
Predicting RMSD or Affinity of Protein-Ligand Complexes Using a Graph Transformer

Model developing Process

Result

Three models were developed

□SGraph_RMSD

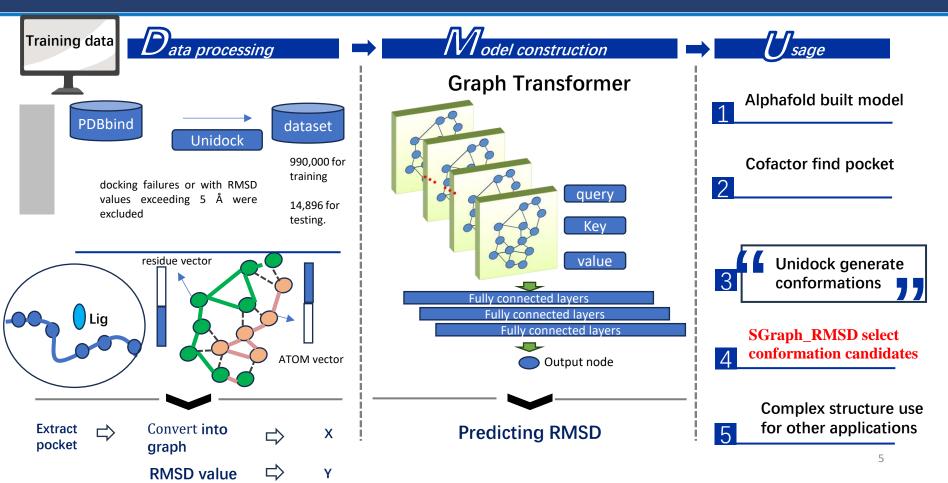
for predicting the RMSD of docked protein-ligand complexes

Graph_RG

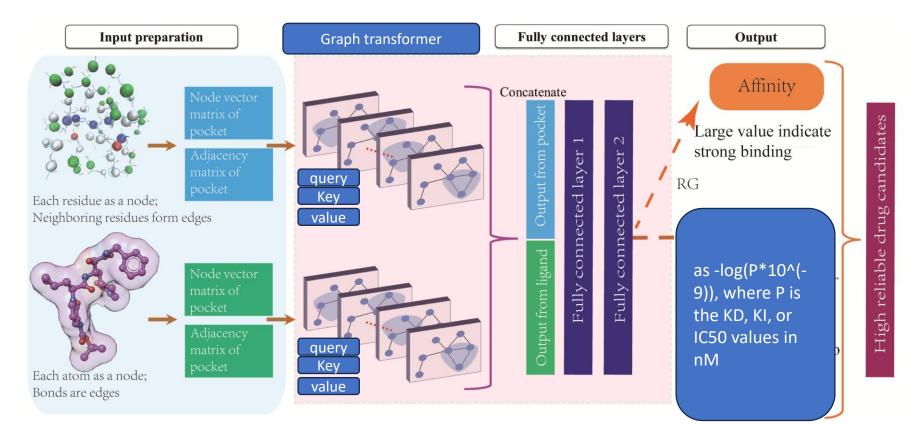
for predicting affinity when no complex is available, using separate graphs for the pocket and ligand

DSGraph_affinity

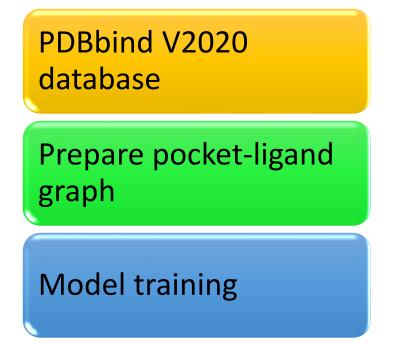
for predicting affinity based on the given protein-ligand complex interface



Introduction


Model developing Process

Result


SGraph_RMSD building process

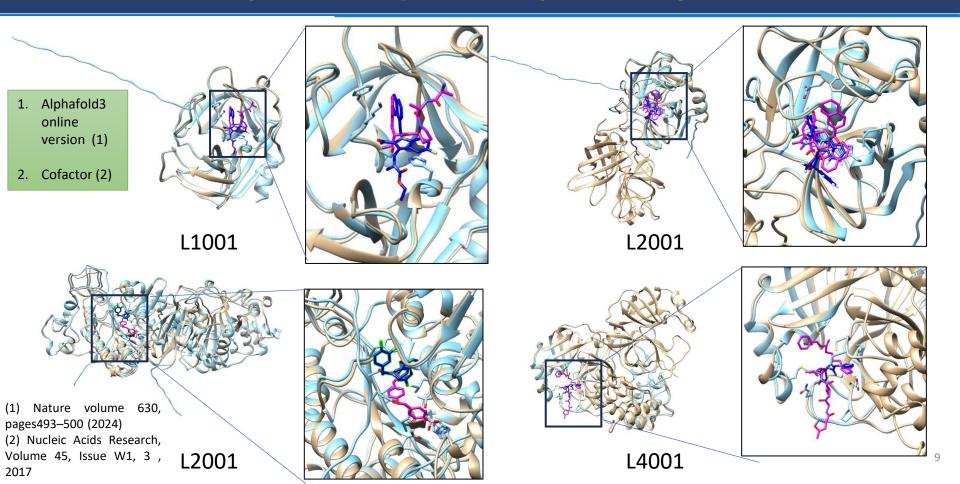
Graph_RG model architecture

SGraph_affinity building process

Leave the core set 2016 as test set

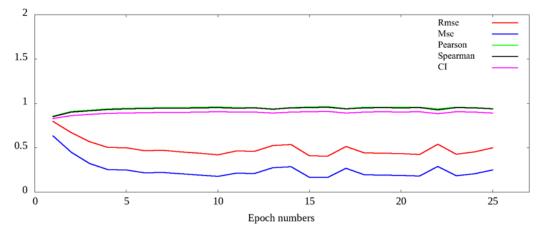
Same as Sgraph_RMSD

Model same as Sgraph_RMSD Label as Graph_RG

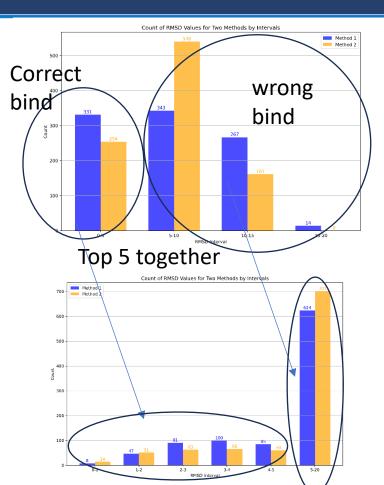


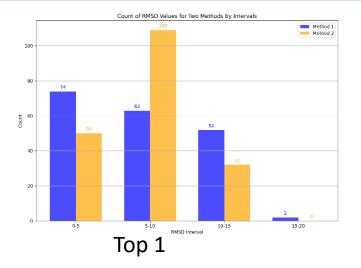
Introduction

Model developing Process


Identify correct pocket by exsiting methods

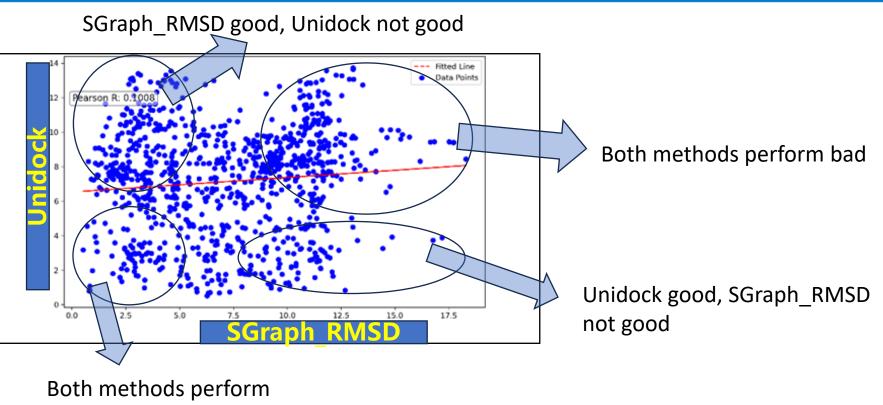
Test Performance during SGraph_RMSD training


Performance Values


Epoch	Rmse	Mse	Pearson	Spearman	CI
1	0.797	0.636	0.855	0.851	0.828
2	0.671	0.451	0.909	0.903	0.862
3	0.569	0.324	0.923	0.917	0.875
4	0.505	0.255	0.940	0.931	0.886
5	0.499	0.249	0.945	0.937	0.891
6	0.466	0.217	0.950	0.940	0.895
7	0.470	0.221	0.952	0.945	0.899
8	0.455	0.207	0.953	0.946 0.950	0.899
9	0.439	0.193	0.956		0.904
10	0.421	0.177	0.960	0.953	0.906
11	0.462	0.213	0.952	0.946	0.901
12	0.459	0.211	0.954	0.948	0.901
13	0.525	0.276	0.940	0.935	0.890
14	0.537	0.288	0.955	0.948	0.901
15	0.409	0.167	0.961	0.954	0.907
16	0.407	0.165	0.962	0.956	0.910
17	0.516	0.266	0.943	0.938	0.892
18	0.442	0.195	0.956	0.950	0.903
19	0.438	0.192	0.957	0.952	0.906
20	0.436	0.190	0.957	0.950	0.903
21	0.424	0.180	0.958	0.952	0.904
22	0.538	0.290	0.938	0.929	0.883
23	0.429	0.184	0.957	0.952	0.905
24	0.453	0.205	0.954	0.948	0.901
25	0.501	0.251	0.941	0.939	0.892

The performance of the **SGraph_RMSD** with different training epochs over the testing set.

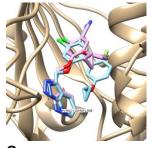
Compare with top predict of UniDock


Data for fast evaluate

All data exclude:

- 1. those native structure will bind to A and B
- 2. L4 data

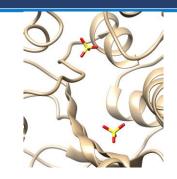
Stage 1 task


Can & Cannot (SGraph_RMSD)

good

Can & Cannot (SGraph_RMSD)

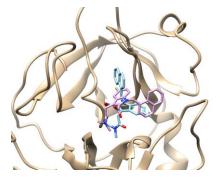
SGraph_ RMSD			Vina	
top	original rank	SGraph_RMSD	top	Vina
1	60	1.954	1	8.19
2	134	2.64	2	8.275
3	76	12.589	3	8.147
4	45	7.264	4	8.528
5	42	2.052	5	8.656


SGraph_RMSD good, Unidock perform not good

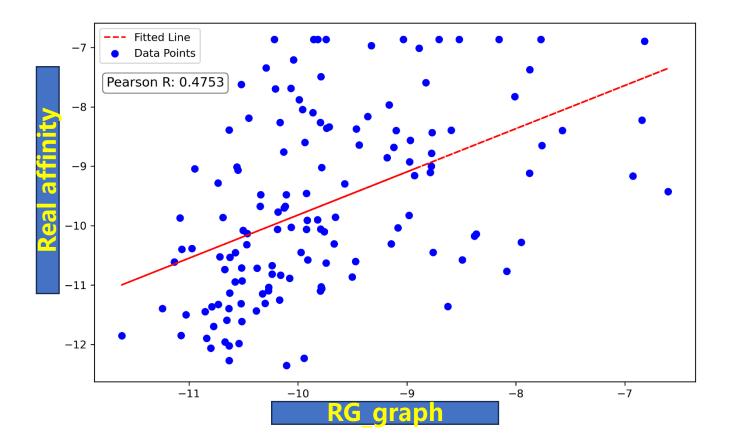
SGraph_						
RMSD			Vina			
top	original rank	SGraph_RMSD	top	Vi	na	
1	1	0.835		1	0.835	

L1013_0

Both methods perform good


SGraph_ RMSD			Vina	
	original rank	SGraph RMSD		Vina
ιοp	onginarrank	Solupin_ninsb	τοp	• ma
1	168	17.726	1	9.41
2	125	8.446	2	9.529
3	172	16.648	3	9.422
4	117	16.832	4	9.449
5	119	9.652	5	9.383

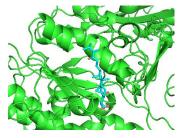
L3006_1

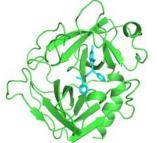

Both methods perform bad

SGraph_					
RMSD			Vina		
top	original rank	SGraph_RMSD	top	Vina	
1	153	5.787	1	0.93	
2	120	7.893	2	1.046	
3	283	7.696	3	3.895	
4	74	8.513	4	4.237	
5	77	8.224	5	1.751	
L1011 0					

Unidock good, SGraph_RMSD perform not good

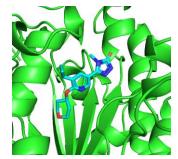
RG_graph prediction result

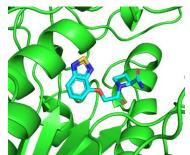

14

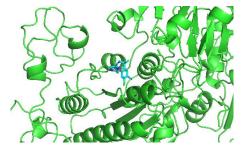

Stage 1 task

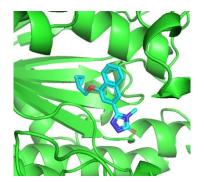
Can & Cannot (Graph_RG)

Differences are smallest in the following three lines:

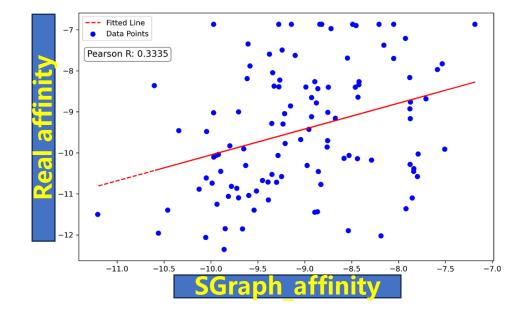

L3109LG016_1: Your Value = -9.92, Experimental Value = -9.91, Difference = 0.01 L1008LG016_1: Your Value = -8.77, Experimental Value = -8.78, Difference = 0.01 L3038LG016_1: Your Value = -10.06, Experimental Value = -10.03, Difference = 0.04



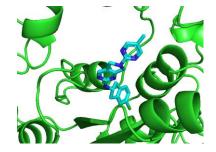


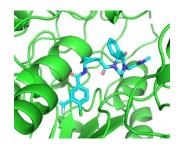

Differences are largest in the following three lines:

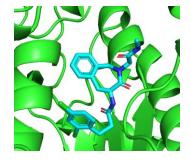
L3154LG016_1: Your Value = -9.82, Experimental Value = -6.86, Difference = 2.96 L3056LG016_1: Your Value = -9.86, Experimental Value = -6.86, Difference = 2.99 L3066LG016_1: Your Value = -10.22, Experimental Value = -6.86, Difference = 3.35



SGraph_affinity prediction result

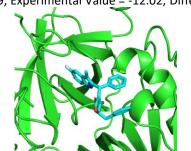

Epoch	Rmse	Mse	Pearson	Spearman	CI
11	1.616	2.611	0.710	0.710	0.759
12	1.311	1.720	0.716	0.717	0.763
13	1.396	1.949	0.722	0.720	0.764
14	1.317	1.735	0.723	0.718	0.764
15	1.339	1.793	0.730	0.730	0.769
16	1.547	2.394	0.713	0.714	0.762
17	1.472	2.167	0.735	0.736	0.771
18	1.431	2.049	0.731	0.733	0.770
19	1.275	1.625	0.735	0.734	0.771
20	1.273	1.620	0.742	0.743	0.775
21	1.384	1.914	0.738	0.736	0.773
22	1.392	1.937	0.738	0.738	0.773
23	1.377	1.895	0.740	0.741	0.774
24	1.388	1.926	0.745	0.744	0.776
25	1.268	1.608	0.738	0.737	0.773
26	1.350	1.822	0.737	0.740	0.774
27	1.430	2.045	0.732	0.734	0.771
28	1.503	2.260	0.740	0.739	0.774
29	1.483	2.201	0.738	0.740	0.774
30	1.309	1.714	0.739	0.740	0.774

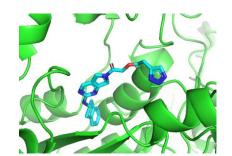



Stage 2 task

Can & Cannot (SGraph_affinity)

Differences are smallest in the following three lines: L3130: Your Value = -9.80, Experimental Value = -9.83, Difference = 0.03 L3120: Your Value = -9.23, Experimental Value = -9.29, Difference = 0.06 L3028: Your Value = -8.46, Experimental Value = -8.40, Difference = 0.06





Differences are largest in the following three lines:

L3131: Your Value = -8.54, Experimental Value = -11.90, Difference = 3.36L1009: Your Value = -7.92, Experimental Value = -11.36, Difference = 3.44L3047: Your Value = -8.19, Experimental Value = -12.02, Difference = 3.84

Conclusion

1. SGraph_RMSD

1) Deep learning can help to identify more accuracy binding pose compare to tradition method.

2) To highly accurate predict binding pose is still challenge.

2. Graph_RG

1)Only pocket information and ligand information without interface residue-atom pairs

information can effectively estimate affinity.

2)It is not perfect but still a current valuable choice in drug screening task.

3. SGraph_affinity

1) Single conformation may not enough to accurately estimate free energy

2) Small data set with complicated input representation and model architecture may lead to overfitting

Acknowledge

Thanks CASP16 organizers provide us such opportunity to check our Methods

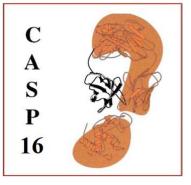
John Moult, Gilson Michael, Andriy Kryshtafovych,

Thanks SIAT Colleagues

John Z.H. Zhang

Hei Wun Kan

Konda Mani Saravanan



Rongfeng Zou

SHENZHEN UNIVERSITY OF ADVANCED TECHNOLOGY

Many thanks to the developers of the softwares(such as alphafold, Vina, UniDock, Cofactor, etc.) that we applied in this work