

CASP16 Macromolecular Ensembles

Namita Dube Yuanpeng Janet Huang Theresa Ramelot GVT Swapna T Benavides Bruce Donald Terry Oas Susan Tsutakawa

Andriy Kryshtafovych John Moult

CASP Special Interest Group on Ensembles of Conformations **Protein Dynamics**

Conformational coordinate

www.mdpi.com

Alternative Conformational States

- Hinges (HG)
- Lids / Cryptic Sites (LC)
- Rearrangements (RA)
- Fold Switching (FS)
- Intrinsically disordered proteins (ID)
 - linkers between domains
- Oligomer State

Modulators

- Boltzmann Distributions (BD)
 - Temperature
 - Pressure
 - "Invisible states"
- Ligand Binding (LB)
- Biomolecule Binding (BB)
- pH change (PH)
- Mutation / (MP)
 Postranslational modification

Alternative Conformational States

- Hinges (HG)
- Lids / Cryptic Sites (LC)
- Rearrangements (RA)
- Fold Switching (FS)
- Intrinsically disordered proteins (ID)
 - linkers between domains
- Oligomer State

Modulators

- Boltzmann Distributions (BD)
 - Temperature
 - Pressure
 - "Invisible states"
- Ligand Binding (LB)
- Biomolecule Binding (BB)
- pH change (PH)
- Mutation / (MP) Postranslational modification

Features of CASP16 Ensemble Targets

<u>target</u>	<u>class</u> <u>comments</u>		nres		<u> </u>	method	models	groups	models	<u>class</u>	
T1214holo A1 Porin – liga	and complex (apo in F	677 PDB)		EM			5	77 38	35 LC	/ LB	
M1228v1/v2 A4B2C2	D2E3 663 2-state Protein-DNA d	complex	EM		:	5 + 5				HG	/ BB
T1228v1/ v2A1 2-state Pro	545 otein-DNA complex		EM		:	5 + 5		69 / 68	345 / 340	HG / BB	
M1239 v1/v2 A4B2C2[2-sta	D2E2 738 ate Protein-DNA comple	ж	EM		:	5 + 5					HG/ BB
T1239v1 / v2	A1 2-state Protein-DNA o	620 complex		EM			5 + 5		69 / 70	345 / 350	HG/ BB
T1249v1 / v2 2-state Pro	A3 otein trimer	488		EM		5	+ 5	144 / 144	698 / 698	RA / BD	
T1294v1 / v2 Protein dimer	A2	214	X-ray		5 + 5		112 / 112	558 / 558	RA / BD		2-state
R1203v1 / v2 RNA monomer	R1	134	X-ray (2.85 Å)	5			43 / 49	183 / 183	HG / BD		2-state
R1253v1 / v2 RNA octamer	R8	574	EM		5+5		27 /27	121 / 118	RA / BD		2-state
R1283 Monomer / tetramer / o	R1, R4, R8 580 ctamer		EM		5 + 5 +	5		32	156	OS	

Features of CASP16 Ensemble Targets

<u>target</u>	<u>class</u> <u>comments</u>		nres		<u>r</u>	method	models	groups	models	<u>class</u>	
T1214holo A1 Porin – liga	nd complex (apo in F	677 PDB)		EM		Ę	5	77 38	5 LC .	/ LB	
M1228v1/v2 A4B2C2D	02E3 663 2-state Protein-DNA c	complex	EM		Ę	5 + 5				HG	/ BB
T1228v1/ v2A1 2-state Prot	545 tein-DNA complex		EM		Ę	5 + 5		69 / 68	345 / 340	HG / BB	
M1239 v1/v2 A4B2C2D 2-sta	02E2 738 ate Protein-DNA comple	ex	EM		Ę	5 + 5					HG/ BB
T1239v1 / v2	A1 2-state Protein-DNA c	620 complex		EM			5 + 5		69 / 70	345 / 350	HG/ BB
T1249v1 / v2 2-state Prot	A3 tein trimer	488		EM		5 +	+ 5	144 /144	698 / 698	RA / BD	
T1294v1 / v2 almost identical	A2	214	X-ray		5 + 5		112 / 112	558 / 558	RA / BD		2-states
R1203v1 / v2 RNA monomer	R1	134	X-ray (2.85 Å)	5			43 / 49	183 / 183	HG / BD		2-state
R1253v1 / v2 models	R8	574	EM		5+5		27 /27	121 / 118	RA / BD		no good
R1283 conformation in all state	R1, R4, R8 580 s identical		EM		5 + 5 +	5		32	156	OS	

GVT Swapna S Aiyer M Roth J Hao L Ma

N Dube

Modeling Continuous Distributions

T1214

Challenges

- Differences may be localized while overall structures of two states are nearly identical
- May be differences just due to inaccuracy of model
- How well did modelers find two (or multiple) states

E coli adenylate kinase

adapted from Onuchic and coworkers JMB 2007

T1214, 677 residues,

Stoichiometry: A1 - Monomer, Exp Method: EM

Ligand induced conformational changes Protein has 2 conformations open/closed

apo – in PDB challenge is to model to holo structure

Models Submitted 5

purple + orange: original apo structure in PDB cyan + yellow: holo complex with PQQ bound

Rhys Grinter, Department of Microbiology, Monash University, Clayton, Australia

Scoring

Relative Overall Multi-Domain Orientations (0 to 100) global GDT-TS LDDT

For single domain or individual domain AU: Composite Score sensitive to both Global and Local Structural Variations (each one normalized to 0 to 100) global GDT-TS LDDT

local LDDT -- from selected regions "local GDT-TS" -- LGA Dev value provides CA-CA distance -- from selected regions

global RMSD - sensitive to overall global superimposition and local structural variations

Fitting of Sigmoid Function to RMSD values

RMSD = 0Score = 100RMSD = infinityScore = 0

L/(1+exp(-k*(x-x0)), L=105, k=-0.77, x0=3.77.

Use **RMSD** when you need a precise measure of average atomic displacement, especially for small changes.

Use **GDT-TS** for a more comprehensive assessment of structural similarity that is robust to variations and outliers.

RMSD = 0 Å: σ _RMSD \approx 100 (perfect alignment since RMSD is zero). RMSD = 1 Å: σ _RMSD \approx 95-99 (most residues would fall within 1 Å, close to perfect). RMSD = 2 Å: σ _RMSD \approx 80-90 (many residues would fall within the 2 Å cutoff,

good alignment). RMSD = 4 Å: σ _RMSD \approx 50-70 (residues spread more widely, some within the 4 Å cutoff).

RMSD = 8 Å: σ _RMSD \approx 0-20 (most residues will be further away from the reference, poor alignment). Used these points for fitting: (0, 100), (1, 95), (2, 80), (4, 50) and (8, 0)

Fitting of Sigmoid Function to Local Ca Dev

Dev = 0Score = 100Dev = infinityScore = 0

L/(1+exp(-k*(x-x0)), L=105, k=-0.77, x0=3.77.

 $Dev = 0 \text{ Å: } \sigma_Dev \approx 100$ $Dev = 1 \text{ Å: } \sigma_Dev \approx 95-99$ $Dev = 2 \text{ Å: } \sigma_Dev \approx 80-90$ $Dev = 4 \text{ Å: } \sigma_Dev \approx 50-70$

 $\text{Dev} = 8 \text{ Å: } \sigma \text{Dev} \approx 0 - 20$

Used these points for fitting: (0, 100), (1, 95), (2, 80), (4, 50) and (8, 0)

Composite Scores for Individual Domains

	LDD)T	GDT_TS	σ_{RMSD}	local_LDDT
σ_	Dev				
Σ1	1.0*v	/al	1.0*val	1.0*val	1.0*val
1.0*val					
Σ2	1.0*v	/al	1.0*val		1.0*val
1.0*val					
Σ3	δ <u>δ</u>	100.0	if ^{&} value i	s > 80	1.0*val
	1.0*val	else	$\delta = 0$		local LDDT and a Dev are
Σ4	δ		δ	1.0*val	computed as average over
1.0*val					residues in "regions of
					interest"

yellow – bound to PQQ

аро

015 – Yellow 208 – Magenta 298, 386, 408 – Blue Xray - green

015 PEZYFoldings

298 ShanghaiTech-human 386 ShanghaiTech-Ligand 208 falcon2 408 SNU-CHEM-lig 55 LCDD-team (462 Zheng)

- Reference T1214v1
- ----- Top Groups (015, 298, 386, 208, 408, 055) Groups that don't have ligands
- Regions of interest

M1228

T1228_v1, 545 residues T1228_v2, 545 residues

Exp Method: EM

Protein subunits of M1228 complex Two distinct conformations in the EM data

Challenge is to model both states

Models Submitted 5 V1 + 5 V2

Phoebe Rice, University of Chicago, Biochemistry & Molecular Biophysics

TM-score =	TM-score =	TM-score =	TM-score =
0.696	0.716	0.469	0.468

USalign


```
if best Predictor model v_m matches Model State 1A
assign v_m = 1A
chose best v_n to 1B
compute \Sigma^* = \Sigma_m_1A + \Sigma n_1B
```

else

```
if best Predictor model v_m matches Model State 1B
assign v_m = 1B
chose best v_n to 1A
compute \Sigma^* = \Sigma_m_1B + \Sigma n_1A
```

```
Rank groups by \Sigma^*
```

```
Used \Sigma = GDT_TS score
```

Two State Score: Did the predictors do well in predicting two distinct states?

TM scores

462 Zheng

481 Vfold
091 Huang-HUST
033 Diff
052 Yang-Server
304 AF3-server
262 CoDock

Ranking for M1228 No group did very well with both states - best cases were 462 Zheng / 481 Vfold Group 462 Zheng

TM-score = 0.716

TM-score = 0.438

v2

v1

T1228 Ranking of Best Model by Group against 2 Reference States

052, 375, 014, 241, 475

314, 022, 091, 110, 147

LDDT far less discriminatory

Ground Truth – T1228 Group 462 - Zheng

> State 1A V-shaped State

> > 462 Zheng204 Zou456 Yang-Multimer481 Vfold

State 1B Compact State

Ranking for T1228

M1239

T1239_v1, 620 residues T1239_v2, 620 residues

Exp Method: EM

Protein subunits of M1239 complex Two distinct conformations in the EM data

challenge is to model both states Models Submitted 5 V1 + 5 V2

T1228

Phoebe Rice, University of Chicago, Biochemistry & Molecular Biophysics

TM-score	TM-score	TM-score	TM-score
= 0.457	= 0.460	= 0.435	= 0.489

M1239

- 294 KiharaLab
- 262 CoDock
- 208 DeepFold-server
- 235 isyslab-hust
- 481 **Vfold**
- 462 **Zheng**

ranking for M1239

TS294

294

0.8

Group 294 KiharaLab

TM-score = 0.460

TM-score= 0.664

v1 state

v2 state

M1239v2

M1239v1TS294_2

USAlign

Group

Ground Truth – T1239 Group 462

> State 1A V-shaped State Group 462

State 1B Compact State Group 462

D4

State 1B Compact State Group 419 419 CSSB-Human 221 CSSB_FAKER 028 NKRNA-s 051 MULTICOM 345 MULTICOM_human 235 isyslab-hust 208 falcon2 462 Zheng

ranking for T1239

Assessment Units

T1224 (1 domain – 1 target) Global + Local composite

T1228 (4 domains – 20 targets)

1A (v1)Global onlyGDT_TS1B (v1_1)Global onlyGDT_TS2A (v2)Global onlyGDT_TS2B (v2_1)Global onlyGDT_TS

T1239 (4 domains – 10 targets)1A (v1)GDT_TS1B (v1_1)GDT_TS

1A.D1 1A.D2 1A.D3 1A.D4 Global + Local composite 1B.D1 1B.D2 1B.D3 1B.D4 Global + Local composite

31 Assessment Units

```
1A.D11A.D21A.D31A.D41B.D11B.D21B.D31B.D42A.D12A.D22A.D32A.D42B.D12B.D22B.D32B.D4composite222
```

Global + Local composite Global + Local composite Global + Local composite Global + Local

Assessment Units

T1224 (1 domain – 1 target) Global + Local composite

T1228 (4 domains – 20 targets)

1A (v1)Global onlyGDT_TS1B (v1_1)Global onlyGDT_TS2A (v2)Global onlyGDT_TS2B (v2_1)Global onlyGDT_TS

T1239 (4 domains – 10 targets)1A (v1)GDT_TS1B (v1_1)GDT_TS

1A.D1 1A.D2 1A.D3 1A.D4 Global + Local composite 1B.D1 1B.D2 1B.D3 1B.D4 Global + Local composite

31 Assessment Units

1A.D1 1A.D2 1A.D3 1A.D4
1B.D1 1B.D2 1B.D3 1B.D4
2A.D1 2A.D2 2A.D3 2A.D4
2B.D1 2B.D2 2B.D3 2B.D4 composite

Global + Local composite Global + Local composite Global + Local composite Global + Local

T1228 domains

T1228 local LDDT to reference

D1 overlay 1A vs 1B

Composite Scores for Individual Domains

	LDD)T	GDT_TS	σ_{RMSD}	local_LDDT
σ_	Dev				
Σ1	1.0*v	/al	1.0*val	1.0*val	1.0*val
1.0*val					
Σ2	1.0*v	/al	1.0*val		1.0*val
1.0*val					
Σ3	δ <u>δ</u>	100.0	if ^{&} value i	s > 80	1.0*val
	1.0*val	else	$\delta = 0$		local LDDT and a Dev are
Σ4	δ		δ	1.0*val	computed as average over
1.0*val					residues in "regions of
					interest"

T1228 Group Rank by Best Model - 2 examples of 16 reference domain states

T1224 - Composite Global and Local Score Σ4

Rank

4 5 2 3 6 8 9 1 7 10 1A.D1 198 145 017 112 014 298 015 314 079 293 1A.D2 304 481 419 204 221 375 019 241 033 319 1A.D3 293 079 052 196 014 235 091 015 465 267 1A.D4 419 221 267 015 369 462 139 120 465 481

1B.D13144752870590141960221644563111B.D21470190912414560524620224501671B.D30510483454563110222350521674501B.D4148286304033419221204014262264

2A.D10524564750223881963123140514622A.D22042412874754813122124253193312A.D32930790524891962351471982672312A.D4267286369375241284139462120164

2B.D14621472874253193310513450752842B.D21103144620281474501670194182642B.D30514753113452354560220521674502B.D4314033241262294148462204231345

some top groups

462 **Zhang** 4

- 450 **OpenComplex_Server** 4
- 304 **AF3-server** 2
- 419 CSSB-Human 2
- 304 **AF3-server** 2

Ranking based on Composite Score does not discriminate performance between groups - many groups did equally well

Similar results with domains of T1239

T1249 v1/v2

- 488 residue long
- A3, Trimer
- Cryo-EM structure of an arenaviral spike complex
- 5+5 conformations
- EM experimental method
- 2 distinct conformations in EM data (open/closed)
- Metal ions are present in both conformations, but their coordination sites changes

Scores used:

Local Quality: IDDT provides insight into local structural accuracy.
Interface Quality: DockQ_Avg assesses the quality of protein-protein interfaces.

Ron Discin lab

TM-score = 0.97

TS304: AF3 server

R1203

HIV-1 Rev Response Element (RRE) Stem -Loop II (SLII) open and closed conformations

R1: RNA monomer5 models submitted

134 residue long

Structure determined in 2 conformations

Tipo et al Nat Comm 15: 4198 (2024)

Best Global GDT – by Group

HIV-1 Rev Response Element (RRE) StemLoop II (SLII) open and closed conformations

R1203 local LDDT v1 vs v2

Best Composite Global-Local Score – by Group

Tipo et al Nat Comm 15: 4198 (2024)

Conclusions

Many predictors delivered excellent models of holo state for membrane porin T1214 – even when modeled without ligand bound

The alternative states of M1228 and M1239 protein-DNA complexes were identified by some groups – but with low accuracy

Some predictors can identify "V-shaped" vs "compact" states of T1228 and T1239. However, the GDT-TS scores for each of these states are only 50 – 60.

AF3 Server had best performance for modeling alternative conformational states of trimeric target T1249

Several groups delivered good models of open/closed states of HIV-1 Rev Response Element (RRE) Stem-Loop II (SLII) R1203. Mostly AF3-based methods

Future CASP experiments should better distinguish multiple conformations accessible for the apo protein from alternative conformations induced by partner binding.