GuijunLab-QA GuijunLab-Human

Evaluation of Protein Complex Quality using DeepUMQA-X Server

Presenter: Fang Liang (PHD candidate) Mentor: Guijun Zhang (Professor)

College of Information Engineering Zhejiang University of Technology

CASP16, December 2024

Email: zgj@zjut.edu.cn

*http://www.zhanglab-bioinf.com/

CONTENTS

— CONTENTS —

01 DeepUMQA-X 02 Components of DeepUMQA-X 03 Results

- Consensus EMA methods can show good performance when the quality of the model pool is good. Single-model EMA methods can show better performance than the consensus method when the quality of the model pool is poor.
- How to leverage the advantages of single-model methods and consensus methods to improve the performance of protein model quality assessment?

DeepUMQA-X server Pipeline

Single-model EMA Methods

Single-Model Method 1 for IDDT (GraphCPLMQA2)

Local assessment of complex model quality using enhanced network and Evoformer representation based on GraphCPLMQA (GuijunLab-Pathreader EMA)

GraphCPLMQA Liu et al., BIB 2024

Single-Model Method 2 for TM-score

Evaluation of protein complex quality based on multivariate representation using hierarchical networks (GuijunLab-Complex EMA)

Single-Model Methods of Dataset

1,443,856 models

The construction process of monomer database and complex database

Protein Features of Single-Model Methods

Geometry features

- Triangle Position (USR improved version)
- Voxelization
- Distance and orientation
- Backbone angle and length
- Second structure

Sequence features

- Amino Acid Properties
- Relative position encoding

Evolution features

- Embedding of protein language models
- MSA Embedding of AlphaFold

Statistical features

- Rosetta energy
- Blosum62 score matrix

Consensus EMA methods

Structural Alignment of Consensus Methods

A naive way to obtain consensus information between multiple models: Structural alignment

How to quickly align large assemblies or massive complex model structures?

• Interface Sequence Align (At least 10 times faster)

QMODE3: Model Selection Pipeline

- MassiveFold Sample Models (structural clustering)
- MassiveFold Sample Models-2 (MassiveFold Self-Assessment Selection)

Results

Case Study: T1201o - Homomer

Case Study: T1201o - Homomer

Case Study: H1213 - Heteromer

Summary of submitted prediction models

Туре	Pearson	AUC	Top1Loss
SCORE	0.944	0.585	0.164
QSCORE	0.960	0.642	0.07
Local	0.789	0.812	-

Stoichiometry:A1B1C1D1E1 (1373AA)

Case Study: H1213 - Heteromer

Case Study: H1233 - Antibody antigen

Summary of submitted prediction models

Туре	Pearson	AUC	Top1Loss
SCORE	0.972	0.919	0.01
QSCORE	0.952	0.877	0.02
Local	0.803	0.762	-

Stoichiometry: A2B2C2 (1316AA)

Our Top1 Model TM-score: 0.990 DockQ: 0.866

Case Study: H1233 - Antibody antigen

Case Study: H1227 - Large assembly

Summary of submitted prediction models

Туре	Pearson	AUC	Top1Loss
SCORE	0.886	0.5	0.15
QSCORE	0.807	0.5	0.08
Local	0.581	0.824	-

Case Study: H1227 - Large assembly

Case Study: H1204 - Nanobody Complex

Conclusions

Work

- DeepUMQA-X Server
- GraphCPLMQA2 (Improved version)
- Global scoring Method
- Interface Sequence Align (Lightweight Structure Align)

Assessment Challenges

- Large Assemblies
- Antibody-antigen complex
- Ensemble structures

Group member and acknowledgements

CASP organizers

Dong Liu

Minghua

Hou

Haodong

Wang

Tianyou

Lei Xie Zhang

Xuanfeng

Zhao

Wang Cui

GuijunLab-EMA Group & PhD students

Guijun Zhang Lab members

Ministry of Science and Technology

College of information engineering, **Zhejiang University of Technology**

