate predictions of ligand binding sites. This approach also eliminates the need for 
post-processing clustering of predicted atoms and effectively handles the often proximate or overlapping 
nature of binding sites. 

For CASP16, we initially predicted the 3D structure of target sequences using AlphaFold21 for the 
ligand binding prediction targets. These predicted structures were input into ISBNet-Pocket to derive 
predicted pockets at the residue level. Subsequently, the provided smile string of the ligand was converted 
into PDBQT file through the Meeko ligand preparation program (https://github.com/forlilab/Meeko). The 
final ligand binding poses were generated using AutoDock Vina2, based on the predicted protein structure 
and the predicted pocket. We defined the center of the AutoDock grid as the geometric center of the 
predicted pockets, and the grid dimensions were manually specified based on the pocket size within the 
protein structure, as visualized in PyMOL3. We also used the online SwissDock site for prediction 
validation and visualization4. We evaluated the quality of all predicted structures based on the default 
binding affinity scores, and the top-ranked models were selected for submission to CASP16. 
 
Methods 
 
Dataset: The ISBNet-Pocket method was trained on sc-PDB dataset5 and evaluated on three datasets 
commonly employed to benchmark ligand binding site prediction (LBSP) models: BU48 6, COACH4207, 
and COACH420(mlig)7. These datasets include both protein structures and their corresponding ligand 
structures. We applied feature engineering strategies akin to those utilized by GrASP8, enriching our 
dataset with both chemical and physical attributes of residues known to influence ligand binding. Such 
features, traditionally used to identify ligand-binding pockets, were logically incorporated as inputs to our 
model. We employed 13 physiochemical features, including coordinates, residue names, atom types, 
solvent accessible surface area, and RDKit features such as the number of bonds for heavy atoms, formal 
charges, ring structures, aromaticity, hybridization, and chemical hydrophobic properties. The model is 
designed to predict whether an atom is part of a binding pocket (1) or not (0). 
 
Model Training: We utilized ISBNet9, a new deep learning model with cutting-edge techniques for 
efficient instance segmentation, for protein data training. The method adopts a cluster-free framework 
using Instance-aware Farthest Point Sampling (IA-FPS) and Box-aware Dynamic Convolution to generate 
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high-recall kernels and leverage geometric cues from axis aligned bounding boxes. Initially designed for 
dense point clouds representing 3D scenes, ISBNet was adapted to manage the segmentation of sparse 
point cloud data from protein atoms. During hyper-parameter tuning, particular attention was given to 
class imbalance issues, considering the relatively small size of ligand binding pockets compared to the 
entire protein. Key configuration adjustments included setting weights for cross-entropy loss, defining the 
radius value in the aggregation layer of instance segmentation, and applying standard non-max 
suppression (NMS). The training process for ISBNet-Pocket is a 2-step process: initially focusing on 
semantic segmentation of protein atoms, followed by fine-tuning to specifically identify individual 
instances of ligand binding pockets. 
 
Inferences: Post-processing was essential to isolate atoms within the pockets identified by ISBNet-
Pocket. The model produces distinct binary masks for each instance, requiring scripts to read and apply 
these masks to the original PDB files to facilitate pocket retrieval. Only masks with a confidence level 
above 0.65 were considered valid. The extracted pockets are subsequently saved in .pdb format, ready for 
further analysis or application. 
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The RNA three-dimensional structure predictions by the RNA_Dojo group in CASP16 primarily consisted 
of a two-step prediction process: RNA secondary structure prediction using a customized MXfold2, 
followed by three-dimensional structure prediction using FARFAR2. Since this was our group’s first 
participation in CASP, instead of using a fully automated prediction pipeline, we approached each target 
with human intervention, where team members discussed and explored methods best suited to each 
specific target. 

 

Methods 

We performed RNA secondary structure prediction using customized MXfold2 [1] and IPknot [2]. 
MXfold2 was re-trained with approximately 16 times larger training data than the original version. This 
training data includes the bpRNA-1m dataset and the Ribonanza dataset, which contains extensive RNA 
structure probing data. The base-pairing probability matrix calculated with the re-trained MXfold2 was 
input into IPknot to predict RNA secondary structures including pseudoknots. 

Our baseline method for RNA tertiary structure prediction involves predicting the RNA secondary 
structure using the new MXfold2 and IPknot, and using the predicted secondary structure as input to 
FARFAR2 [3] to generate 1000 candidate 3D structures (Figure 1). These 1000 predicted structures are 
then clustered using the DBSCAN method, and we select the top-scoring structure within each cluster, 
based on RNA-BRiQ [4] scores, as the structure to be submitted. If a homologous RNA structure is 
available, we calculate the RMSD between the predicted structure and the homologous structure, and 
select the structure with the smallest RMSD for submission. In the case of RNA-protein complexes, the 
RNA tertiary structure is predicted using the method described above, the protein structure is predicted 
using AlphaFold3 [5], and the complex structure is predicted using ZDOCK [6] with the predicted RNA 
and protein structures as input. The team members discussed the initially predicted structures and explored 
methods suited to each target, including performing secondary structure analysis using RNApdbee [7] and 
executing FARFAR2 with fixed chunks, where partial structures were predicted using AlphaFold3. 
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 Ion’s distributions around the RNA are simulated by employing a three-dimensional reference 
interaction site model (3D RISM) [8]. Radial distribution functions are for aqueous solution under 140 
mM KCl and 10 mM MgCl2. Kovalent-Hirata closure is employed to solve RISM equations. 

RLDOCK is employed to perform global docking search with multiple ligand conformations [9]. 
A ligand structure is generated from a given SMILE format file and used to prepare multiple 
conformations (200, at maximum) by using Open Babel [10]. RNA-ligand complexes are ranked by 
AnnapuRNA potential energy [11] and the energy-minimum structure is selected for submission. 

Atomistic molecular dynamics simulations were performed by using Amber 22 MD simulation 
packages with biomolecule’s force field parameters [12-15] and MD trajectories were analyzed by using 
AmberTools 22 [12]. 

 

 

 

Figure 1. Overview of our RNA 3D structure prediction in CASP16 
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The biological importance of RNAs has been increasingly recognized over the past years. As is the case 
with proteins, the function of an RNA molecule is encoded in its tertiary structure, which is in turn 
determined by the nucleotide sequence. The tertiary structures of RNAs are usually less stable and 
therefore more difficult to predict compared to proteins. Here, we propose a hierarchical approach for 
fully automated RNA tertiary structure prediction, which combines the structural templates by threading 
alignments and inter-nucleotide geometries predicted by a deep residual convolutional neural network. 
 
Methods 
 
The proposed method consists of four main steps: (1) RNA templates detection by threading method, (2) 
(2) multiple sequence alignment generation, (3) inter-nucleotide geometries prediction, and (3) structure 
selection, optimization, and refinement. 
 Starting from an RNA sequence, the approach first collects structural templates using a meta-
threading method. Meanwhile, the MSA is composed of four stages that perform blastn, nhmmer, infernal 
searches against NCBI’s nt, Rfam, RNAcentral1 and MARS2 database, respectively. They are then 
converted into an MSA representation and a pair representation, which are fed into a transformer network 
to predict inter-nucleotide geometries3. It then assembles full-length coarse-grained models, which are 
specified by the phosphate group (P), sugar ring (C) and base (N), through replica-exchange Monte Carlo 
(REMC) simulations under the guidance of a composite energy force field consisting of knowledge-based 
terms and template- and deep learning-based spatial restraints. Finally, the resulting structures are then 
refined using Arena4 for the full-atomic reconstruction of RNA coarse-grained models. To objectively 
assess our approach, we predicted all monomer RNA structures in CASP16 based on RNAFOLDX.    
 

Availability 
The web server will be made available at https://zhanggroup.org/  
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Building on our group's success in modeling RNA tertiary structures in CASP15 [1], we applied a similar 
approach to predict the CASP16 targets for RNA, RNA-protein, and RNA-ligand complexes in the human 
category. We used RNAComposer, a tool that assembles RNA 3D structures from fragments derived from 
high-quality experimental data. Given the increased complexity of the CASP16 targets, we adapted and 
refined our methodology accordingly, although the overall pipeline remained unchanged. The workflow 
consisted of three steps: (1) determining the RNA secondary structure, (2) building an ensemble of RNA 
3D structures from fragments derived from high-quality experimental structures, and (3) evaluating the 
models and selecting the best ones for submission. 

In the first step, secondary structures were primarily determined using consensus models from 
Rfam [2] and the literature. For the second step, 3D structure components were automatically searched in 
an associated structure repository (an unreleased version of RNA FRABASE) or selected manually. If 
homologous structures were available for the target domains, structural components were derived from 
these homologs. However, for cases such as large noncoding RNAs — R1242 (RF03072), R1248, R0250, 
R0251, R0254 (RF02032), R0252, R0253, R0283, R0285, R1286 (RF03087), R0285 (RF01071) — no 
homologs existed. For these targets, we employed new in-house tools (RNApony) that enabled us to search 
for extended structure elements, compute the percentage of topology identity (PTI) and sequence identity 
(PSI), and cluster the results. This approach helped us rationally select 3D structure elements. Among the 
structural elements found, those with high sequence similarity were clustered, allowing the best candidates 
to be chosen. For large, multi-domain targets, individual domains were built and then assembled. We 
extensively utilized the capability to modify the dot-bracket-encoded secondary structure to fragment it 
according to the modeler's needs. 

The complexes were built using structural alignment with reference structures or structural 
elements using the selected protein and RNA models. In the assembly step, we were prompted to update 
the repository of experimentally-determined structure elements (RNA FRABASE). We also increased the 
extent of the modeler's intervention in the modeling process. First, we introduced the ability to indicate 
from which experimental structure we want to retrieve structural elements as a priority, and which ones 
we want to exclude (preferPDB, filterPDB). Secondly, we made it possible for the user to modify the 
minimization protocol, in particular freezing the selected residues and providing distance restraints at the 
stage of minimization in the torsion space. Extended user control over the modeling process was helpful, 
especially in modeling targets for which homologous structures for the targets, individual domains, or 
their fragments were available. For RNA-protein complexes (M1209, M1282, M1293, and M1296), the 
RNA components were modeled as described above. The protein 3D structures were obtained from the 
Protein Data Bank (PDB) [3], and any missing residues were modeled using Modeller [4]. The complexes 
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were built through structural alignment with reference structures or structural elements, using the selected 
protein and RNA models.  

In this step, we updated the repository of experimentally-determined structure elements. 
Additionally, we increased the level of modeler intervention by introducing new features. First, we 
allowed modelers to prioritize specific experimental structures for retrieving structural elements 
(preferPDB) and exclude others (filterPDB). Second, we made it possible to modify the minimization 
protocol, including freezing selected residues and applying distance restraints during torsion space 
minimization. These extended user controls were particularly useful for modeling targets with available 
homologous structures for domains or fragments. 

In the third step, RNA 3D models were ranked according to the total energy coefficient calculated 
by XPLOR [5]. Promising models, with total energy below a threshold value of -20 kcal/mol per residue, 
were selected for further processing using RNAspider [6]. This tool allowed us to eliminate models with 
entanglements, which were especially prevalent in those generated for long non-coding RNAs. The post-
refinement total energy was verified for models that required additional refinement via RNAComposer. 
We used RNApdbee [7] to identify non-canonical interactions in the predicted models. Finally, RMSD-
based clustering was performed using the OC program [8], and centroids from groups that were consistent 
with available literature and expert knowledge were selected for submission. 
 

Availability 

The methods we developed for RNA 3D structure prediction and used in CASP16 are available at 
https://rnapolis.pl/. The updated version of RNA FRABASE, which incorporates the RNApony algorithm, 
will be available soon. 
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database, Nucleic Acids Research 31(1):439-441. 
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Recognizing that achieving better results than AlphaFold2 [1] on monomeric structures would be 
challenging, we have decided to concentrate on areas where AlphaFold2 still exhibits limitations. We have 
focused our prediction efforts on large complexes, protein-ligand interactions, and nanobody interactions. 
 
Protein complexes. To model large complexes comprising multiple subunits, we utilized a variation of 
the CombFold [2] method that incorporated manual assembly of predictions from AlphaFold2 [1]and 
AlphaFold3 [3]. We divided long polypeptide chains into subunits based on their domains, as inferred 
from the predicted monomer structures. For complexes with unknown stoichiometry, we began by 
predicting each subunit's dimers, trimers, and tetramers with copies of itself. We also predicted every 
possible pair of different subunits. Next, we examined the confidence metrics, specifically the Predicted 
Aligned Error (PAE). Out of all predicted subcomplexes, we grouped subcomplexes that are likely to 
interact and then predicted them together, and again, according to the confidence measures, we assessed 
what subcomplexes are most likely to be accurate. Finally, we identified a set of subcomplexes, each with 
high confidence, that together formed the complete complex, and merged them either manually using 
Biopython or automatically using CombFold with constraints. 
 
Protein-ligand interactions. We developed and applied a deep learning model called EvoDocker or 
DockFormer. The model’s architecture is based on AlphaFold2 but includes several significant 
modifications to support ligands and improve efficiency. The main difference is the replacement of MSA 
and template inputs with a reference input structure. This change simplifies the Evoformer, making it more 
similar to the PairFormer architecture presented in AlphaFold3. The number of layers in the Evoformer 
portion of the model is reduced to 8, instead of 48 in AlphaFold2. Additionally, we incorporated tokens 
representing ligand atoms alongside those representing amino acids. Lastly, we added an affinity module, 
enabling the model to be trained as a multi-task model and to predict affinity for predicted bound 
complexes. 
Antibody-antigen complexes. We utilized Fold&Dock, a model previously developed in our lab, to 
predict and score protein complexes [4]. Following the prediction and scoring process, we employed 
Modeller [5] and Amber relaxation [6] to add missing side-chain atoms and resolve any structural clashes. 
For symmetric complexes, we first predicted a single antibody and then calculated the transformation 
between the symmetric antigen units, applying this transformation to the predicted antibody unit. 
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This server is an updated version of the Seder2022 server that participated in CASP15. The main 
differences in this version are a new selection of optimized weights to achieve prediction, and obtaining 
sequence profiles from the Swissprot dataset instead of the complete non-redundant dataset of deposited 
protein sequences. The Seder server attempts to predict the TM score of protein models based on the 
sequence of the protein and the structure of its model using an iterative deep neural network. The cycle of 
Seder is unique in that it uses a balanced set of hybrid back-propagation/Levenberg-Marquardt and 
standard back-propagation neural networks. The hybrid networks are useful in cases where a crucial part 
of the network is of a limited extent, while other parts may be very large. This is only partially the case 
here, since there is not enough data to support larger networks. Both networks use associative memory. 
The hard/easy flavors of the server are distinguished by the training set used for them. For the hard set 
only proteins with low identity to templates, less than 40% sequence identity as judged by three iterations 
of PSI-BLAST. 
 

1. Faraggi, Eshel, and Andrzej Kloczkowski. A global machine learning based scoring function 
for protein structure prediction. Proteins: Structure, Function, and Bioinformatics 82, no. 5 
(2014): 752-759. 
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Marquardt Algorithm on a Recursive Neural Network for Scoring Protein Models. In 
Artificial Neural Networks, pp. 307-316. Humana, New York, NY, 2021. 

3. The UniProt Consortium. UniProt: the Universal Protein Knowledge base in 2023. 
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4. Altschul, Stephen F., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database 
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Models provided for QA1 and QA2 assessment were scored with a collection of statistical parameters and 
potentials accumulated from earlier CASP competitions. Comparing model scores with the scores of 6000 
high resolution PDB x-ray structures allowed ranking of a model’s quality. 

Methods 

The statistics-based scores used in this work are outlined below.  Values of these parameters for residues 
in turn/loop segments were scored separately, as were two residues at junctions of turn/loops with 
helix/strand segments.  

0.) sum of linear and squared atom-atom overlap calculated for separations of i to i+1; i to i +2-5; i to i+6 
and longer 

1.) several phi/psi potentials with and without chi angles for single residues1, for residue pairs in helix, 
strand, turn/loop and junctions, and for triplets of residues in turn/loop segments. 

2.) probabilities of distances for backbone NH to O and O to NH atoms as a function of amino acid types 
for single and pairs of residues 

3.) a conventional distance pair potential for 80-atom types and 4 secondary structure types 

4.) sum of the values of the distance pair potential of neighboring atom parameters within less than 1.5 
angstroms distance. 

5.) atom solvation (surface exposure) calculated by the EFF1 method2 

6.) hydrogen bond energies for the backbone3; for side chains with polar or charged atoms, the 80-atom 
statistical potential was used 

7.) for the 50% most buried atoms, the count of neighboring atoms less than 1.5A distant for each type-
specific atom in a model was calculated.  The mean and standard deviation of these count numbers was 
converted to a score of packing homogeneity. 

8.) For each atom of 30 atom types4, the number of instances in which an atom had 3 neighbors less than 
1.5A distant was counted. At least 2 of the 3 neighbors were required to be from a residue different than 
the residue of the scored atom. 

As would be expected, there is a range of correlations among these different parameters, and their 
success in decoy discrimination tests varies greatly. 

mailto:dshortl1@jhmi.edu
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6000 PDB structures with R-factors of 1.4A or less were scored for each parameter and these values were 
sorted from lowest energy value to highest energy value.  The full range of these values was divided into 
20 equal bins.  The parameter values for each model in a CASP set were then compared to this list, 
allowing a percentile ranking score to be derived from 0 lowest energy to 19 highest energy. A score of 
20 was assigned if the model’s parameter value did not reach the values of the highest energy PDB 
structure. These percentile scores for 3 sets of 8 to 10 parameters were then added with weights from 1, 2 
or 3, giving a combination score. 

 When a majority of models had values of 20 for a particular parameter, values of all models in the 
set were sorted and a rank percentile score was derived from binning these scores into to 10 equal bins. 

The five submitted models were selected by hand based on the sum of these 3 combined scores. 

 

Availability 

Any inquiries about the details of this scoring strategy will receive a detailed response. 

 

1. Fang, Q. & Shortle, D.  (2005).  A consistent set of statistical potentials for quantifying local side-
chain and backbone interactions.  Proteins  60: 90-96. 
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an energy function including implicit solvation.  J.Mol.Biol. 288, 477-487. 

3. Kortemme, T., Morozov, A.V. & Baker, D (2003).  An orientation-dependent hydrogen bonding 
potential improves prediction of specificity and structure for proteins and protein-protein complexes.  
J.Mol.Biol. 326, 1239-1259. 
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225 

SNU-CHEM-lig, SNU-CHEM-aff (Ligand)  

Enhancing Structure and Affinity Prediction of Receptor-Ligand Interactions  
with Variable Receptor Flexibilities Using Deep Learning Methods 

S. Lee1†
, J. Choi1

†
, J. Kim1†

, C. Lee1†
, S. Lee1†

, J. Sim1†
, J. Jun2, B. Bae1, N. Jung1,  

M. Baek3, H. Park4 and C. Seok1* 
1Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea 

2College of Medicine, Seoul National University, Seoul 03080, Republic of Korea 
3School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea 

4Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea 
 

†Equal contribution; *Corresponding author: chaok@snu.ac.kr 
 

Key: Auto:N; CASP_serv:N; Templ:Y; MSA:Y; DeepL:Y; AF:Y; EMA:Y; MD:N 
 
In CASP16, we submitted structure and affinity predictions for all ligand category targets. These ligand 
targets exhibited a range of receptor conformational changes upon ligand binding, from a few side-chain 
rotations in pocket residues to large-scale backbone movements. To address this variability, we employed 
a diverse set of receptor-flexible docking, receptor conformational sampling, and re-ranking tools. When 
possible, we performed target-specific benchmark tests to determine the most suitable tools for each 
prediction. Many of these tools leverage novel deep learning algorithms, which demonstrated significant 
improvement over traditional template-based or energy-based methods. 
 

Methods 
Super-targets (L1000, L2000, L3000, L4000)  
 
For all super-targets, complex structures of the target receptors bound to various ligands were available in 
the PDB and were used as input receptor structures for ligand docking.  

For L1000 and L2000, receptor conformational changes upon ligand binding were limited to a few 
pocket residues in the PDB structures. Therefore, we utilized our in-house deep learning-based docking 
tool, GalaxyDock4, which incorporates pocket side-chain flexibility, as the primary docking method. 
Model 1 was obtained by first docking the ligand to the receptor structures in the PDB using GalaxyDock4 
and then re-ranking the binding poses using the confidence score. Four additional models were selected 
from those generated using alternative docking tools, including GalaxyDock-DL1, GALigandDock2, and 
CSAlign-Dock3. 

For L3000, the potential binding pocket is quite large, and significant receptor conformational 
changes upon ligand binding were observed in the available complex structures. To address this, global 
docking with DiffDock-L4 and flexible-receptor docking with GALigandDock were employed for ligands 
without available PDB structures containing similar ligands (Tanimoto similarity > 0.55). For ligands with 
PDB structures involving similar ligands, template-based docking with CSAlign-Dock and rigid-receptor 
docking with GalaxyDock-DL were used. Additionally, re-ranking was performed using our in-house deep 
learning-based energy function, DENOISer, originally developed to evaluate complex conformations 
generated by ligand docking on predicted receptor structures. 
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For L4000, receptor conformational changes upon ligand binding were minimal in the available 
structures. For non-covalent ligand targets, template-based docking (CSAlign-Dock), rigid-receptor 
docking (GalaxyDock-DL), and flexible-receptor docking (GALigandDock) were used to generate 
complex structures, depending on the availability of PDB structures with high ligand similarity. Model 1 
was selected based on the consensus results from multiple docking tools and expert evaluation. For 
covalent ligand targets, our in-house covalent docking tool, C-Dock, was used to generate complex 
structures, with Model 1 selected using the neural network energy score from GalaxyDock-DL. 

All final poses were locally optimized using the GALigandDock energy function. 
 
Regular protein-ligand targets (T1214, L5001)  
 
For T1214 and L5001, receptor structures were sampled using our in-house ensemble generator which 
leverages AlphaFold2 and 3Di. For T1214, we anticipated a significant conformational change in the 
ligand binding loop, which was considered when selecting receptor structures for docking. 
GALigandDock was used to generate binding poses, and DENOISer was applied to rank the generated 
poses. 
 

NA-ligand complexes (RNA: R1261, R1262, R1263, R1264, and R1288, DNA: D1273)  
 
Template searches for nucleic acid receptors were conducted using BLAST and RCSB. Receptor modeling 
was performed with RosettaFold2NA5 and AlphaFold36, and the identified templates were cross-verified 
through a literature survey. Discrepancies were addressed by adjusting base orientation (R1261, R1262) 
or applying conditional flow matching, incorporating secondary structures identified from literature 
(R1263, R1264, D1273). For D1273, 3dRNA/DNA7 was used to enforce model conformity with the 
expected secondary structures. Binding sites were selected based on the detected templates and supporting 
literature. For each nucleic acid receptor structure, 100 ligand poses were generated via rigid-receptor 
docking with GALigandDock, and the poses were rescored using Rosetta energy and AnnapuRNA8. Metal 
ions were aligned based on the templates where applicable. 
 
Binding affinity prediction (L1000, L3000)  
 

For protein-ligand binding affinity predictions for targets L1000 and L3000, we used an in-house model, 
BG. BG was developed by adding additional network layers to the re-ranking score of GalaxyDock-DL1 
and trained on a binding affinity dataset curated from BindingDB using predicted protein-ligand complex 
structures. The model was further fine-tuned using target-specific data collected from BindingDB. In the 
first submission round, affinity predictions were based on our Model 1 structure, while in the second 
round, they were based on the crystal structures. 
 

Results 
 
To evaluate protein-ligand complex structure predictions, the ligand RMSD of the submitted models was 
calculated relative to the experimentally resolved ligand structures after superposing the model and 
experimental receptor structures. Based on the PDB structure of T1214 (PDB ID: 9C4O), our Model 1 for 
this target achieved a ligand RMSD of 0.8 Å, indicating highly accurate predictions for both receptor 
flexibility and ligand binding. For super-targets L1000 and L2000, the percentage of predictions with 
ligand RMSD within 2 Å and 1 Å was compared with AutoDock Vina9 in Table 1, demonstrating improved 
performance by our protocol. Further analysis is ongoing. 
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Table 1. Success rate of our method (SNU-CHEM-lig) and AutoDock Vina with RMSD cutoff of 2 Å and 
1 Å. AutoDock Vina was run using the PDB receptor structure containing the ligand with the highest 
similarity to the target.  

L1000 and L2000 
(n = 19) 

SNU-CHEM-lig AutoDock Vina 

RMSD < 2 Å RMSD < 1 Å RMSD < 2 Å RMSD < 1 Å 

Model 1 73.7% 36.8% 57.9% 36.8% 

Best of 5 Models 89.5% 63.2% 89.5% 42.1% 

 

 

Availability 
Manuscripts detailing the in-house tools mentioned above—GalaxyDock4, DENOISer, C-Dock, and 

BG—are currently in preparation, and the programs will be made available in the future. 
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RNA molecules play critical roles in various biological processes, including gene expression, regulation, 
and protein synthesis. The structure and function of RNA are closely intertwined, driving significant 
efforts within the scientific community to resolve RNA structures and better understand their biological 
roles. However, compared to proteins, the number of RNA structures available in standard databases, such 
as the Protein Data Bank (PDB) [1], is relatively limited. Over the past two decades, computational tools 
based on physics-based models and deep learning approaches have been developed to complement 
experimental efforts in solving RNA structures. Despite these advances, RNA structure prediction remains 
a significant challenge in bioinformatics.  

Methods  
 
Recently, many promising deep learning approaches have been developed. In particular, AlphaFold3 
(AF3) [2] has demonstrated good performance compared to other state-of-the-art methods. However, we 
are still far from achieving highly accurate predictions, as RNA structures predicted by AF3 often have 
low LDDT scores, indicating low confidence in the predictions. 

To enhance AF3 predictions, we designed a simple pipeline for the CASP16 round that integrates the 
output of AF3 with coarse-grained simulations using SimRNA. For each sequence submitted to AF3, all 
five structures generated by it are used as starting points for SimRNA simulations [3]. SimRNA is a 
simulated annealing-based method that employs coarse-grained physical potentials. We performed 10 
simulations with 10 replicas each for every structure predicted by AF3. From all the generated 
configurations, we selected only the top 1% with the lowest energy and clustered them using a 5 Å RMSD 
threshold. The representative of the most populated cluster was then selected. In the final stage of the 
pipeline, we refined the proposed all-atom models using QRNAS and/or molecular dynamics (MD) 
relaxation, using AMBER force field under a restrained protocol [4]. 

1.  Berman, Helen M., et al. "The protein data bank." Nucleic acids research 28.1 (2000): 235-242. 
2.  Abramson, Josh, et al. "Accurate structure prediction of biomolecular interactions with AlphaFold 3" 

Nature (2024): 1-3.        
3.  Boniecki, Michal J., et al. "SimRNA: a coarse-grained method for RNA folding simulations and 3D 

structure prediction." Nucleic acids research 44.7 (2016): e63-e63 
4.  Poblete, Simon, et al. “Effects and limitations of a nucleobase-driven backmapping procedure for 

nucleic acids using steered molecular dynamics”. Biochem. Biophys. Res. Comm. 498.2 (2018): 352-
358. 
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Predicting RNA tertiary structures is a significant challenge in computational biology due to the flexible, 
dynamic nature of RNA molecules and the scarcity of experimentally resolved RNA structures. Unlike 
proteins, which have extensive structural data available, RNA structures are underrepresented in databases 
like the Protein Data Bank (PDB), making data-driven prediction methods less effective1.  

Moreover, RNA molecules exhibit a high degree of conformational variability, challenging 
traditional structure prediction methods that often assume a single stable structure. Indeed, there is now a 
growing recognition that biomolecules should be viewed not as static entities but as dynamic ensembles 
of structures2-3. Therefore, effective RNA structure prediction methods need to generate not just a single 
static structure but an ensemble of possible structures, ranked by their thermodynamic stability and 
Boltzmann weights at physiological temperatures 4. 

In this work, we introduce RNAnneal, a purely computational two-stage pipeline designed to 
predict Boltzmann-scored ensembles of RNA tertiary structures starting from the primary RNA sequence. 
Our approach addresses the challenges of limited structural data and the need for ensemble predictions by 
combining bioinformatics methods, molecular dynamics simulations, and generative artificial intelligence 
models without pretraining on existing RNA structures. 

 

Methods 

In the first stage of RNAnneal, we generate diverse candidate tertiary structures by predicting RNA 
secondary structures using two tools: EternaFold (EF) for pseudoknot-free structures5 and pKiss (PK) 
for structures containing pseudoknots6. The predicted secondary structures are then assembled into tertiary 
structures with Rosetta's FARFAR2 algorithm7, which constructs models by assembling RNA structural 
motifs in a low-resolution potential. 

To enhance accuracy, the FARFAR2-generated models are further refined in a high-resolution 
molecular dynamics RNA force field8. High-energy structures are discarded, and the lowest-energy 
secondary structures are passed back to FARFAR2 for another round of tertiary structure assembly. This 
iterative process steers the ensemble toward low-energy regions, yielding hundreds of candidate structures 
for subsequent ranking. 
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In the second stage, we score the candidates based on their thermodynamic properties using 
thermodynamic maps – a physics-based generative AI framework that learns the equilibrium distribution 
of structures and their temperature dependence9. Thermodynamic maps parameterize an invertible 
mapping between RNA structural models and a generative system via a diffusion process10. This allows 
us to generate samples at any temperature by sampling from the generative system at the corresponding 
temperature and applying the inverse map, which implicitly accounts for the effect of temperature on the 
ensemble. 

Finally, we integrate thermodynamic maps with MD simulations to actively steer simulations 
launched from FARFAR2 models toward equilibrium. Once convergence is achieved, the free energy 
estimates from the thermodynamic map are used to assign Boltzmann scores to the candidate structures. 
This approach enables us to select a representative ensemble of RNA tertiary structures that reflects their 
thermodynamic stability and abundance at physiological temperatures. Importantly, our method does not 
require any pretraining on existing RNA structures, sequence information, or use of templates, standing 
in contrast to other AI approaches. 

Availability 

The thermodynamic map framework and integration with molecular dynamics simulation are outlined in 
detail in Herron et. al.9. 
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The protein structure prediction of the Unicorn group in CASP16 is based on a pipeline combining updated 
DeepMSA2 and AlphaFold2-Multimer. I have updated the database for calculating MSA, and after testing, 
the performance of the updated DMFold has improved. 
 
Methods 
 
The full pipeline contains three steps: (1) multiple sequence alignment (MSA) generation for the 
individual constituent proteins of the complexes by updated DeepMSA2, (2) MSA selection for each 
constituent, and (3) complex model construction and ranking by AlphaFold2-multimer pipeline with 
updated DeepMSA2 constituent MSAs as input. 
 
Availability: 
https://zhanggroup.org/DMFold/ 
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We tested our physics-based approach for protein- and DNA/RNA-structure prediction, whose key 
components are the coarse-grained UNRES model of polypeptide chains1 and the NARES-2P model of 
nucleic acids2, respectively, with CASP16 targets. The approach is based on extensive conformational 
search by means of the multiplexed replica exchange molecular dynamics (MREMD)3. As opposed to 
most of the other approaches, the prediction candidates are selected according to the probabilities of the 
conformational ensembles they belong to. With respect to the last CASP, the program code has been 
heavily optimized4, thus enabling us to handle very large targets and our methodology was extended to 
treat RNA/DNA molecules.  
 

Methods 
The prediction procedure was similar to that developed in our earlier work5 and consisted of the following 
four stages (i) running restrained MREMD simulations of the targets with UNRES or NARES-2P, 
depending on target type, (ii) determining the probabilities of the conformations by using the binless 
weighted histogram analysis method (WHAM)6, (iii) dissecting the simulated conformational ensemble 
into 5 (CASP) or 10 (CAPRI) families by using the minimum-variance clustering and selecting the 
conformations closest to the cluster mean for further processing, the ranking following cluster free energy 
and (iv) conversion of the coarse-grained structures to all-atom structures. For proteins, the cg2all7 and 
for nucleic acids our in-house NARall8 backmapping softwares, respectively, were used to execute stage 
(iv). The final all-atom structures were submitted to CASP/CAPRI. The same protocol was used to process 
the ENSEMBLES targets except that 100 structures were finally generated. 
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For proteins, distance and angular restraints derived from the AlphaFold29 (through ColabFold10), 
AlphaFold311 (through the AlphaFold3 server), and iTASSER12 (in-house installation) models were 
imposed on MREMD simulations of stage (i) and these simulations were started from models, which were 
distributed to all MREMD trajectories. We also used the models from MassiveFold, which were initially 
clustered to extract sufficiently distinct structures, symmetry taken into account for oligomers. 
Additionally, disulfide-bond formation was considered in the simulations by means of the dynamic 
disulfide-bond handling functionality of UNRES13.  

For RNA/DNA targets, the secondary structure was predicted initially, by using the RNAfold web 
server14. The predictions with the highest-probability were then used to build the initial structures, with 
the RNA Composer web server15. Distance restraints derived from secondary-structure-prediction 
information were imposed during the MREMD simulation.  
 

Availability 
The standalone version of UNRES is available from https://unres.pl/ and the web server version is 
available at https://unres-server.chem.ug.edu.pl/. 
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The introduction of Deep Learning (DL) methods, particularly AlphaFold2 (AF2)1 with its off-spring 
AlphaFold2-Multimer2 and RoseTTAFold,3 led to significant increase in accuracy of modeling protein 
complexes, setting a new standard in structure prediction. However, these methods still face significant 
limitations, particularly in accounting for the physiological environment in which proteins operate, and 
capturing the dynamic and flexible nature of proteins, which are important factors in protein interactions. 
DL-based methods are also computationally demanding, requiring high-end hardware (Graphical Units 
Processors - GPU, fast memory and storage modules, etc.), with high computational costs of large-scale 
modeling of protein interactions. The CASP-CAPRI prediction rounds provide a unique opportunity to 
test DL methods expansion and combination with other docking approaches. The current round involved 
31 protein-protein assemblies of different sizes and oligomeric states. 
 
Methods 
For most targets, we generated 100 - 500 models ranked by the AF2 confidence score (80% of predicted 
TM-score, and 20% of interface predicted TM-score),2 except for the larger targets where AF2 failed to 
generate such number of models (Table 1). The AF2 pipeline was run on computational nodes with A100 
and Q600 GPUs and nodes with Tesla T4 GPU. The models were clustered by highly connected 
subgraphs4 with 0.8 MM-score5 threshold. For each model, we analyzed predicted aligned errors (PAE) 
and predicted LDDT values of each residue, extracted from the AF2 pickle file and plotted by a Python 
script using standard pickle, numpy, panda and matplotlib packages. Docking models selected for 
submission were minimized by TINKER6 (CPU version 8 and GPU version 9) with CHARMM22 
forcefield.7 
 
Results 
Our focus was only on modeling protein-protein assemblies. We did not use AF3 procedure8 available 
only as a server with limited capacity. Models for the submission were typically selected based on 
occupancy of the AF2 models clusters and quality of the inter-chain contacts assessed from the PAE 
diagrams. When time constraints permitted, AF2 modeling was also performed for the assemblies with 
lower, and sometimes higher, oligomeric states and some submissions were built from such models. This 
will allow us, after the release of the results assessment, to analyze the ability of AF2 to predict correct 
oligomeric states, and to correlate the quality of the models with the number of chains in the assembly. 
For several larger targets, AF2 modeling was also carried out for overlapping fragments with subsequent 
re-assembly of the modeled parts into the full structure. Manual curation involved analysis of available 
PDB structures similar to the target, using UNIPROT database.9 
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Table 1. Statistics on targets. 
 

CAPRI 
target 

CASP  
target Oligomeric state Total number of 

residues 
Number of 

AF2 models a 
Number of 
clusters a 

Partial 
modeling b 

T236 T1201 A2 420 100 5 yes 
T238 H1202 A2B2 380 200 1 yes 
T240 H1204 A2B2C2 858 200 18 yes 
T242 T1206 A2 474 300 1 no 
T244 H1208 A1B1 646 300 1 no 
T248 H1215 A1B1 369 300 4 no 
T250 T1249v1 A3 1464 20 N/A no 
T252c T1249v2 A3 1464 - - - 
T256 H1213 A1B1C1D1E1 1373 N/A N/A yes 
T258 H1217 A2B2C2D2E2F2 5878 N/A N/A yes 
T260 T1218 A2 2328 22 1 no 
T262 H1220 A1B4 2515 N/A N/A yes 
T266 H1222 A1B1C1 485 500 1 no 
T268 H1223 A1B1C1 486 500 2 no 
T270 H1225 A1B1C1 483 500 1 no 
T272 H1227 A1B6 5689 N/A N/A yes 
T274 H1229 A1B1 987 500 1 no 
T276 H1230 A1B1 984 500 1 no 
T278 H1232 A2B2 924 457 43 yes 
T280 H1233 A2B2C2 1316 109 28 yes 
T282 T1237 A4 1952 339 3 yes 
T284 T1238 A2 654 500 31 no 
T286 T1240 A3 1959 347 50 no 
T288 T1234 A3 1239 322 36 no 
T290 T1235 A6 690 500 18 yes 
T292 H1236 A3B6 1929 367 48 yes 
T294 H1244 A2B2C2 850 500 60 yes 
T296 H1245 A1B1 317 500 172 no 
T298 T1259 A3 729 500 6 yes 
T300 H1267 A2B2 1852 500 12 yes 
T302 T1270 A6 2622 415 8 yes 

 
a Number of AF2 models and clusters are for given oligomeric state. 
b Submitted structures were built from models with reduced oligomeric state or from models containing 

only parts of the protein chains. 
c Modeled together with T250 as both consist of the same proteins in two distinct conformations. 
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We use various methods, including Vfold-Pipeline1, IsRNA2,3,4, and RNAJP5, to generate RNA 3D 
structures from the sequences. If structural templates for specific motifs in the RNA targets are identified 
in the PDB database, we incorporate them as folding constraints. For protein/RNA/DNA complexes, RNA 
with ligands, and RNA with solvent shell, we employ AlphaFold36, ITScore7,8, and AMBER9 to generate 
structural candidates. 
 

Methods 
 
RNA structures: 

• Vfold-Pipeline1 predicts RNA 2D and 3D structures from the sequence. In this pipeline, 2D 
structures are predicted using Vfold2D10, a physics-based model capable of predicting 2D 
structures that include a variety of RNA loop motifs including pseudoknots. 3D structures are 
generated using the template-based models Vfold3D11 and VfoldLA12. 

• IsRNA2,3,4 is a coarse-grained model for RNA 3D structure prediction based on the sequence and 
the 2D structure. It conducts replica exchange molecular dynamics (MD) simulations using a 
coarse-grained force field, which can account for correlations between various structural 
parameters. The simulated low-energy structures are clustered, and the centroid structures of these 
clusters are selected as the predicted structures. 

• RNAJP5 is a coarse-grained model for RNA 3D structure prediction, with a primary focus on 
junction structures. Given the RNA 2D structure, it conducts Monte Carlo/MD hybrid sampling of 
helix arrangements with non-canonical base pairing and stacking interactions and long-range loop-
loop interactions. 

 
Protein/RNA/DNA complexes: We use AlphaFold36 to generate structural candidates, subsequently 
employing our models to evaluate the structure candidates and using available experimental data in 
literature to further select the models. Additionally, we employ the ITScore7,8 model to dock proteins and 
RNAs to evaluate the complexes. 
 
RNA with ligands: Firstly, we model the RNA-only structures; subsequently, we employ AMBER9 to 
conduct all-atom molecular simulations using the candidate RNA structures and the provided ligands to 
generate potential candidates. The final models are selected according to docking models and the AMBER 
energies and available literature information. 
 
RNA with solvent shell: The initial RNA structure is derived from a PDB template, while the initial ion 
placements are based on the template, and the predictions from MCTBI13 and MgNet14. We subsequently 
conduct 550 ns of AMBER molecular simulations to sample the water and ions. 
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Model ranking: We rank the 3D structure candidates based on their scores and the clustering information 
from the simulations. Literature information, if available, was also considered for model selection and 
ranking. 
 

 

Availability 
Vfold-Pipeline is available at http://rna.physics.missouri.edu/vfoldPipeline/index.html 

IsRNA is available at http://rna.physics.missouri.edu/IsRNA/index.html 
RNAJP is available at http://rna.physics.missouri.edu/RNAJP/index.html 
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In CASP16 we participated in the accuracy estimation (also known as the quality assessment - QA) 
category. We also participated in the MassiveFold scoring experiment. 
 
Methods 
Our server group, VifChartreuse, was running the VoroIF-jury (Voronoi tessellation-based InterFace jury) 
algorithm1,2 that utilized the new version of VoroIF-GNN3 method - VoroIF-GNN-v2. The core idea of 
VoroIF-GNN remained the same - to train and apply a graph attention-based graph neural network that 
predicts CAD-score-based4 local scores for interface residue-residue contacts that can be summed into 
global, interface-level scores. The unique aspect of the VoroIF-GNN approach is that it considers the 
graph of interface contacts and their adjacencies, not the graph of atoms or residues. The first version of 
VoroIF-GNN described contacts using the Voronoi tessellation-derived contact areas and the VoroMQA5 
pseudoenergy potential values. For VoroIF-GNN-v2, new tessellation contact area-based pseudoenergy 
descriptors were derived. The original VoroMQA descriptors, derived from experimentally determined 
structures from the Protein Data Bank6 (PDB), were based on the observed and expected probabilities of 
contacts to occur in folded conformations. For new descriptors, additional empirically-derived 
probabilities were used - the observed and expected probabilities of contacts to persist in folded 
conformations. Those probabilities were derived from distributions of tessellation-derived contact areas 
in ensembles of protein structures. The main set of ensembles was derived from PDB by grouping protein 
chains according to 90% sequence identity clustering - this resulted in 38807 ensembles formed from 
429945 chains. For an additional set of empirical probabilities, an alternative set of ensembles was taken 
from the IDRome dataset that was published as a part of the recent study of human intrinsically disordered 
proteome7 - the authors of that study generated ensembles by running coarse-grained simulations using 
the CALVADOS method. We took 16774 ensembles for chains of 60 to 600 residues in length, every 
ensemble contained 1000 conformations. We utilized our recently developed Voronota-LT8 software to 
rapidly compute tessellation-derived contact areas for both the PDB-derived and the IDRome-derived 
ensembles. We then derived the contact occurrence and persistence probabilities and transformed them 
into pseudoenergies (by simply applying the log function to them, so that summing transformed values 
can be interpreted as multiplying the corresponding probabilities). Those pseudoenergy coefficients were 
used to describe contact nodes in interface graphs for VoroIF-GNN-v2. 
 VoroIF-GNN-v2 was trained on diverse docking models of 1567 protein-protein heterodimers to 
predict interface CAD-score, in a fashion similar to the first version of VoroIF-GNN. The VoroIF-GNN-
v2 primary output is residue-residue contact scores, which can be converted into per-residue and per-
assembly scores. We applied VoroIF-GNN-v2 to every assembly model twice - before and after rebuilding 
side-chains using FASPR9. Several variants of VoroIF-GNN-v2 per-assembly scores were used to produce 
rankings of structural models, then those rankings were combined by the VoroIF-jury algorithm to produce 
the primary global scores in the [0;1] interval. For every structural model, the secondary global score was 
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computed without involvement of VoroIF-jury, by converting the raw VoroIF-GNN-v2 global scores into 
a CAD-score estimate. Similarly, for the local scores, per-residue VoroIF-GNN-v2 scores (computed 
before rebuilding side-chains) were converted to per-residue CAD-score estimates. 
 Our human group, VifChartreuseJaune, was not more human than our server group - we just 
swapped the primary and the secondary global scores in the output lines and used the per-residue scores 
computed after rebuilding side-chains. Both the VifChartreuse and the VifChartreuseJaune predictions 
were generated by the single pipeline implemented in the FTDMP framework. 
 For the MassiveFold experiment involving assembly models, the VifChartreuse results were 
produced using the VoroIF-jury global scores, while the VifChartreuseJaune results were produced using 
the VoroIF-GNN-v2 global scores. We did not expect the MassiveFold experiment to be extended to 
predicting non-oligomeric targets. We did not have time to develop any special new methods for assessing 
monomeric conformations - we simply used VoroMQA-dark10 and VoroMQA-light5 global scores to 
produce results for the VifChartreuse and VifChartreuseJaune groups, respectively. 
 
Availability 
The FTDMP, VoroMQA and Voronota-LT software is freely available on GitHub at 
https://github.com/kliment-olechnovic. 
 
1. Olechnovič,K., Valančauskas,L., Dapkūnas,J., Venclovas,Č. (2023) Prediction of protein assemblies 

by structure sampling followed by interface-focused scoring. Proteins 91(12):1724-1733. 
2. Olechnovič,K., Banciul,R., Dapkūnas,J., Venclovas,Č. (2024) FTDMP: a framework for protein-

protein, protein-DNA and protein-RNA docking and scoring. Submitted to Proteins (CAPRI special 
issue). 

3. Olechnovič,K., Venclovas,Č. (2023) VoroIF-GNN: Voronoi tessellation-derived protein-protein 
interface assessment using a graph neural network. Proteins 91(12):1879-1888. 

4. Olechnovič,K., Venclovas,Č. (2020) Contact Area-Based Structural Analysis of Proteins and Their 
Complexes Using CAD-Score. Methods Mol Biol 2112, 75–90. 

5. Olechnovič,K., Venclovas,Č. (2017) VoroMQA: Assessment of protein structure quality using 
interatomic contact areas. Proteins 85, 1131–1145. 

6. Burley,S.K., Bhikadiya,C., Bi.C, et al. (2023) RCSB Protein Data Bank (RCSB.org): delivery of 
experimentally-determined PDB structures alongside one million computed structure models of 
proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488-D508. 

7. Tesei,G., Trolle,A.I., Jonsson,N. et al. (2024) Conformational ensembles of the human intrinsically 
disordered proteome. Nature 626(8000):897-904. 

8. Olechnovič,K., Grudinin,S. (2024) Voronota-LT: efficient, flexible and solvent-aware tessellation-
based analysis of atomic interactions. Preprint in bioRxiv. 

9. Huang,X., Pearce,R., Zhang,Y. (2020) FASPR: an open-source tool for fast and accurate protein side-
chain packing. Bioinformatics 36:3758-3765. 

10. Dapkūnas,J., Olechnovič,K., Venclovas,Č. (2021) Modeling of protein complexes in CASP14 with 
emphasis on the interaction interface prediction. Proteins 89(12):1834-1843. 
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In CASP16 we tested our protein-ligand binding affinity predictors. We submitted predictions for CASP 
targets L1000 (chymase, 17 protein-ligand complexes) and L3000 (autotaxin, 93 protein-ligand 
complexes) obtained using the experimental structures provided by CASP as input. 
 
Methods 
Voronoi tessellation-based affinity predictors. We developed models for prediction of protein-ligand 
binding affinity using descriptors derived from Voronoi tessellation1 of protein-ligand complexes: 
interatomic contact areas, molecular volume change upon complex formation and number of formed 
hydrogen bonds. To reveal the relationship between computed descriptors and binding affinity we used 
experimentally determined protein-ligand complex structures with known affinity collected in the 
PDBbind database2 and different machine learning algorithms. For CASP16 we selected the best model 
based on evaluation on diverse test sets and submitted its predictions as VoroAffinity group. 

Target-specific affinity predictors. Knowing the structures of CASP16 targets, we developed 
target-specific affinity predictors. We used the same modeling approach with training sets supplemented 
by data on proteins structurally similar (TM-score > 0.8) to the target. We extracted these additional 
protein-ligand complexes with known binding affinity from the PDBbind database2 and from the Protein 
Data Bank. We used a dataset of protein-ligand complexes similar to L1000 to train a chymase-specific 
model. Because of the lack of data for proteins similar to autotaxin we trained L3000-specific model using 
the standard training set enriched by 23 autotaxin structures with different ligands. 

To estimate the accuracy of developed models we performed leave-one-out training and testing 
using the structures of chymase and autotaxin protein-ligand complexes. The accuracy of chymase-
specific model was additionally evaluated using external trypsin dataset3. We observed improved 
prediction accuracy of the target-specific models in comparison to models trained on standard dataset and 
submitted their predictions for CASP16 targets as VoroAffinityB group. 

Prediction for CASP targets. For both VoroAffinity and VoroAffinityB groups we selected ligand 
bound closer to the catalytic site or weighted the predicted affinity based on occupancy when more than 
one ligand was present in the provided experimental structure. 
 
1. Olechnovič,K., & Venclovas,Č. (2014). Voronota: A fast and reliable tool for computing the vertices 

of the Voronoi diagram of atomic balls. J Comput Chem. 35, 672–681. 
2. Liu,Z., Li,Y., Han,L., Li,J., Liu,J., Zhao,Z., Nie,W., Liu,Y., & Wang,R. (2015). PDB-wide collection 

of binding data: Current status of the PDBbind database. Bioinformatics. 31, 405–412. 
3. Durant,G., Boyles,F., Birchall,K., Marsden,B., & Deane,C.M. (2023). Robustly interrogating machine 

learning-based scoring functions: What are they learning? BioRxiv. 2023.10.30.564251 doi: 
https://doi.org/10.1101/2023.10.30.564251 
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We participated in CASP16 using an improved MSA sampling protocol called AFsample21. AFsample2 
masks a random fraction of the MSA columns to perturb the input MSA before AlphaFold22,3 inference 
with dropout4 activated. AFsample2 was initially developed to predict multi-state proteins, but it also 
works very well to improve sampling for difficult single-state proteins. The method is completely 
automated but was run as a manual server to allow for more computational time. We participated in the 
single proteins, complexes, and ensembles categories. 
 

Methods 
 
To improve sampling, we used AFsample2 with 0, 0.1, 0.2, or 0.3 fractions of the MSA columns masked. 
The 0 fraction of the MSA column is identical to running AF2 with dropout activated, which was so 
successful in CASP155, while increasing the fraction will result in sampling with less information. In our 
benchmarks, going beyond 0.3 deteriorates the predictions too much. For each fraction, all available 
versions of the AF2 neural networks were used; for monomers, five networks, both the networks with and 
without ptm head were used, as well as all three versions of the multimer networks (a monomer is a 
multimer with one chain); for multimers, all three multimer networks were used. In addition, we also run 
with the pipeline with 3 and 20 recycles. Templates were not used at all. 
 
For Phase 1 targets (T1*/H1*), the goal was to generate at least 100 models per network per fraction of 
column masking; since we run with four different fractions, there are five networks per version, and we 
used two recycle settings, this resulted in a minimum of 20,000 models (100x4x5x5) for monomers and 
12,000 (100x4x5x3x2) models for multimers. In reality, the number of generated models was between 
1,416 and 200,307, with a median of 36,395 models, and only ten targets had less than 12,000 models. 
 
When AFsample2 perturbs the MSA, the model confidence drops. This drop is not necessarily coupled to 
worse models but rather an effect of the perturbation. To be able to compare the model confidences from 
all generated models, the top 10 models by model confidence from each MSA column masking fraction 
and neural network version were rescored using AF_unmasked6. The rescoring uses inference with the 
ʻmultimer_5_v2ʼ neural network with the input model as a template and no MSA information. If the length 
of the input model was shorter than 1,400 amino acids, the model was relaxed using the standard AF2 
Amber relaxation protocol before rescoring. Five models were generated, and the best model confidence 
was used as the score for the input model. For models larger than 1,400 amino acids, the unrelaxed model 
was used, and only one model was generated. 
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Finally, a ranking-based clustering was performed to avoid submitting too similar models: The model with 
the best score was always submitted as rank 1; lower ranks were only submitted if it was more distant than 
2 angstroms for monomer and DockQ<0.5 for multimers to any higher-ranking models. 
 
For Phase 2 targets (T2*/H2*), no new models were generated. Instead, all models submitted as in Phase 
1 (T1*/H1*) to CASP were downloaded from the CASP website, rescored and refined using 
AF_unmasked. The model with the highest model confidence was submitted as TS1, followed by the same 
ranking-based clustering described above, to avoid submitting too similar models.  
 
For targets with two different conformations, all models were compared to the first-ranked model using a 
reference-free plot1 in which the TMscore7 or DockQ8 is plotted against the model confidence from 
AF_unmasked. The first-ranked model was submitted as one conformation, and the second conformation 
was selected from the reference-free plot as a model with high confidence and a significant structural 
difference from the first-ranked model. 
 
For the ensemble targets, models were generated in the same as above. All models were clustered using 
Rosetta Clustering9 with a 5 Angstrom threshold. For each cluster, the highest model confidence, passing 
the ad hoc and very strict similarity filters, was taken as representative. The probability for each 
representative was taken as the relative size of the respective cluster.  
 
The MSAs were generated using the default AF2 settings against the default BFD database, Uniref90 and 
Uniprot downloaded 20240521, and Mgnify version 2022_05. No templates were used. 
 

Availability 
AFsample2 is available at http://wallnerlab.org/AFsample2  
 

1. Kalakoti, Y. & Wallner, B. AFsample2: Prediction of conformational states and transitions using 
improved sampling with AlphaFold. bioRxiv 2024.03.20.536385 (2024) 
doi:10.1101/2024.03.20.536385. 

2. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 1–11 (2021) 
doi:10.1038/s41586-021-03819-2. 

3. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Biorxiv 2021.10.04.463034 
(2021) doi:10.1101/2021.10.04.463034. 

4. Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. 
Bioinformatics 39, btad573 (2023). 

5. Wallner, B. Improved multimer prediction using massive sampling with AlphaFold in CASP15. 
Proteins: Struct., Funct., Bioinform. (2023) doi:10.1002/prot.26562. 

6. Mirabello, C., Wallner, B., Nystedt, B., Azinas, S. & Carroni, M. Unmasking AlphaFold: integration 
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doi:10.1101/2023.09.20.558579. 
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quality. Proteins Struct Funct Bioinform 57, 702 710 (2004). 

http://wallnerlab.org/AFsample2


245 

8. Mirabello, C. & Wallner, B. DockQ v2: Improved automatic quality measure for protein multimers, 
nucleic acids, and small molecules. bioRxiv 2024.05.28.596225 (2024) 
doi:10.1101/2024.05.28.596225. 

9. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of 
macromolecules. Methods Enzymol 487, 545 574 (2011). 

  
 

  



246 

XGroup, XGroup-server  

A protein-protein complex structure prediction model via MSA and deep learning 
Chunqiu Xia, Yutao Mi, Chen Wang, Hongning Zhang, Xi Chen, Zongquan Li, Leilei Hou, Liujing 

Wang, Hongmei Li, Jingming Zhang, Sheng lin, and Yunfei Long 
  

Ailux Biologics of XtalPi, Shanghai, China 
 

chunqiu.xia@xtalpi.com, sheng.lin@xtalpi.com, yunfei.long@xtalpi.com 
 

Key: Auto:N; CASP_serv:Y; Templ:Y; MSA:Y.MetaG; DeepL:Y; EMA:Y; MD:Y 
 
In CASP16, our group participated in the protein-protein complex structure modeling category. Deep 
learning methods have demonstrated a marked enhancement in the predictive accuracy of protein complex 
structures. AlphaFold-Multimer1(AFM) has set a good start for deep learning methods to predict the 
structure of protein complexes. Inspired by many previous methods, we developed a new method for 
predicting protein-protein complex structures that organically integrates the advantages of previous 
methods. 

Methods 
Our method adopts the multiple sequence alignment (MSA) and structure templates as its input. MSA is 
retrieved by MMSeqs22 and another method against UniRef303 and several metagenomic databases, 
including BFD and MGnify4,5. Then, templates are retrieved against PDB100 by HHSearch6. Similar to 
AFM, only 20 structure templates will be employed for the purpose of modeling. After deriving enough 
diverse conformations, we cluster all the structures based on their structural similarity and structural 
confidence and submit the top-K structures with high confidence, where K is constrained to a maximum 
of five. For large protein complexes, our base method is additionally fused with automated assembly 
algorithmic modules and expert knowledge. 
 

Availability 
The source codes and models are not publicly available. 
 

1. Evans,R. et al. (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv, 
2021.10.04.463034. 

2. Steinegger,M. and Söding,J. (2017) MMseqs2 enables sensitive protein sequence searching for the 
analysis of massive data sets. Nature Biotechnology, 35, 1026–1028. 

3. Suzek,B.E. et al. (2015) UniRef clusters: a comprehensive and scalable alternative for improving 
sequence similarity searches. Bioinformatics, 31, 926–932. 

4. Steinegger,M. et al. (2019) Protein-level assembly increases protein sequence recovery from 
metagenomic samples manyfold. Nature Methods, 16, 603–606. 

5. Mitchell,A.L. et al. (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids 
Research, 48, D570–D578. 

6. Steinegger,M. et al. (2019) HH-suite3 for fast remote homology detection and deep protein 
annotation. BMC Bioinformatics, 20, 473. 
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Methods 
 

Protein monomers. Monomeric protein targets were predicted with similar methods we used in 
CASP15 1. Multiple sequence databases (uniclust30_2018, uniref30, bfd and manually collected 
sequences) were searched by HHblits and MMseqs2, generating a set of candidate multiple sequence 
alignments (MSAs). Optimal MSAs are selected by trRosettaX2 according to the probability of the top 
residue pairs in the predicted inter-residue distance matrix. For monomeric targets derived from 
multimeric targets, their structures are derived from the complex models predicted by AlphaFold-
Multimer 2 and/or AlphaFold33. 

Protein multimers. AlphaFold-Multimer 2 and/or AlphaFold3 3 are used to predict the structures 
for protein multimers. For AlphaFold-Multimer, optimal monomeric MSAs are prepared using the pipeline 
used for monomer structure prediction. For AlphaFold3, we submitted the sequences to its web server to 
predict the complex structure models. Top models are then selected for submission based on the predicted 
confidence scores. 

RNAs. trRosettaRNA 4 and its improved version are used to predict RNA structures. For the 
improved trRosettaRNA, an end-to-end version is used to predict an initial structure and inter-nucleotide 
distance and orientation matrices. The unrealistic geometry (e.g., broken bond, steric clashes, etc) of the 
end-to-end model is fixed by energy minimization, similar to the original trRosettaRNA. 
 
  
Availability:  
https://yanglab.nankai.edu.cn/trRosetta/,  
https://yanglab.nankai.edu.cn/trRosettaRNA 
 

 
1. Peng, Z., Wang, W., Wei, H., Li, X. & Yang, J. Improved protein structure prediction with trRosettaX2, 

AlphaFold2, and optimized MSAs in CASP15. Proteins 91, 1704-1711 (2023). 
2. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv, 2021.2010. 

2004.463034 (2022). 
3. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. 

Nature 630, 493-500 (2024). 
4. Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. 

Nat Commun 14, 7266 (2023). 
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The ‘Zheng’ human group in CASP16 made use of a flexible set of workflows for modeling various 
targets, including protein monomers, nucleic acids (DNA or RNA), nucleic acid-nucleic acid complexes, 
protein-protein complexes, protein-nucleic acid complexes, and ensemble targets. Protein monomer 
targets are predicted using an updated version of the D-I-TASSER algorithm1, similar to the ‘Zheng-
Server’ but with extended simulation time. Protein-protein complex targets are modeled using a modified 
version of DMFold-Multimer2, similar to ‘Zheng-Multimer’ but with more diverse MSA inputs. Nucleic 
acid-containing targets (with or without protein) are predicted using the newly developed deep learning 
method, DeepProtNA, which integrates pre-trained language model embeddings, multiple sequence 
alignments (MSA), predicted secondary structures, and structural templates as inputs for a set of modified 
Evoformer blocks.  

 

Methods 

Domain boundary prediction. To address the challenge of modeling multi-domain targets, we introduced 
a newly developed domain boundary prediction method. The domain boundary predictor contains a set of 
modified Evoformer blocks, with input features including threading template information from 
LOMETS3, contact/distance maps predicted by DeepPotential3, domain boundary scores from 
ThreaDom4, residue-level embeddings from several  pre-trained protein language models (pLM), 
continuous fragment information obtained from MSA, and folding unit scores from FUpred5, all of which 
are combined by the model to predict domain boundary information. 

MSA construction. The MSA construction pipeline used in the ‘Zheng’ workflow is built on DeepMSA2 
with two key improvements: (i) a larger in-house metagenomic sequence database, incorporating 
expansive curated sequence data from IMG/M, NCBI, and EBI, and (ii) a multi-domain MSA assembly 
method that merges domain-level MSAs into a full chain-level MSA. Similar to DeepMSA2, the new 
pipeline also contains three MSA construction sub-pipelines: dMSA, qMSA, and mMSA, and diverse 
genomic and metagenomic databases, including Uniclust30, UniRef90, Metaclust, Mgnify, BFD and an 
in-house huge metagenomics database. MSAs generated from these sub-pipelines are input into 
AlphaFold2 to predict a set of models, and the MSAs are then ranked by their associated pLDDT scores. 
For multi-domain targets, the same MSA generation method is used to construct domain-level MSAs 
based on predicted domain boundaries, which are then assembled into full-length MSAs by linking 
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sequences from the same species. The ranked MSAs are either directly used in protein homomer modeling 
(top-1 MSA) or paired as multimer MSAs for protein complex modeling. For heteromeric complexes, an 
additional selection process generates an optimal set of paired MSAs by combining individual constituent 
MSAs. The top N ranked MSAs for each constituent protein are chosen to form potential paired MSAs, 
and for a heteromeric complex with M constituent proteins, NM distinct paired MSAs are generated and 
evaluated based on a combined score of the depth of the MSAs and pLDDT score of the monomer chains. 
To ensure the pipeline completes within two weeks, N is selected to satisfy NM≤150.  

Template detection. The template detection method is based on a new version of LOMETS (LOMETS4). 
Compared to LOMETS36, which was used in CASP15, the major update in LOMETS4 is its ability to 
handle protein complexes. For protein heteromers, templates are identified as follows: first, homologous 
templates for each constituent chain in the target complex are identified using LOMETS3, which includes 
six profile-based threading methods, five contact/distance-based threading methods, three protein 
language model-based threading methods, and one structure-based threading method. Notably, templates 
for individual chains that have already been considered in previous steps are excluded to prevent the 
similar query constituent chain from hitting identical templates. The templates are ranked by quality (e.g., 
Z-score). Finally, if at least two constituent chains share templates from the same protein complex and 
have a high summed Z-score, these complexes are considered potential templates. 

Protein monomer modeling. Protein monomer models are generated by D-I-TASSER using Replica-
Exchange Monte Carlo (REMC) simulations, guided by knowledge-based potentials and deep learning-
predicted residue-residue contact maps, distance distributions, inter-residue torsion angles, and hydrogen-
bond networks, as well as the similar type restraints calculated from LOMETS4 threading templates. 

Protein-protein complex modeling. Protein complex models are predicted using a modified AlphaFold2 
modeling engine with our MSAs and structure templates as input features. Key modifications to the 
modeling engine include: (i) using templates or not, (ii) adjusting the dropout rate, (iii) applying different 
versions of AlphaFold2 pre-trained weights (v1-v3), (iv) generating a higher number of decoys than the 
default setting (25 models), (v) applying or omitting the early stop strategy in AlphaFold2 (v2.3), and (vi) 
extending the modeling iterations. The final models are ranked by confidence scores (e.g., 0.8pTM + 
0.2ipTM). For targets with unknown stoichiometry, a newly developed method is used to determine 
stoichiometry information. This method uses three pipelines: one derives stoichiometry from top-ranked 
LOMETS4 templates, another predicts stoichiometry using a deep learning method combining sequence 
data and embeddings from protein language models7 and text-based language models using UniProt 
descriptions, and the last pipeline is predicted directly by DMFold confidence scores, where the 
oligomeric state is predicted based on the model with the highest confidence. 

Nucleic acid-related target modeling. DeepProtNA is an end-to-end deep learning algorithm designed for 
predicting oligomeric structures. The method integrates pre-trained language model embeddings, MSA 
information, predicted secondary structure, and structural templates to directly generate three-dimensional 
coordinates of the complexes from input sequences through a set of modified Evoformer blocks and a 
structure module similar to AlphaFold2. Protein and RNA sequences are input into pre-trained language 
models, ESM7 and RNA-FM8 (respectively), to generate high-dimensional sequence embeddings. MSAs 
are generated for both protein and nucleic acid sequences using the modified version DeepMSA22 and 
rMSA9. The MSA-derived features are combined with the language model embeddings to enhance the 
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information content available for predicting interactions between the sure sequences of sequence 
interactions. Structural templates are selected from the PDB by LOMETS4 for protein or BLASTn for 
RNA. Additionally, the predicted secondary structure of nucleic acids is also used as an input of the deep 
learning networks. The main trunk of the DeepProtNA processes the embeddings for proteins and nucleic 
acids, leveraging self-attention mechanisms to capture long-range dependencies within each sequence. 
Cross-attention mechanisms are used to handle interactions between protein and nucleic acid sequences 
or between multiple chains of the same type. A structure decoder network takes the embedded 
representation to generate the three-dimensional coordinates for the complex. This network translates 
sequence information directly into spatial coordinates for each residue and nucleotide, producing the final 
structure. DeepProtNA also outputs a confidence score that measures the reliability of the predicted 
interactions, and the confidence score is also used for predicting the oligomer states for those RNA targets 
with unknown stoichiometry. 

Ensemble modeling. For ensemble targets, after initial generation of a series of models (decoy) using the 
workflows described above, the SPICKER10 method is used to cluster the decoys based on structural 
similarity for protein monomers, RNA, and protein complexes. The centers of clusters with a large number 
of members and high confidence scores are selected as models representing potential alternative 
conformations. 

1. Zheng,W., Wuyun,Q., Freddolino,P.L. & Zhang,Y. (2023). Integrating deep learning, threading 
alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure 
prediction in CASP15. Proteins: Structure, Function, and Bioinformatics 91, 1684-1703. 

2. Zheng,W., Wuyun,Q., Li,Y., Zhang,C., Freddolino,P.L. & Zhang,Y. (2024). Improving deep learning 
protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. 
Nature Methods 21, 279-289. 

3. Li,Y., Zhang,C., Zheng,W., Zhou,X., Bell,E.W., Yu,D.-J. & Zhang,Y. (2021). Protein inter-residue 
contact and distance prediction by coupling complementary coevolution features with deep residual 
networks in CASP14. Proteins: Structure, Function, and Bioinformatics 89, 1911-1921. 
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annotation. Nucleic Acids Research 50, W454-W464. 
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The protein structure prediction approach of the Zheng-Multimer server group in CASP16 is an extension 
of the DMFold1 pipeline. It consists of two sub-pipelines: DMFold-Monomer for protein monomer 
modeling and DMFold-Multimer for protein complex structure prediction. Compared to the DMFold 
pipeline used in CASP15, the new method includes four major updates: (i) a novel template detection 
method, LOMETS4, for collecting templates for both protein monomers and multimers, (ii) an updated 
DeepMSA pipeline (including substantially expanded databases) for constructing MSAs, (iii) a more 
comprehensive structure sampling engine to generate diverse structure models using a modified 
AlphaFold22 structure module, and (iv) a stoichiometry determination module for predicting 
stoichiometry information.  

 

Methods 

The first step of Zheng-Multimer is MSA construction, which builds on the previous DeepMSA2 pipeline. 
Compared to the version used in CASP15, this updated DeepMSA introduces two key improvements: (i) 
a larger metagenomic sequence database, incorporating data from IMG/M, NCBI, and EBI, and (ii) a 
multi-domain MSA assembly method that assembles domain-level MSAs into a full chain-level MSA. 
Similar to DeepMSA2, the new pipeline also contains three MSA construction sub-methods: dMSA, 
qMSA, and mMSA. In dMSA, HHblits3, Jackhmmer4 and HMMsearch4 are used to search the query 
sequence against the Uniclust305, UniRef906 and Metaclust7 databases in three stages (labeled stage 1-3 
in the order listed above). qMSA is an extended version of dMSA with a new search added between stage 
2 and stage 3 of dMSA, where HHblits is used to search the BFD8 metagenomic database. In addition, a 
new iteration stage (stage 4) is added in qMSA to search the query through the Mgnify9 metagenomic 
database. In mMSA, MSA from qMSA stage3 is used as the starting point for HMMsearch to search 
through the huge in-house metagenome database mentioned above. MSAs generated from dMSA, qMSA, 
and mMSA are input into AlphaFold2 (1-embedding) to predict a set of models. Those MSAs are then 
ranked by the associated pLDDT scores from AlphaFold2. For multi-domain targets, the same MSA 
generation method is applied to construct domain-level MSAs based on the predicted domain boundaries. 
These domain-level MSAs are subsequently assembled into full-length MSAs by linking sequences from 
the same species. The ranked MSAs are either directly used in protein monomer modeling or paired as 
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multimer MSAs for protein complex modeling. For heteromeric complexes, an additional selection 
procedure is employed to generate an optimal set of paired MSAs by combining the individual constituent 
MSAs. The top N ranked MSAs for each constituent protein are chosen to form potential paired MSAs. 
Each selected MSA for one constituent protein is paired with the MSA of another constituent. For a 
heteromeric complex containing M different constituent proteins, NM distinct paired MSAs are generated 
and evaluated based on a combined score of the depth of the MSAs and pLDDT score of the monomer 
chains. To guarantee the pipeline could be completed within three days, N is selected as the maximal value 
to satisfy NM≤64. 

The second step of Zheng-Multimer is template detection, which is based on a new version of 
LOMETS. Compared to LOMETS310, which was used in CASP15, the major update in LOMETS4 is its 
ability to handle protein complexes. Specifically, for protein heteromers, templates are identified as 
follows: first, for each constituent chain in the target complex, homologous templates are identified using 
LOMETS3, which includes six profile-based threading methods, five contact/distance-based threading 
methods, three protein language model-based threading methods, and one structure-based threading 
method. Notably, for each pipeline, templates for individual chains that have already been considered in 
previous steps are excluded to prevent the similar query constituent chain from hitting identical templates. 
Next, the templates for each chain are ranked based on their quality (e.g., Z-score). Finally, if at least two 
constituent chains share templates originating from the same protein complex, those complexes are 
considered potential complex templates. For protein monomers or homomeric complexes, LOMETS4 
monomer templates are directly output and used in the structure model generation step. 

The third step in Zheng-Multimer is model generation, which utilizes a modified version of the 
AlphaFold2 modeling engine. The MSAs from the first step and the structure templates from the second 
step serve as input features for this modeling engine. Key modifications to the AlphaFold2 modeling 
engine include: (i) using templates or not, (ii) adjusting the dropout rate, (iii) applying different versions 
of AlphaFold2 pre-trained weights (v1-v3), (iv) generating a higher number of decoys than the default 
setting (25 models), (v) applying or omitting the early stop strategy in AlphaFold2 (v2.3), and (vi) 
increasing the number of modeling iterations. The final models are ranked based on the pLDDT score for 
monomer targets, or by confidence scores (0.8pTM + 0.2ipTM) for complex targets. 

For targets with unknown stoichiometry, a newly developed method is used to predict stoichiometry 
information and prioritize modeling efforts. This method incorporates two fast pipelines to detect potential 
stoichiometry states: one set of stoichiometry is derived from the top-ranked LOMETS4 templates, and 
another set of stoichiometry is predicted from a deep learning method that combines sequence data, 
embedding from protein language models11, and embedding from text-based language models utilizing 
UniProt descriptions as input. DMFold is then used to model all highly ranked stoichiometry states 
predicted by these two pipelines, with the models and associated stoichiometry states selected based on 
the highest confidence scores. 
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The Zheng-Server utilized in CASP16 is designed for protein tertiary structure prediction through a fully 
automated pipeline, expanded from D-I-TASSER1. The pipeline consists of six key modules: (i) domain 
boundary prediction using a novel deep learning framework, (ii) multiple sequence alignment (MSA) 
construction through the newly developed and expanded DeepMSA22 pipeline, (iii) template detection 
through the recently updated LOMETS3, (iv) initial model generation and spatial geometric restraint 
prediction using AlphaFold2 and advanced deep learning predictors, (v) conformation generation through 
I-TASSER Replica-Exchange Monte Carlo (REMC) simulation guided by deep learning constraints, and 
(vi) atomic-level model refinement using molecular dynamics (MD) simulation. 

Methods 

Zheng-Server follows the general workflow of recent versions of D-I-TASSER, with several additional 
refinements to address especially difficult targets. To address the challenge of modeling multi-domain 
targets, Zheng-Server incorporates a newly developed domain boundary prediction method. The input 
features for the modified Evoformer blocks include threading template information from LOMETS3, 
contact/distance maps predicted by DeepPotential4, domain boundary scores from ThreaDom5, residue-
level embeddings from pre-trained protein language models (pLM), continuous fragment information 
obtained from MSA, and folding unit scores from FUpred6, all of which are utilized to predict domain 
boundaries, which are then used to perform domain-level modeling prior to final assembly. 

The MSA generation pipeline in Zheng-Server is an extension of DeepMSA2. Compared to the version 
used in CASP15, this updated DeepMSA introduces two key improvements: (i) a larger metagenomic 
sequence database, incorporating data from IMG/M, NCBI, and EBI, and (ii) a multi-domain MSA 
assembly method that assembles domain-level MSAs into a full chain-level MSA. Similar to DeepMSA2, 
the new pipeline also contains three MSA construction sub-methods: dMSA, qMSA, and mMSA. In 
dMSA, HHblits, Jackhmmer and HMMsearch are used to search the query sequence against the 
Uniclust30, UniRef90 and Metaclust databases in three stages (labeled stage 1 – stage 3 in the order listed 
above). qMSA is an extended version of dMSA with a new search added between stage 2 and stage 3 of 
dMSA, where HHblits is used to search the BFD metagenomic database. In addition, a new iteration stage 
(stage 4) is added in qMSA to search the query through the Mgnify metagenomic database. In mMSA, 
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MSA from qMSA stage3 is used as the starting point for HMMsearch to search through the huge in-house 
metagenome database mentioned above. MSAs generated from dMSA, qMSA, and mMSA are input into 
AlphaFold2 (1-embedding) to predict a set of models. The MSA associated with the highest pLDDT score 
from the AlphaFold2 models is selected as the final output. For multi-domain targets, the same MSA 
generation method is applied to construct and select domain-level MSAs based on the predicted domain 
boundaries. These domain-level MSAs are then assembled into a full-length MSA by linking sequences 
from the same species.  

The final MSA is used as input for AlphaFold27 (8-embedding), OpenFold8, UniFold9, ColabFold10, 
RosettaFold11, ESMFold12, OmegaFold13, AttentionPotential, and DeepPotential4 for the predictions of 
residue-residue contact maps, distance distributions, inter-residue torsion angles, and hydrogen-bond 
networks. Those deep learning-predicted restraints are utilized to guide the REMC folding simulation with 
the same set of restraints calculated from templates detected by new LOMETS. AttentionPotential is an 
extended pipeline from DeepPotential, which utilizes an MSA transformer architecture. The full sets of 
predicted restraints from AttentionPotential and DeepPotential are then fed into DeepFold, an L-BFGS 
folding system, to produce ten full-length models. Those ten models, as well as five models generated by 
each of the other structure prediction methods noted above, and full-chain level threading templates from 
the new LOMETS (see below), are used as initial conformations in the REMC folding simulation.  

The MSA generated from the new DeepMSA method is also used to produce sequence profiles or 
profile Hidden Markov Models (HMMs) to be utilized by six profile-based threading methods employed 
by the new version of LOMETS. Additionally, the contact maps and distance distributions predicted from 
the deep learning predictors are used by five contact- and distance-based threading methods. In addition, 
with six profile-based threading methods and five distance-based threading methods, three pLM-based 
threading methods are also introduced into the new LOMETS. Finally, 140 full-chain level templates (10 
templates from each component threading method) are collected by LOMETS, and then used as initial 
conformations in the REMC simulation as noted above.  

For target proteins with lengths of less than 300 residues, an I-TASSER-based REMC simulation is 
utilized for generating 10,000 decoy conformations. The REMC simulation is guided by knowledge-based 
potentials and residue-residue contact maps, distance distributions, inter-residue torsion angles, and 
hydrogen-bond networks that are predicted by deep learning predictors and calculated from LOMETS 
threading templates (as noted above). The decoys are then clustered using SPICKER14 to obtain five 
clusters for final model selection. For the targets with lengths of greater than 300 residues, the top five 
ranked models by deep learning predictors are directly used in the next MD refinement, without the REMC 
stage. 

The five cluster centroids (for target with length<300AA) or the five top ranked deep learning models 
(for target with length≥300AA) are further refined by FG-MD15 to remove steric clashes and refine the 
local structure packing, resulting in the final models. 
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In CASP16, we submitted predicted binding modes and affinities for protein-ligand complexes. The 
binding mode predictions were based on a template-guided method and molecular docking. For binding 
energy calculations, we used both a deep learning-based scoring function and a docking scoring function.  
 
Methods 
Template-guiding method  
An improved template-guiding strategy, based on our recent work [1-3], was employed for protein-ligand 
complex structure predictions in CASP16. This strategy allows the use of both similar and dissimilar 
ligands as templates through a newly developed intercomparison method, followed by local optimization 
and ranking with a hybrid scoring function, in addition to the standard docking protocol. Specifically, for 
each query target, an ensemble of ligand 3D conformers was generated from the SMILES string using the 
OMEGA2 program (Version 4.2.2.0, OpenEye Scientific Software, Santa Fe, NM, USA. 
http://www.eyesopen.com) [4,5]. Then, the Protein Data Bank [6] was then searched for template 
structures containing the target protein or its homologs. If a template structure contains one or more co-
bound ligands, the target protein structure was superimposed onto the protein structure in the template 
with the MatchMaker tool in UCSF Chimera [7], and the conformers of the query ligand were matched to 
the co-bound ligands in the template using SHAFTS, a 3D molecular similarity measurement program 
[8]. The superimposed protein structure and the matched ligand conformers were combined, and local 
minimization was performed by AutoDock Vina [9] (with option “local_only”). The predicted complex 
structures were then ranked by a hybrid scoring function [1] that combines a protein-ligand binding score 
(AutoDock Vina score) and a 3D similarity score (SHAFTS score, characterizing the 3D similarity 
between the query ligand and the co-bound ligand in the template). The ranked binding modes were 
clustered using a ligand root-mean-square deviation (L-RMSD) cutoff 1.5 Å, where L-RMSD is the heavy 
atom RMSD of the ligand between two modes after structural superposition of the protein. 
 
Molecular docking 
Molecular docking was performed using Glide [10] within the Schrödinger suite [11]. The protein 
structures were generated through the AlphaFold3 server [12] and subsequently prepared using the Protein 
Preparation Workflow in Maestro [11] with default settings. This preparation involved determining the 
protonation states of residues, assigning hydrogen bonds, and minimizing the protein structure. 
Minimization was carried out until the RMSD reached 0.3 Å, using the OPLS4 force field [13]. Ligand 
structures, provided as SMILES strings by CASP, were converted into 3D conformations using LigPrep 
[11] with default parameters. Docking grids were generated based on the preprocessed protein structure 
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by selecting residues within the identified binding pocket. The binding pocket location was determined 
through the above template-based approach with protein-ligand complexes from related templates. All 
docking simulations were conducted in Glide, utilizing the standard precision (SP) mode and default 
settings. 
 
Model submission 
For the submission of Group Zou, ligands with similarity scores (SHAFTS scores) above 1.2 in the 
template-based approach had their top 3 binding modes submitted as predictions 1, 3, and 5, while the top 
2 modes from the docking-based approach were submitted as predictions 2 and 4. For ligands with 
similarity scores below 1.2, the top 3 binding modes from the docking-based approach were submitted as 
predictions 1, 3, and 5, with predictions 2 and 4 derived from the template-based approach. For the 
submission of Group Zou_aff2, all five models were generated using the template-based approach. 
 
Binding energy calculation 
For energy prediction of targets L1000 and L3000, we used the method developed by Wei and co-workers 
to derive the TopBP-DL model [14]. This method incorporates persistent homology-based features and 
was employed in their machine learning models for energy prediction in the D3R Grand Challenge 3 and 
4 [15,16]. Here, the TopBP-DL model was trained on the PDBbind-v2016 dataset [17] and fine-tuned with 
target-specific ligands from the BindingBD [18] database. The top binding mode predicted by Glide 
docking served as the input structure for model training and energy prediction for the CASP targets. The 
predicted energies were submitted to Group Zou. For Group Zou_aff2, the predicted energies were based 
on the Glide score of the top binding mode identified by Glide docking. 
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Developing a reliable method to model high-quality models of the T cell receptor bound to the peptide 
presented by the major histocompatibility complex (TCR-pMHC) is of great interest in the field of 
personalized immunotherapies. The knowledge gained from analyzing these interactions contributes to a 
better understanding of T-cell activation, which can ultimately help optimize target selection for 
individualized therapies 1,2. 

The interactions of the TCR with the pMHC determine how strongly a T cell reacts to an antigen 
presented by a tumor or an infected cell. The advent of artificial intelligence has revolutionized structural 
biology, making it possible to predict the structure of any protein without the need for time-consuming 
laboratory methods3. Recently developed AlphaFold-based tools like TCRdock4 and TCRmodel25 
specialize in modeling the TCR-pMHC complex. However, TCR-pMHC complexes pose an additional 
challenge for evolution-based methods like AlphaFold due to the presence of hypervariable CDR3 
regions, which do not follow conventional evolutionary patterns6. 

Methods 

In our benchmark, these tools produced models with overall good architecture, but the accuracy of the 
hypervariable CDR3 regions, which binds the presented pepide, was often insufficient. A direct 
comparison of the contacts in the binding interfaces of the models with the crystal structures showed that 
only about 20% to 40% of the native contacts were represented correctly.  

Result 

However, in some cases, a short molecular dynamics simulation increased the correctly predicted contacts 
to 60%–80%. We show that the prediction of TCR-pMHC complexes can be improved by combining AI 
methods with a physics-based refinement step. The aim is to create a method that enhances the quality of 
imperfect complexes with a certain degree of reliability, without impairing those that already exhibit good 
overall quality. Ultimately, this method could be used to improve AlphaFold generated TCR-pMHC 
complexes for which no crystal structure is available, significantly increasing the number of analyzable 
examples. 

The synergy between AI-based structural modeling and physics-based molecular dynamics 
simulations could thus help clarify the still unresolved questions of T-cell activation and contribute to 
further improvements in personalized immunotherapies. 

mailto:matthias.peter@tron-mainz.de
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During CASP16, we employed the MULTICOM4 system - an enhanced version of MULTICOM31,2 
developed using AlphaFold23 and AlphaFold34 - to generate numerous tertiary structural models for two 
flexible targets with multiple conformations (T1200 and T1300). These models were filtered to create a 
subset that met the criterion of having the four key helices within 0.5 Å RMSD (Root Mean Square 
Deviation) from the corresponding helices in the template structures (PDB codes: 2LR2 and 4NPD) in the 
Protein Data Bank (PDB). Subsequently, we used five different methods to calculate population scores 
(probability scores) and uncertainty scores for the selected models. These calculations were based on the 
global pLDDT scores predicted by AlphaFold, along with RMSD scores relative to the centers of model 
clusters. This effort resulted in five predictors - MULTICOM_AI, MULTICOM_GATE, 
MULTICOM_LLM, MULTICOM, and MULTICOM_human - participating in the flexible target 
prediction task 

 
Methods 
 
During CASP16 experiment, MULTICOM4 predictors made predictions for the two flexible targets as 
follows.  

1) Model Generation   

MULTCOM4 used a monomer structure prediction pipeline built on top of AlphaFold2 to generate 
thousands of structural models for each of the two targets (see the detailed description in the MULTICOM 
TS abstract in this abstract book). We also used AlphaFold3 web server to generate thousands of structural 
models for each of them. 

2) Model Filtering 

The structural models generated were filtered out using the following steps: 

• Based on the information provided in the Specifications document for the two targets, we extracted 4 
helices (named predicted_helix_1, predicted_helix_2, predicted_helix_3, predicted_helix_4) from the 
structural models and the corresponding 4 helices from the template structures (2 helices from 2LR2 
(named 2LR2_helix_1 and 2LR2_helix_2), 2 helices from 4NPD (named 4NPD_helix_1 and 
4NPD_helix_2)). 

mailto:chengji@missouri.edu
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• Superimpose the 4 template helices with the corresponding 4 predicted helices of each model one by 
one. 

• Replace the 4 helices in the models with the corresponding template helices according to the 
superimposition. 

• Remove a structural model with the helix replacement that met any of the following conditions: 
o Contains severe clashes 
o Substantially deviated from its original counterpart without the helix replacement according to 

TM-score between them (i.e. TM-score < 0.99). 
o The combination of predicted_helix_1 and predicted_helix_2 in the model is not within 0.5 Å 

RMSD with the combination of 2LR2_helix_1 and 2LR2_helix_2. 
o The combination of predicted_helix_3 and predicted_helix_4 is not within 0.5 Å RMSD with 

the combination of 4NPD_helix_1 and 4NPD_helix_2. 
 

3) Calculation of Population and Uncertainty Scores 

Out of the remaining models after the filtering, 2000 models (1000 generated by AlphaFold2 and 1000 
generated by AlphaFold3) were then selected based on their global pLDDT score ranking from high to 
low. For a AlphaFold2-based models, its global pLDDT score was provided by AlphaFold2 directly. For 
a AlphaFold3-based model, its pLDDT score was computed using the average of the per-residue 
confidence scores for alpha-carbon (Cα) atoms. To get the final population score for each model, the 
following two approaches were used: 

Approach 1: The pLDDT score of each model was first scaled into the range [0,1]. Then the 
Sigmoid function was used to calculate the population score for each model with its scaled pLDDT 
score as input.  

Approach 2: 1000 AlphaFold2 (or AlphaFold3) models were clustered into two clusters based on 
their similarity. Then for each model, its RMSD was calculated against its cluster center (the model 
with the highest average pairwise similarity score (TM-score) with all the other models in the 
cluster). The standard deviation of the RMSDs of 1000 models is calculated as σ. The population 
score for a model with an RMSD (r) is then calculated according to the Gaussian density function 
N (r |mean = 0 and standard deviation = σ). 

The population scores for 1000 AlphaFold2 or AlphaFold3 models calculated by the two approaches 
above were then normalized by their sum so that they add up to 1. The standard deviation of the normalized 
population scores was calculated as the uncertainty score.  If the uncertainty score for any model was 
greater than its population score, the uncertainty score was replaced by the population score for that model.  

4) Implementation of Five MULTICOM Predictors 

MULTICOM_AI server predictor used 1000 AlphaFold2 models with Approach 1.    MULTICOM_GATE 
server predictor used 1000 AlphaFold2 models with Approach 2. MULTICOM_LLM server predictor used 
1000 AlphaFold3 models with Approach 1.            MULTICOM (a human predictor) used 1000 AlphaFold3 
models with Approach 2.      MULTICOM_human (a human predictor) used 2000 models (1000 
AlphaFold2 models with Approach 1 and 1000 AlphaFold3 models with Approach 1). The population 
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scores for the 2000 models were then renormalized and the standard deviation was computed from the 
renormalized population scores as the uncertainty score.  
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We used a combination of stochastic sampling algorithms, statistical analysis techniques and all-atom 
molecular dynamics simulations to predict conformational ensembles for targets T1200 and T1300 in 
CASP16. The pipeline is presented below.  

Methods 

Structure of the rigid domains 

T1200 and T1300 targets are both constituted of two globular domains connected by a flexible linker. 
Both targets have an identical sequence length, and the sole difference lies in the amino acid composition 
of the linker. The N-ter globular domain (residues 1-70) is ZLBT, a variant of the B domain of the 
staphylococcal protein A, while the C-ter domain (residues 77-129) corresponds to the C domain of the 
same protein. The linker spans residues 71-76. Initial models were generated using ColabFold1 with the 
automated MSA construction pipeline and by allowing the usage of structural templates from the PDB. 
The resulting models were then relaxed using AmberTools232 and the top pLDDT-ranked model was 
retained for subsequent operations. The ions observed in the C domain structure (4NPD) were not 
considered in our models.  

Conformations sampling of the flexible linker  

According to the specifications provided by the challenge organizers, the two residues preceding the 
linker, Ala-69 and Pro-70, can be considered part of the flexible region. Therefore, conformations of the 
fragment 69-76 were sampled using a method tailored for Intrinsically Disordered Regions (IDRs)3. The 
two globular domains were considered as rigid bodies at this stage. A total of 10000 conformations per 
target were generated.  

Selection of initial states for MD simulations 

The sampled conformations were grouped by binning the relative positions between the two domains into 
voxels of 10 Å. From each group, two conformations were selected  as starting configurations for MD 
simulations: one representing the average domain orientation within the voxel and another with high 
probability density that differed significantly from the first. Following this protocol, 334 conformations 
were selected for the T1200 target and 640 for T1300.  
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MD simulations 
 

Each initial state for all-atom MD simulations was prepared using the tleap module from AmberTools232, 
solvating the proteins with approximately 6,700 OPC4 water molecules and counterions, and using the 
amber ff19SB force field5. The topology and coordinate files were converted for Gromacs 2022.56 
simulations using the amb2gmx.py script. 

Energy minimization was performed with the steepest descent algorithm, followed by a 100 ps 
equilibration in a NVT ensemble (300 K, Berendsen thermostat7) and a 100 ps equilibration in a NPT 
ensemble (1 bar, Parrinello-Rahman barostat8), both with position restraints applied to the heavy atoms. 
Each conformation was submitted to a 20 ns unrestrained all-atom MD production run. Both equilibration 
and production steps were carried out with a 2 fs time step. 
 

Selection of conformers and their populations 

Frames from all MD simulations were pooled into a single trajectory and aligned to the ZBLT domain. 
The trajectory was then clustered using a hierarchical algorithm with average linkage and an RMSD metric 
focusing on residues 70 to 129. 1000 clusters were requested. Then, all conformations were aligned to 
both ZLBT (2LR2) and C domain (4NPD) and the backbone RMSD was computed. All conformations 
with high RMSD values of the globular domains (>3.5Å) were discarded. As some clusters were removed 
from the initial 1000 requested clusters, the populations were defined as the fraction of the cluster 
population divided by the sum of all retained cluster populations. The uncertainties were arbitrarily set to 
10% of the cluster populations. 

 

Availability 

Binaries and scripts will be made available upon publication. 
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The ZLBT-C target for CASP16 consists of two experimentally solved folded domains connected by a 6-
residue long (WT_T1200: KADNKF, Gly6_T1300: GGGGGG) flexible linker connecting the N-terminal 
ZLBT domain (PDB ID 2LR2 [1]) to the C domain (PDB ID 4NPD [2]). The linker conformations can be 
modeled using methods for the in silico modeling of intrinsically disordered regions (IDRs). To address 
the targets T1200 and T1300, we have chosen IDPConformerGenerator [3,4] to construct initial 
conformations for all-atom molecular dynamics (MD) processing. IDPConformerGenerator uses 
sequence-dependent statistical sampling of φ, ψ, and ω backbone torsion angles derived from the RCSB 
PDB [5] to construct all-atom conformations of the linker IDRs given PDB templates of folded domains 
to create ensembles of full proteins. We used this approach with PDB templates of the ZLBT and C regions 
to create initial ensembles of the ZLBT-C protein. 

After selecting representative conformations from the IDPConformerGenerator ensemble, we used 
iMiner [6] workflow and OpenMM [7], respectively, to perform MD simulations using 
AMBER14SB/TIP3P [8] and CHARMM36/CHARMM36m-water [9] protein forcefields/water 
parameters. The simulation system is first solvated and neutralized with sodium and chloride ions before 
the parametrization. Then, the system is energy minimized and equilibrated with 1-ns simulation each 
under the NVT and NPT ensemble before the real production runs. For each system and forcefield 
combination, we run a10-ms production and save structural snapshots every 2ns to collect around 5000 
structures for each trajectory.  

The energy landscape visualization method (ELViM) [10] was then used on all of the ensembles 
to weight clusters of structurally similar conformations for final submission. The ELViM strategy uses a 
multidimensional reduction technique that analyzes internal distances between pairs of structural 
conformations on the entire dataset. 

Methods 

(1) Submission: JFK-THG-IDPCONFGEN 

Auto:N; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:Y; MD:N. 
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IDPConformerGenerator [3] was used to generate 100,000 possible backbone configurations of the 6-
residue long linker for each of the T1200 and T1300 targets (KADNKF and GGGGGG respectively). 
These linkers were then appended onto the ZLBT (2LR2) domain using the local disordered region 
sampling (LDRS) module in IDPConformerGenerator [4]. The C domain (4NPD) was then appended onto 
the ZLBT-linker construct using LDRS to avoid steric clashes with the ZLBT domain. A final 1705 
conformations for T1200 and 1635 conformations for T1300 had sidechains added by FASPR via 
IDPConformerGenerater and subsequently hydrogenated using PDBFixer [11], weighting normalized to 
1000 conformations each and submitted. The energy landscape for the ensembles were calculated using 
ELViM [10] for further MD (see below, submissions 2-5). 

 (2) Submission: JFK-THG-AMBER 

Auto:Y; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:Y; MD:Y. 

Two representative conformations from the IDPConformerGenerator [3] pools, one from each of the high 
density areas in the ELViM [10] clustering plots, were used as starting structures for MD simulation with 
the AMBER14SB/TIP3P [8] forcefield. After obtaining the 10-ms trajectory, we used ELViM to take 
1000 representative structures based on the clustering density. 

 (3) Submission: JFK-THG-AMBERstable 

Auto:Y; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:Y; MD:Y. 

Representative conformations from IDPConformerGenerator [3] pools based on ELViM [10] clustering 
density were used as starting structures for MD simulation with AMBER14SB/TIP3P [8] forcefield. After 
obtaining the 10-ms trajectory, we used ELViM to take 1000 representative structures based on the 
clustering density as shown in Figure 1Di and 1Dii. 

 (4) Submission: JFK-THG-CHARMM 

Auto:Y; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:Y; MD:Y. 

Representative conformations from IDPConformerGenerator [3] pools, , one from each of the high density 
areas in the ELViM [10] clustering plots, were used as starting structures for MD simulation with 
CHARMM36/CHARMM36m-water [9] forcefield. After obtaining the 10-ms trajectory, we used ELViM 
to take 1000 representative structures based on the clustering density as shown in Figure 1Ci and Cii. 

 (5) Submission: JFK-THG-CHARMMstable 

Auto:Y; CASP_serv:N; Templ:Y; MSA:N; DeepL:N; AF:N; EMA:Y; MD:Y. 

Representative conformations from IDPConformerGenerator [3] based on ELViM [10] clustering desnsity 
were used as starting structure of the MD simulation with CHARMM36/CHARMM36m-water [9] 
forcefield. After obtaining the 10-ms trajectory, we used ELViM to take 1000 representative structures 
based on the clustering density as shown in Figure 1Ei and 1Eii. 
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Results 

We find that different force fields suggest different orientations of the two domains. Although the wild 
type linker (T1200) provides significant flexibility, the poly-glycine variant (T1300) shows more 
flexibility as the simulation takes more timesteps to find a stable pose. Overall, the helical bundles in the 
two domains have a high tendency to stick together rather than separate during the simulations. Further 
downstream reweighting with experimental measurements is required to identify bound and unbound 
fractions between the two domains. 

The JFK-THG-IDPCONFGEN ensemble has been submitted as “T1200TS097_IDPCONFGEN” and 
“T1300TS097_IDPCONFGEN” for the two targets, respectively. The JFK-THG-AMBER ensemble has 
been submitted as “T1200TS097_AMBER” and “T1300TS097_AMBER”. The JFK-THG-CHARMM 
ensemble has been submitted as “T1200TS097_CHARMM” and “T1300TS097_CHARMM”. The JFK-
THG-AMBERstable and JFK-THG-CHARMMstable ensembles have been submitted as 
“T1200TS097_AMBER_STABLE”, “T1300TS097_AMBER_STABLE”, and 
“T1200TS097_CHARMM_STABLE” , “T1300TS097_CHARMM_STABLE”, respectively.  

 

Availability 

IDPConformerGenerator [3,4] is an open-source software and is available on GitHub at github.com/julie-
forman-kay-lab/IDPConformerGenerator. ELViM [10] is available on GitHub at 
github.com/VLeiteGroup/ELViM. The GROMACS [12] engine was used for the MD simulations which 
can be found here manual.gromacs.org. The CHARMM36/CHARMM36m-water force field [9] is 
available on mackerell.umaryland.edu/charmm_ff.shtml. The AMBER14SB/TIP3P force field [8] is 
available on ambermd.org/AmberModels_proteins.php. 
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This section provides additional content to our previously submitted abstract, located earlier in this 
volume.  
 
Methods 
 
Ensemble modeling: For targets T1200 and T1300, we used MODELLER1 to generate initial structures 
(using PDB IDs 4NPD and 2LR2 as templates respectively) and subsequently carried out 500 ns MD 
simulations on each structure using Desmond2 and the OPLS4 forcefield3, resulting in 1000 MD frames 
for each target. To ensure the RMSDs of the helical bundles remained within the required 0.5Å RMSD to 
the reference structures, we superimposed the helical bundles from the reference structures into each MD 
frame and cleared any steric clashes via PyMOL 2.4 [4]. All 1000 frames of each target were weighed 
equally in our final submissions. 
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In CASP16, we participated in the ligand-binding prediction category. A total of 11 targets, including 
both proteins and RNA/DNAs, were provided for prediction, with only the target sequences and the 
SMILES representations of the ligands available. For certain targets, such as L3000, more than 200 
chemically diverse ligands required prediction of their binding poses and affinities. This scenario 
closely resembles the hit discovery process in drug development. To address this challenge, we 
developed a workflow applied for ligand prediction across different types of targets. 
 
Method 
First, we searched the target sequences in the RCSB Protein Data Bank (PDB) to determine whether 
any experimental structural information was available for the targets or their homologues. For targets 
L1000, L2000, L3000, and L4000, numerous PDB structures were identified, each containing different 
compounds in complex with the proteins or their homologues. Native ligands were retrieved from 
these PDB files and clustered with the ligands to be predicted based on their 2D chemical similarity. 
Codock-Ligand1 and AutoDock Vina2 were then employed to dock the ligands to the PDB structures 
within the same cluster, accounting for potential conformational changes induced by the ligand's 
chemical structure. For ligands without similar compounds available in complex with the protein, 
multiple receptor structures were used for docking. The resulting docking poses were clustered based 
on root-mean-square deviation (RMSD) and further evaluated by visual inspection. Additionally, an 
AI-based Convolutional Neural Network (CNN) scoring model3 was applied as a supplementary 
reference for pose selection and affinity prediction. For targets L2000 and L3000, affinity values were 
retrieved from the Binding Database4, and compounds with known activity values were clustered with 
the ligands to be predicted. Experimental activity values from the same cluster were used to adjust the 
predicted affinities based on docking scores. 
For target L5001, although PDB structures of the protein was available, it represented the apo form 
with no ligand bound. Blind docking was utilized to predict potential binding poses. For both T1214 
and L5001, manual adjustments were made to the orientation of aromatic side-chain residues in the 
predicted binding sites. For RNA/DNA targets, the AlphaFold3 server5 was used to generate initial 
receptor structures, and the ligands were docked using Codock-Ligand. 
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