

Improving AlphaFold2/3based Protein Complex Structure Prediction with MULTICOM4

Jianlin Cheng University of Missouri, Columbia, USA

Initial MULTICOM4 System Based on AlphaFold2

Updated MULTICOM4 System Based on AlphaFold2 & 3

Stoichiometry Prediction (Phase 0)

Stoichiometry	Target (28)	Difficulty (% CASP groups being correct)	True stoichiometry	AF3 maximum ranking score (AF- max). Red – corr.	AF3 average ranking score (AF-avg). Red - correct	Template-based prediction (TB). Red - correct	Final prediction (Top 1): Red - correct	Decision choice	Best of Top 3
Predictions of	H0225	90%	A1B1C1	A1B1C1	A1B1C1	A1B1C1	A1B1C1	AF-max + AF-avg + TB	Yes
MULTICOM	H0222	88%	A1B1C1	A1B1C1	A1B1C1	A1B1C1	A1B1C1	AF-max + AF-avg + TB	Yes
	H0223	87%	A1B1C1	A1B1C1	A1B1C1	A1B1C1	A1B1C1	AF-max + AF-avg + TB	Yes
(28 targets:	H0245	85%	A1B1	A1B1	A1B1	N/A	A1B1	AF-max + AF-avg	Yes
19 heteromers	H0215	75%	A1B1	A1B1	A2B2	A1B1	A1B1	AF-max + TB	Yes
9 homomers)	T0206o	72%	A2	A2 (AFM)	A2 (AFM)	A2	A2	AF-max + AF-avg + TB	Yes
5 1101110111013	T0257o	72%	A3	A3	A2	A3	A3	AF-max + TB	Yes
	T0259o	71%	A3	A4	A3	N/A	A3	AF-avg	Yes
	H0208	66%	A1B1	A1B1 (AFM)	A1B1 (AFM)	A2B2	A2B2	ТВ	Yes
	T0240o	63%	A3	A3	A2	N/A	A3	AF-max	Yes
18 Easy /	H0232	57%	A2B2	A2B2	A2B2	A2B2	A2B2	AF-max + AF-avg + TB	Yes
Medium	H0272	57%	A1B1C1D1E1F1G1H1I1	N/A	N/A	A1B1C1D1E1F1G1H1I1	A1B1C1D1E1F1G1H1I1	ТВ	Yes
meanan	H0220	53%	A1B4	A1B1	A1B1	A1B4	A1B4	ТВ	Yes
	T0237o	41%	A4	A4	A4	N/A	A4	AF-max + AF-avg	Yes
Accuracy of	H0233	38%	A2B2C2	A1B1C1	A1B1C1	A2B2C2	A2B2C2	ТВ	Yes
Ton 1 -	H0227	37%	A1B6	N/A	N/A	A1B6	A1B6	ТВ	Yes
	T0235o	37%	A6	A6	A6	N/A	A6	AF-max + AF-avg	Yes
/1%	T0234o	34%	A3	A3	A3	N/A	A3	AF-max + AF-avg	Yes
Best of Top 3	H0229	31%	A1B1	A1B1	A2B2	N/A	A2B2	AF-avg	Yes
= 93%	H0230	31%	A1B1	A2B2	A2B2	N/A	A2B2	AF-max + AF-avg	Yes
30/0	H0217	28%	A2B2C2D2E2F2	N/A	N/A	A2B2C2D2E2F?(1/2)	A2B2C2D2E2F1	ТВ	No
	H0258	25%	A1B2	A1B1	A1B2	A1B2	A1B2	AF-avg + TB	Yes
10 Hard	T0218o	25%	A2	A3	A3	A2	A2	ТВ	Yes
	H0236	24%	A3B6	A3B3	A3B3	N/A	A3B3	AF-max + AF-avg	Yes
	T0270o	22%	A6	A3	A3	A6	A6	ТВ	Yes
Note:	H0244	9%	A2B2C2	A2B2C1	A2B2C1	N/A	A2B2C1	AF-max + AF-avg	Yes
MULTICOM_human is	H0267	7%	A2B2	A1B1	A1B1	A1B1	A1B1	AF-max + AF-avg + TB	Yes
similar to MULTICOM	H0265	0%	A9B18	A1B1	A1B1	N/A	A1B1	AF-max + AF-avg	No
	Accuracy			14 / 25 = 56% (50%)	12 / 25 = 48% (43%)	<u>14</u> / 17 = 82% (50%)	20 / 28 = 71%	71%	93%

Homomultimer (Top-1 Accuracy = 100%)

T0237o, A4, No template

Predicted A4 Model

T02700, A6

Use templates to correct AF3 predictions

	True		Stoichiometry selected by max	Final prediction
Target	Stoichiometry	Candidates	ranking score	of MULTICOM
Г0270о	A6	A2,A3,A4,A5,A6,A9	A3	A6

22% correctness

Why does it work well for homo-multimers?

- Fewer choices
- more symmetry
- more template information

Hetero-Multimers: Top-1 Accuracy = 58%; Best-of-top-3 Accuracy = 89.5%

H0245, A1B1, No Template

Why is it harder to predict stoichiometry of hetero-multimers?

- More combinations
- Less symmetry
- Fewer templates
- Ambiguity in compatible stoichiometries (A1B1 and A2B2)

H0220, A1B4

Using templates to correct AF3 predictions

53% correctness

H0267, A2B2, Under-prediction (Tetramer to Dimer Failure)

	True		Stoichiometry selected by max	Stoichiometry by	Prediction of
Target	Stoichiometry	Candidates	ranking score	template	MULTICOM
H0267	A2B2	A1B1,A1B2,A2B1,A2B2,A4B4	A1B1	A1B1	A1B1

Dimer VS tetramer (compatible, confused)

7% correctness

H0208, A1B1, Over-prediction (Dimer to Tetramer Failure)

Dimer VS tetramer (compatible, confused)

Incorrectly interpret templates

66% correctness

H0244, A2B2C2, Not Consider Symmetry Enough

H0265, A9B18, Filament, Too Big, Failed to Propose Stoichiometry

What Went Right?

- Templates for proposing candidate stoichiometries
- AF3 ranking score for selecting stoichiometries (partially successful)
- Combined template-based and AF3-based prediction

What Went Wrong? X

- Failed to resolve the ambiguity in some compatible stoichiometries (e.g., dimer VS tetramer)
- Did not consider symmetry enough
- Constrained by protein size limit set by AlphaFold

TM-Scores and Interface Scores of MULTICOM_human in Phase 0 (26 Targets)

Interface Score of Top-1 Models (average of ICS and IPS)

Z-scores of TM-scores of Top-1 Models of MULTICOM_human on 26 Targets

H0215, A1B1, Nanobody Complex, Hard

AF2 model TM-score: 0.99 ICS: 0.87 IPS: 0.86 Z-score: 2.2

AF2 better than (>) AF3

Red & blue: Chain A & B of MULTICOM_human model 1 Parameters: 21 cycles, no template, or FoldSeek MSA, 1000 models

Brown: true structure

H0233, A2B2C2, Antibody, Hard

Fab 3H4 complex, virus capsid protein

AF3 model TM-score: 0.99 ICS: 0.87 IPS: 0.90 Z-score: 1.4

Selected from 500 AF3 models AF3 better than (>) AF2

A2 (Red & magenta) B2 (Blue) C2 (Green) of MULTICOM_human model 1

Brown: true structure

H0245, A1B1, FUNComplex, Shallow MSA, Hard

AF2 model TM-score: 0.94 ICS: 0.86 IPS: 0.85 Z-score: 1.20

FoldSeek MSA Selected from 1000 AF2 models

Red & blue: Chains A and B of MULTICOM_human model 1

Brown: true structure

T0234o, A3, Better Stoichiometry Prediction

(only 34% groups are correct in stoichiometry)

Red & blue & green: Chains A, B, C of MULTICOM_human Model 1

Brown: true structure

Model 1 AF3 model TM-score: 0.93 ICS: 0.26 IPS: 0.7 Z-score: 0.99 Beta tube predicted correctly!

Model 3 AF2 + DeepMSA MSA TM-score: 0.97 Best among all CASP16 models Selected by average of GATE and AF confidence score

T0218o, A2, Template-based + AF3 Model

Ν A top ranked AF3 model

True Structure

Template 4W8J

ICS: 0.40 **IPS: 0.43 Z-score: 1.92**

H0227, A1B6, 5689 Residues, Divide and Conquer

+ =

AF3-predicted A1B6 model Subunit B: Residue 1-745 AF3-predicted B6 model Subunit B: Residue 390 - 877 Combined A1B6 model TM-score: 0.91 ICS: 0.59 IPS: 0.68 Z-score: 0.92

T02570, A3, Tube vs Globular, Failure

Enterobacteria phage T5

MULTICOM_human model (AF3) TM-score: 0.55 ICS: 0.87 IPS: 0.94 Z-score: 0 True structure

More Globular, Hallucination of AF3

Straight Tube

AF3 Outperformed AF2 on 19 Common Targets in Phase 0 (top-1 model)

MULTICOM_human Outperformed AF3 on 23 Targets in Phase 0 (top-1 model)

MULTICOM_human Outperformed AF2 on 19 Targets in Phase 0 (top-1 model)

Top 1 vs Best of 5 Models of MULTICOM_human on 26 Targets in Phase 0

- Select correct stoichiometry as no.
- Select correct/best model as no. 1

What Went Right?

- Used both AlphaFold3 and AlphaFold2 to generate models (antibody, nanobody, large complexes)
- Used different MSAs and parameters to generate thousands of models (e.g., FoldSeek MSAs & AFSample parameters)
- Used multiple model ranking metrics to select five models and consider alternative and diverse models when uncertain
- Dealt with the failure and limitation of AlphaFold (divide & conquer and templates)

What Went Wrong?

- Failed to select correct/best (top-1) models for some (hard) targets when multiple conflicting conformations existed (antibody/nanobody, AF3 vs AF2 models; H0233 and T02340)
- Failed to generate good/correct models for several non-globular protein structures (e.g., T02570, phage tube; T1240, A3) and special large targets such as filament (e.g., H0265/H1265, A9B18; T1295, A8)

Conclusion

Acknowledgements

- MULTICOM4 made exciting progress in stoichiometry prediction by combining template information and AF3 model ranking scores.
- MULTICOM4 generated correct models for all but several complex targets using AF3 and AF2 with diverse inputs and parameter settings.
- Model ranking has been improved but still cannot consistently select best/correct models as top 1 from conflicting conformations.
- Handling failure and limitation of AlphaFold is useful.

Jian Liu

Pawan Neupane

