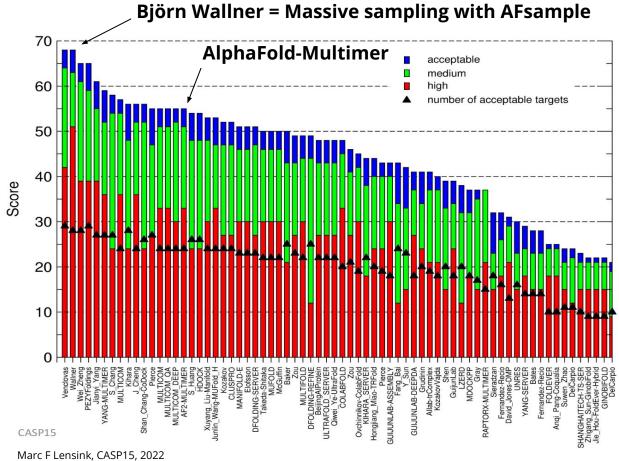


MassiveFold

Massive sampling data shared over CASP16-CAPRI


Nessim Raouraoua, Marc F. Lensink and Guillaume Brysbaert

Guillaume Brysbaert

CNRS - France - Lille

CASP15/CAPRI - Dec 2022

Multimers

Massive sampling:

- thousands of predictions
- diversity parameters: neural network version, dropout, templates, recycles

Limitations:

- cost in GPU hours
- management of such a large computation

CNRS supercomputing cluster "Jean Zay" - France

Partition CPU

28800 cœurs Intel Cascade Lake 6248 @ 2,5 GHz

138 To

2,3 PFlop/s

Partitions GPU

1832 GPU V100

OPA 100 Gb/s par GPU

50 To HBM2

17,8 PFlop/s

8 416 GPU A100

OPA 100 Gb/s par GPU

33 To HBM2e

8,2 PFlop/s

GPU 1456 GPU H100

IB NDR 400 Gb/s par GPU

116 To HBM3

99,9 PFlop/s

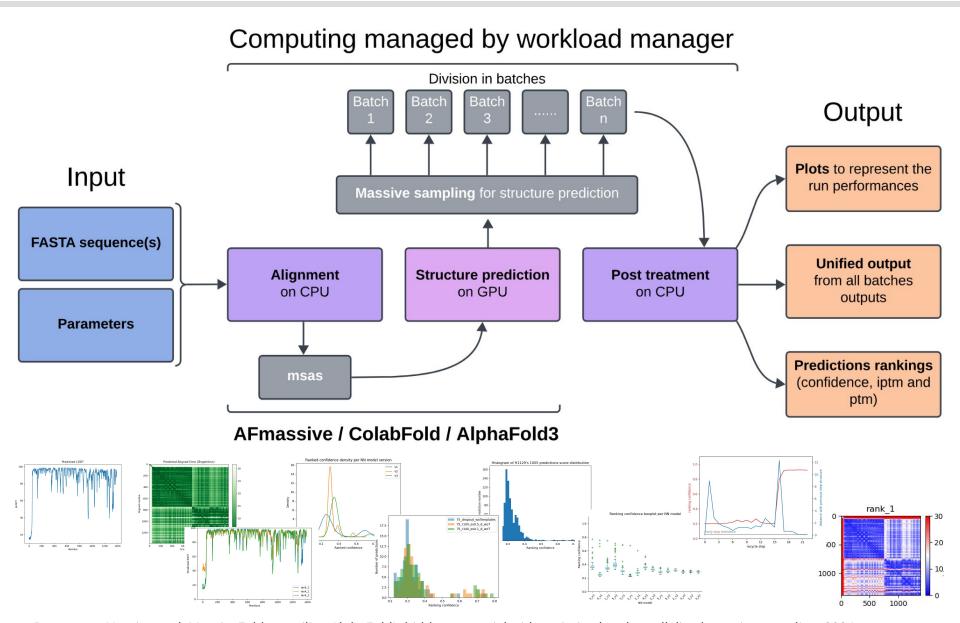
MassiveFold

Started in March 2023 (GPU Hackathon at IDRIS with NVIDIA)

Nessim Raouraoua Marc Lensink Guillaume Brysbaert

MUDIS4LS Christophe Blanchet

Claudio Mirabello Björn Wallner



IDRIS
Supercomputing cluster Jean Zay
Thibaut Véry

Goals:

- Update AFsample => AFmassive, to use on the national cluster
- Optimization of the computing through parallelization

MassiveFold

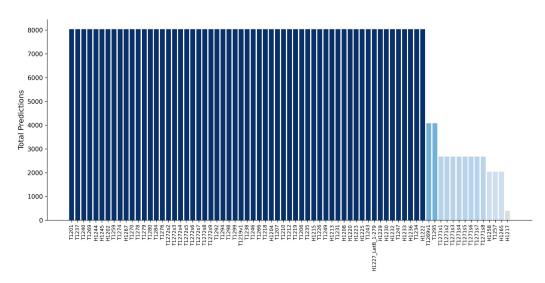
Raouraoua Nessim et al. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. 2024. *Nature Computational Science*, https://www.nature.com/articles/s43588-024-00714-4

Statement:

- CAPRI 55 (February 2024): several groups ran massive sampling
- for CASP16-CAPRI, many groups would certainly do the same
- unfair for predictors who don't have access to many GPUs

Motivation for CASP16-CAPRI:

- provide massive sampling data to make the competition fairer
- avoid many groups burning GPU hours for the same type of computation
- boost scoring developments


Statement:

- CAPRI 55 (February 2024): several groups ran massive sampling
- for CASP16-CAPRI, many groups would certainly do the same
- unfair for predictors who don't have access to many GPUs

Motivation for CASP16-CAPRI:

- provide massive sampling data to make the competition fairer
- avoid many groups burning GPU hours for the same type of computation
- boost scoring developments

Up to 8040 predictions per target

Statement:

- CAPRI 55 (February 2024): several groups ran massive sampling
- for CASP16-CAPRI, many groups would certainly do the same
- unfair for predictors who don't have access to many GPUs

Motivation for CASP16-CAPRI:

- provide massive sampling data to make the competition fairer
- avoid many groups burning GPU hours for the same type of computation
- boost scoring developments

Stage 0: stoichiometry

Stage 1: predictions

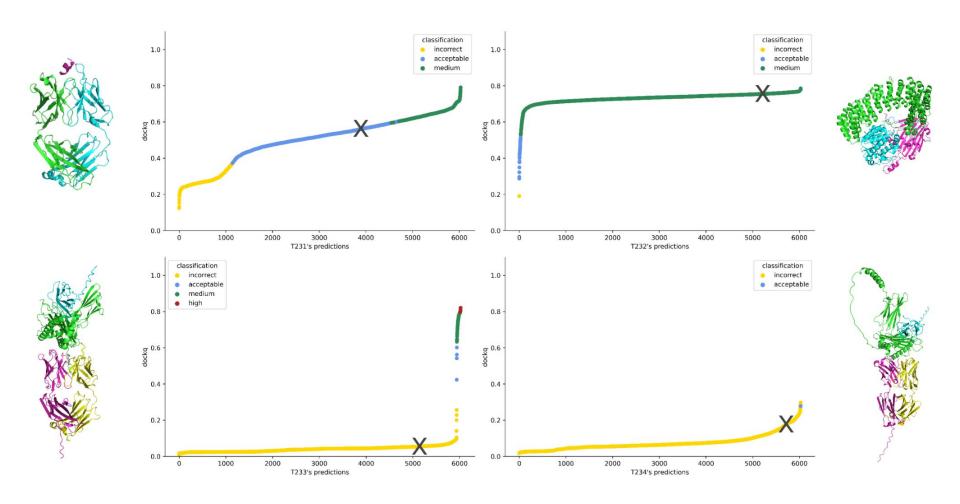
Participation as a baseline Top-5 following the AF confidence score

Stage 2: MassiveFold

Predictions provided to predictors (including "light" pickle files)

(Up to) 8040 MassiveFold predictions = $8 \times 15 \text{ NN } \times 67 \text{ predictions}$

Setup	Dropout Evoformer	Dropout structure module	Templates	Recycles	Structure inference engine
afm_basic			X	21	AFmassive
afm_woTemplates				21	AFmassive
afm_dropout_full	X	X	X	21	AFmassive
afm_dropout_full_woTemplates	X	X		21	AFmassive
afm_dropout_full_woTemplates_r3	X	X		3	AFmassive
afm_dropout_noSM_woTemplates	X			21	AFmassive
cf_woTemplates				21	ColabFold
cf_dropout_full_woTemplates	X	X		21	ColabFold


Early stop tolerance set to 0.5

CASP16/CAPRI - 2024 - Computation on Jean Zay

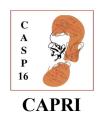
- **265 000 GPU hours** used (eq V100)
- 95 000 € = \$100 000
- **7.3** CO₂ tons ~ 9 round-trip flights Paris/Punta Cana
- **2.2 To** data shared for **73** targets in total (with "light" pickles)

Target type	Number of predictions generated	Number of GPU hours used
Monomers	262 640	43 000
Assemblies	288 605	222 000
Total	551 245	265 000

Expectations like CAPRI round 55

Conclusion

MassiveFold


- handles computing with AFmassive and ColabFold on CPU and many GPUs
- now also includes AlphaFold3

CASP16-CAPRI

- stage 1: baseline using AF2 confident score
- stage 2: up to 8040 predictions per target shared / > 500 000 predictions

An accurate **scoring** function is required => let's see CASP16-CAPRI's results!

https://github.com/GBLille/MassiveFold https://github.com/GBLille/AFmassive

+ Nessim's POSTER

generated with ChatGPT 4

