16th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction
`
Menu
#
GR code
GR name
Domains Count
SUM Zscore (>-2.0)
Rank SUM Zscore (>-2.0)
AVG Zscore (>-2.0)
Rank AVG Zscore (>-2.0)
SUM Zscore (>0.0)
Rank SUM Zscore (>0.0)
AVG Zscore (>0.0)
Rank AVG Zscore (>0.0)
1
052
Yang-Server
74
36.4436
1
0.4925
6
40.8978
1
0.5527
4
2
022
Yang
74
32.9468
2
0.4452
10
39.0158
2
0.5272
7
3
456
Yang-Multimer
74
31.1402
3
0.4208
13
36.3137
3
0.4907
11
4
051
MULTICOM
74
23.0815
5
0.3119
18
33.3714
4
0.4510
14
5
208
falcon2
73
21.7877
7
0.3259
16
33.3229
5
0.4565
13
6
465
Wallner
74
7.4037
28
0.1001
57
33.2892
6
0.4499
15
7
019
Zheng-Server
74
25.5830
4
0.3457
15
31.7675
7
0.4293
19
8
028
NKRNA-s
60
-1.2319
34
0.4461
9
31.6574
8
0.5276
6
9
287
plmfold
74
18.7256
12
0.2530
28
31.1692
9
0.4212
21
10
110
MIEnsembles-Server
74
23.0680
6
0.3117
19
30.1535
10
0.4075
25
11
319
MULTICOM_LLM
74
19.2839
11
0.2606
27
29.8795
11
0.4038
27
12
075
GHZ-ISM
70
12.6455
24
0.2949
21
29.8002
12
0.4257
20
13
284
Unicorn
70
12.1924
26
0.2885
22
29.3472
13
0.4192
22
14
294
KiharaLab
74
14.6986
17
0.1986
41
29.3153
14
0.3962
30
15
462
Zheng
74
19.6521
10
0.2656
26
29.0969
15
0.3932
31
16
301
GHZ-MAN
73
16.2558
15
0.2501
29
29.0668
16
0.3982
28
17
015
PEZYFoldings
74
0.5862
33
0.0079
62
28.6854
17
0.3876
33
18
147
Zheng-Multimer
74
21.1799
8
0.2862
23
28.3640
18
0.3833
35
19
331
MULTICOM_AI
74
15.7602
16
0.2130
38
28.1391
19
0.3803
37
20
163
MultiFOLD2
74
12.2650
25
0.1657
48
27.5408
20
0.3722
40
21
241
elofsson
74
21.0431
9
0.2844
24
27.5200
21
0.3719
41
22
345
MULTICOM_human
74
14.5853
18
0.1971
42
27.2515
22
0.3683
42
23
304
AF3-server
73
18.5462
13
0.2815
25
26.3829
23
0.3614
44
24
293
MRAH
74
13.3799
20
0.1808
43
26.3215
24
0.3557
48
25
079
MRAFold
74
13.0197
22
0.1759
46
26.1474
25
0.3533
49
26
122
MQA_server
64
-6.6338
39
0.2088
39
26.0332
26
0.4068
26
27
267
kiharalab_server
74
5.6004
29
0.0757
60
25.8154
27
0.3489
50
28
164
McGuffin
74
13.2313
21
0.1788
44
25.7782
28
0.3484
51
29
425
MULTICOM_GATE
74
16.5382
14
0.2235
34
25.6706
29
0.3469
53
30
475
ptq
67
2.2492
30
0.2425
31
25.5626
30
0.3815
36
31
264
GuijunLab-Human
73
14.1266
19
0.2209
35
25.1359
31
0.3443
54
32
148
Guijunlab-Complex
74
12.8969
23
0.1743
47
23.7760
32
0.3213
61
33
031
MassiveFold
66
-7.5043
40
0.1287
55
23.6643
33
0.3586
46
34
312
GuijunLab-Assembly
73
8.4045
27
0.1425
50
23.3636
34
0.3200
62
35
196
HYU_MLLAB
74
-2.0933
35
-0.0283
68
22.0040
35
0.2974
65
36
269
CSSB_server
60
-17.3287
45
0.1779
45
21.8527
36
0.3642
43
37
375
milliseconds
60
-14.0776
43
0.2320
33
21.5140
37
0.3586
45
38
272
GromihaLab
70
-29.1484
50
-0.3021
89
21.3057
38
0.3044
63
39
388
DeepFold-server
74
-14.1654
44
-0.1914
84
20.9061
39
0.2825
67
40
298
ShanghaiTech-human
62
-18.2179
46
0.0933
59
20.8692
40
0.3366
57
41
314
GuijunLab-PAthreader
71
0.8022
32
0.0958
58
20.5574
41
0.2895
66
42
145
colabfold_baseline
59
-30.4079
51
-0.0069
65
20.4677
42
0.3469
52
43
235
isyslab-hust
72
-3.9046
36
0.0013
64
19.9934
43
0.2777
69
44
369
Bhattacharya
66
-9.1693
42
0.1035
56
19.8223
44
0.3003
64
45
091
Huang-HUST
56
-28.5669
49
0.1327
53
19.1094
45
0.3412
56
46
262
CoDock
57
-36.7950
54
-0.0490
71
18.5368
46
0.3252
59
47
286
CSSB_experimental
72
-6.1763
38
-0.0302
69
18.2555
47
0.2535
76
48
014
Cool-PSP
74
-4.6634
37
-0.0630
72
18.0803
48
0.2443
78
49
274
kozakovvajda
36
-59.1262
58
0.4687
7
17.9896
49
0.4997
10
50
419
CSSB-Human
74
1.2122
31
0.0164
61
17.6264
50
0.2382
79
51
494
ClusPro
36
-59.7497
59
0.4514
8
17.3660
51
0.4824
12
52
198
colabfold
59
-40.0905
55
-0.1710
83
16.1454
52
0.2737
70
53
059
DeepFold
74
-20.4987
47
-0.2770
88
15.4688
53
0.2090
80
54
112
Seder2024easy
57
-41.5587
56
-0.1326
77
15.4348
54
0.2708
71
55
423
ShanghaiTech-server
59
-30.8715
52
-0.0148
67
15.3531
55
0.2602
74
56
322
XGroup
37
-61.0130
60
0.3510
14
15.2823
56
0.4130
23
57
311
RAGfold_Prot1
57
-35.9928
53
-0.0350
70
15.0121
57
0.2634
73
58
221
CSSB_FAKER
74
-7.9686
41
-0.1077
75
14.7065
58
0.1987
81
59
204
Zou
36
-67.5299
61
0.2353
32
14.0764
59
0.3910
32
60
017
Seder2024hard
56
-43.6414
57
-0.1365
78
13.9688
60
0.2494
77
61
212
PIEFold_human
74
-25.2276
48
-0.3409
90
12.8418
61
0.1735
86
62
489
Fernandez-Recio
36
-76.4868
65
-0.0135
66
11.9104
62
0.3308
58
63
219
XGroup-server
31
-78.3749
66
0.2460
30
11.6982
63
0.3774
38
64
323
Yan
31
-79.2777
67
0.2168
37
11.5501
64
0.3726
39
65
290
Pierce
27
-85.4034
72
0.3184
17
11.0192
65
0.4081
24
66
358
PerezLab_Gators
34
-79.7986
70
0.0059
63
11.0041
66
0.3237
60
67
023
FTBiot0119
39
-75.8093
63
-0.1490
81
10.9797
67
0.2815
68
68
171
ChaePred
23
-94.9038
75
0.3085
20
9.9156
68
0.4311
18
69
450
OpenComplex_Server
73
-84.6331
71
-1.1320
97
9.4718
69
0.1298
91
70
218
HIT-LinYang
21
-97.0635
77
0.4255
12
9.3384
70
0.4447
16
71
167
OpenComplex
74
-86.5112
73
-1.1691
98
9.1292
71
0.1234
92
72
085
Bates
25
-94.7330
74
0.1307
54
8.8977
72
0.3559
47
73
397
smg_ulaval
15
-109.7757
79
0.5483
3
8.7961
73
0.5864
2
74
393
GuijunLab-QA
32
-79.3386
68
0.1457
49
8.4761
74
0.2649
72
75
481
Vfold
20
-103.8950
78
0.2052
40
7.7067
75
0.3853
34
76
261
UNRES
53
-75.8895
64
-0.6394
93
7.6152
76
0.1437
90
77
191
Schneidman
24
-96.6145
76
0.1411
51
6.2023
77
0.2584
75
78
033
Diff
10
-125.8177
83
0.2182
36
5.1670
78
0.5167
8
79
187
Ayush
24
-115.3152
80
-0.6381
92
4.5323
79
0.1888
82
80
189
LCBio
11
-124.4557
82
0.1404
52
4.3787
80
0.3981
29
81
120
Cerebra
67
-129.4933
86
-1.7238
106
4.2334
81
0.0632
95
82
139
DeepFold-refine
74
-75.3857
62
-1.0187
96
4.0469
82
0.0547
96
83
376
OFsingleseq
11
-133.6958
92
-0.6996
94
3.7815
83
0.3438
55
84
040
DELCLAB
67
-79.6389
69
-0.9797
95
3.5515
84
0.0530
97
85
361
Cerebra_server
71
-129.9739
88
-1.7461
107
2.8241
85
0.0398
98
86
380
mialab_prediction
15
-119.7928
81
-0.1195
76
2.7671
86
0.1845
85
87
338
GeneSilico
12
-126.7163
84
-0.2264
87
2.0526
87
0.1711
87
88
231
B-LAB
10
-128.6611
85
-0.0661
73
1.8858
88
0.1886
83
89
325
405
9
-131.2340
89
-0.1371
79
1.6644
89
0.1849
84
90
276
FrederickFolding
3
-140.4545
97
0.5152
5
1.5455
90
0.5152
9
91
159
406
9
-131.4360
90
-0.1596
82
1.4624
91
0.1625
88
92
337
APOLLO
15
-135.7437
93
-1.1829
99
1.4246
92
0.0950
93
93
008
HADDOCK
9
-131.7999
91
-0.2000
86
1.3913
93
0.1546
89
94
117
Vakser
25
-139.1272
96
-1.6451
105
0.9288
94
0.0372
99
95
468
MIALAB_gong
10
-129.9421
87
-0.1942
85
0.8312
95
0.0831
94
96
174
colabfold_foldseek
1
-145.3207
100
0.6793
1
0.6793
96
0.6793
1
97
049
UTMB
1
-145.4224
101
0.5776
2
0.5776
97
0.5776
3
98
143
dMNAfold
1
-145.4663
102
0.5337
4
0.5337
98
0.5337
5
99
271
mialab_prediction2
1
-145.5678
104
0.4322
11
0.4322
99
0.4322
17
100
300
ARC
15
-137.4534
94
-1.2969
100
0.2904
100
0.0194
102
101
132
profold2
6
-145.0381
99
-1.5064
103
0.1580
101
0.0263
101
102
114
COAST
15
-138.3052
95
-1.3537
101
0.1574
102
0.0105
104
103
351
digiwiser-ensemble
4
-145.5539
103
-1.3885
102
0.1394
103
0.0348
100
104
400
OmniFold
2
-144.7457
98
-0.3728
91
0.0289
104
0.0145
103
105
355
CMOD
1
-146.1001
105
-0.1001
74
0.0000
105
0.0000
105
106
197
D3D
1
-146.1432
106
-0.1432
80
0.0000
105
0.0000
105
107
357
UTAustin
2
-147.2183
108
-1.6091
104
0.0000
105
0.0000
105
108
105
PFSC-PFVM
41
-146.8286
107
-1.9714
108
0.0000
105
0.0000
105
109
138
Shengyi
2
-148.0000
109
-2.0000
109
0.0000
105
0.0000
105
110
281
T2DUCC
1
-148.0000
109
-2.0000
109
0.0000
105
0.0000
105
The cummulative z-scores in this table are calculated according to the following procedure (example for the "first" models):
1. Calculate z-scores from the raw scores for all "first" models (corresponding values from the main result table);
2. Remove outliers - models with zscores below the tolerance threshold (set to -2.0);
3. Recalculate z-scores on the reduced dataset;
4. Assign z-scores below the penalty threshold (either -2.0 or 0.0) to the value of this threshold.