Prediction of the three dimensional structure of proteins using the electrostatic
screening model

F. Avbelj

The three-dimensional structure of proteins is predicted from their sequence alone. The method is based on
the electrostatic screening model for the stability of the protein main-chain conformation (1,2). According to
the electrostatic screening model the stability of a main-chain conformational state of an amino acid in a
protein depends primarily on the strengths of local and short-range nonlocal main-chain electrostatic
interactions. The strength of local and nonlocal electrostatic interactions is related to the electrostatic
screening with solvent and protein groups. The local main-chain electrostatic interactions are primarily due to
the interaction of the main-chain CO and NH groups within an amino acid. The nonlocal main-chain
electrostatic interactions are predominantly due to the main-chain hydrogen bonding. The free energy of a
protein as a function of its conformation is obtained from the potentials of mean force analysis of high
resolution x-ray protein structures (3). The free energy function is simple and contains only 44 fitted
coefficients (4). The minimization of the free energy is performed by the torsion (5) and cartesian space (6)
Monte Carlo procedure. In the first phase of the minimization procedure only the short-range interactions are
activated. Short-range interactions are interactions between amino acids less than four residues apart in the
sequence. The majority of $\alpha$-helices and $\beta$-strands are formed during the initial phase. The long-
range interactions are activated in later phases which is causing the condensation of $\alpha$-helices and
$\beta$-strands into super-secondary and the larger compact structures. Long-range interactions are
interactions between the amino acids distant in the sequence. References: 1. F. Avbelj and J. Moult,
Biochemistry, 34, 755-764 (1995). 2. F. Avbelj and L. Fele, J. Mol. Biol., 279, 665-684 (1998). 3. F. Avbelj,
Biochemistry, 31, 6290-6297 (1992). 4. F. Avbelj and L. Fele, Proteins: Struc., Funct., Genet., 31, 74-96
(1998). 5. F. Avbelj and J. Moult, Proteins: Struc., Funct., Genet., 23, 129-141, (1995). 6. F. Avbelj in
preparation.

Folding proteins with distance geometry and predicted inter-residue distances

Enoch Huang, Ram Samudrala, and Jay Ponder

Our method tackles the sub-problems of conformational search and scoring separately. To sample
conformational space, we use the technique of distance geometry. By specifying only the most generic of
constraints, we repeatedly generate folds with the hopes of generating native-like folds after a reasonable
number of trials. Our method is tailored for small targets exhibiting a propensity to form helices as predicted
by the PHD method (Rost B, Sander C 1993, J Mol Biol 232: 584-599) and/or the consensus described by the
Jpred server (http://circinus.ebi.ac.uk:8081/). These helices were rigidly assembled into tertiary folds by
enforcing generic inter-helical distances designed to enforce compactness (typically 5-11 or 5-15 Angstroms,
depending on the size of the target). These inter-helical distances were defined as those between designated



CA atoms, one on each helix. The designated CA atoms were from those residues closest to the center of each
predicted helix that were also predicted by PHD with high confidence (SUB acc) to be buried. Generic
distances between each predicted helix was thus assigned. Prior to distance geometry calculations, all
residues other than Gly and Pro were converted to Ala . All calculations were performed with the program
distgeom from the TINKER suite (http://dasher.wustl.edu/tinker/). Each generated structure was refined via
10000 steps of simulated annealing against a set of penalty functions which enforce local geometry, chirality,
excluded volume, input distance restraints, and torsion restraints. Over the residues predicted to be helical,
two types of restraints were specified: a virtual torsion angle defined by four consecutive CA atoms,
constrained to be between 40 and 60 degrees, and intra-helical CA-CA distances culled from a canonical
helix. Structures that failed to anneal to right-handed helices were discarded. After on the order of 1000
structures were generated, side-chains were modeled using the program SegMod (Levitt M. 1992, J Mol Biol
226: 507-33) followed by minimization with ENCAD (Levitt M, Hirshberg M, Sharon R, Daggett V 1995,
Comp. Phys. Commun., 91: 215-231). These folds were then scored with a hybrid scoring function, i.e. a
linear combination of three functions (Shell: Park BH, Huang ES, Levitt M. 1997, J Mol Biol 266:831-46;
RAPDF: Samudrala R, Moult J.1998, J Mol Biol 275:895-916; HCF: Samudrala R Xia Y, Levitt M, Huang
ES. Pac Symp Biocomput 1999). Consensus distance geometry was used to build a few final models (Huang
ES, Samudrala R, Ponder JW 1998, Protein Sci 7: 1998-2003), varying over different consensus conditions.
Models were refined by fitting with a 4-state off-lattice model (Park BH, Levitt M. J Mol Biol 1995,249:493-
507) and minimized with ENCAD. Final selection of the models was typically done with the assistance of the
all-atom function RAPDF, the hydrophobic fitness function (Huang ES, Subbiah S, Levitt M. 1995, J Mol
Biol 252: 709-20), and visual inspection. In some cases the best scoring fold with respect to the hybrid
function was also submitted.

Improving the sensitivity of Hidden Markov Models for protein fold recognition

Jeanette Hargbo, Bj?n Larsson and Arne Elofsson

We have developed a rigorous benchmark for protein fold recognitions where representatives for all proteins
of known structure are matched against each other. Using this benchmark we have compared the performance
of automatically created hidden Markov models with standard sequence search methods, as well as linking
methods. In our benchmark it was shown that a HMM that used no multiple sequence information and no
predicted secondary structures correctly identified the fold of a protein in 10~\% of the cases. Including
multiple sequence information increased this number to 16~\% and when also predicted secondary structure
information was included the fold was correctly identified 20~\% of the times. Further we have studied other
methods to increase the sensitivity of HMMs for fold recognition. We have studied the use of different
substitution matrixes, gap-penalties, linking methods as well as different ways to construct the HMMs.




Comparative Modeling using SCWRL, a tool for choosing sidechain rotamers.

Dr. Michael J. Bower

Three targets were modeled: T0050, T0O084, and T0085. T0050 had very high homology to the structure
1BE1, which was used as a scaffold. Residues were replaced on the 1BE1 backbone using SCWRL2.1
(Bower et al, J. Mol. Biol., 1997, 267, 1268-1282) (see
http://www.cmpharm.ucsf.edu/~bower/scwrl/scwrl.html), which uses a backbone-dependent rotamer library
and steric repulsions to place sidechains. SCWRL was allowed to place residues freely, or constrained to
keep conserved residues in the positions in the scaffold. The second method, which keeps conserved residues
in place, was used in the final model. Some steric clashes were relieved manually. A known problem is the
backbone conformation of Pro 42 and the sidechain conformation of Val60. For T0084, a sequence search of
the database of known structures revealed sequence elements similar to the leucine zipper structure of 1GCL,
a synthetic peptide. Other similarities in the database of known structures include amphipathic helices,
supporting the hypothesis that this is a designed four-helix bundle structure. 1GCL was used as a scaffold for
the model, by matching and extending the supercoil structure. The four extended helices which resulted were
used as the backbone structure for building sidechains. A sequence alignment to 1GCL was created which put
the similar sidechains in the correct register with respect to the supercoil, and then sidechains were added.
This was done with SCWRL. One strand of the four helix bundle was reported as the final prediction. For
T0085, sequence searches indicated that the N-terminal half of this protein bore homology to the four-heme
structures 2CY3, 2CDU, 2CYM, etc. The C-terminal half had homology to single-heme proteins like 1YEA.
2CYM and 1YEA were chosen as parent structures for the N- and C-terminal halves of the target,
respectively. They were joined with a linker residue to form a two-domain scaffold. Very crude insertions and
deletions were made to create the starting scaffold. Conserved residues were held in place, while non-
conserved sidechains were built with SCWRL2.1. Sidechains in insertion and deletions were also free to
move. Five heme molecules from the parent structures were used as steric clash checks. Some local
minimization of the backbone in the region of insertions and deletions was accomplished with the program
Flo96, followed by another round of SCWRL.

GLOBULAR PROTEIN SECONDARY STRUCTURE PREDICTION WITHOUT
COMPUTER BY DOUBLET CODE(DOUC)METHOD

BORIS V. SHESTOPALOV

INTRO-DOUC-TION.The method is manual. It takes only 30 minutes to perform manual single sequence
pre-DOUC-tion of 300 residue protein. The basis of the method was published in 1990 (Shestopalov B.V.
Prediction of protein secondary structure by doublet code method. Mol. Biol., Moscow, Engl. transl., 24/4,
p.900-907). For the CASP3 the method has been modified.

DOUC-SCRIPTION. Coils, strands, helices consist of
overlaps of structurons which consist of 2, 3, 5, residues and are encoded by residue pairs (i, i+1), (i, i+2), (i,
i+4) respectively. Codon tables are obtained from analysis of residue pairs occurence in secondary structures.
Codon distributions in a primary structure are placed in three lines under the structure. Usually codons of




diiferent structural types overlap in an amino acid sequence. Choice of codons in such cases is necessary. The
choice is to exclude the least number of codons until the overlap disappear. Obtained codon distributions are
used for prediction. If several variants of distributions are obtained the prediction of some regions may be
ambiguous and such regions can not be predicted at this stage. The average prediction accuracy of this
procedure, so called single sequence prediction (SSP), is limited up to 63% because only local interactions
are considered. If one uses similar sequences with such similar secondary structures predicted which contain
as much as possible information about native secondary structure, the average secondary structure from their
alignment may be nearer to the experimental one up to 5-10% and ambiguities are excluded. This is version
of so called multiple sequence prediction (MSP) used here.

DOUC-TAILS. The codons are
classified as strong and weak ones. A residue pair is strong (weak) codon if probability of respective structure
for this pair is more (equal) than probability of total of two other structures. The probability is calculated
from an occurence of the pair in a secondary structure database using the reverse binomial distribution (2P-
1=0.999). The codon choice is performed firstly between strong codons. Then weak codons are considered.
The secondary structure database was constructed firstly from primary and secondary structures of 257
proteins. Then secondary structure of these proteins was predicted by the code obtained from this database.
Then new database was constructed from primary and secondary structures of correctly predicted regions and
new code was obtained from this database. New code was used for new proteins secondary structure
prediction and correctly predicted regions were added to the database and new code was obtained from the
enlarged database and new proteins were predicted and new database was constructed... The DOUC-
CODONS used for the CASP3 target prediction are remarked after the method. To this moment the
DOUBLET CODE is ready up to 95-97%. Probably most of the weak codons with rare residues (W, C, H, M)
may become strong ones or disappear. Therefore the version of DOUC method without differentiation
between strong and weak codons is used also. Five models are used. Models 1, 2, 5 (3, 4) are MSP (SSP). M5
is the label for models developed and checked during the CASP3. Secondary structures for the alignments are
selected from ones obtained by pre-DOUC-tions for sequences selected as mentioned before the model line.
All the secondary structures which are similar to the target protein one not less than 60% are used for
secondary structure alignment. Models 1 and 3 are ones without strong/weak differentiation, model 5 is tve
variant the model 1 with the confidence level in all the range 0.00 - 1.00, that is not only values 0.00 and 1.00
are used as in the cases of models 1, 2, 3, 4. Model 5 is modified lastly on 05 September 1998 and this new
version IS USED for targets 50, 70, 71, 72, 80, 81, 82, 83, 84, 85. The final version of models 1, 2 is used for
all targets except targets 43, 52, 54 for which more restrictive version was used (similarity of the aligned
secondary structuresto the target one is 70% then and 60% now) but this modification of M1 and M2 is not
principal. DOUC-CODONS-
07.06.98. The database volume is 150000 amino acid residues. COIL. Strong codons: AD AG AP CG CN CP
DC DD DG DH DK DN DP DS DT DW ED EG EP ES FP GA GC GD GE GG GH GK GL GM GN GP GQ
GR GS GT GW HD HG HN HP HS 1P KD KG KN KP KS LP MG MP ND NG NH NK NN NP NR NS NT
PA PC PD PE PF PG PH PK PL PM PN PP PQ PR PS PT PW PY QG QP RG RP SD SG SH SK SN SP SQ
SRSS STTD TG TK TN TP TS VP WD WG WP YP. Weak codons: CD CH DQ DR EN HH HK KC MN
MS NC NQ NW NY QD QN QS RN RS SC SW WC WN WS. STRAND. Strong codons: CI CV FC FF FI
FLFTFVFWFEFYHVICIFINILITIVIWIYLCLFLILLLVLY MFMVTFTHTITT TV TY VC VF VI
VLVSVTVVVW VY WFWIWVWYYCYFYIYLYTYV YY. Weak codons: CC CF CL CM CT CW
CY FM HC HF HH HI HW HY IM LW MC MI MW MY VH VM WC WH WL WW YH YW. HELIX.
Strong codons: AAAE AKALAMAQAREAEE EKELEMEQERILIM KAKEKQLALLLMLQLR
MA ME ML MR QA QD QE QK QQ QR RA RE RK RM RQ RR Weak codons: AH AW CM DR EH EW
FL FM HE HH HM KM KR LI MH MI MK MM MQ MW QM RW WI WK WL WM WW YM. 127 COIL
CODONS: 103 strong, 24 weak; 81 STRAND CODONS: 53/28; 68 HELIX CODONS: 40/28. 276 IN
TOTALITY: 196/80.
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Phylogenetic Approach to Detecting Tertiary Contacts

William J. Bruno, Aaron L. Halpern, Gerhard Hummer, Martijn A. Huynen

Our method can be summarized as evolutionary covariation analysis (also known as correlated mutations).
We analyze an alignment, taking phylogeny into account, and look for significant non-independence of
columns, beyond what can be explained by phylogeny (i.e., evolution). The first step is basically a
generalization of the analysis in [Bruno, Mol. Biol. Evol. 1996] to considering pairs of sites. This involves a
maximum-likelihood model of position-specific residues frequencies, estimated on the evolutionary tree. The
model used ignores the genetic code; it is a model in which the choice of amino acid in a replacement event
is independent of which amino acid occupied the site previously. Selection constraints are assumed to be
constant over the tree. The model is reversible, and we assume that the most recent common ancestor of all
sequences was sampled from the equilibrium distribution. Independence of sites is assumed in the
calculation, and we calculate a 20 by 20 matrix of substitution events for each pair of sites. If the
independence assumption is correct, these matrices should be consistent with row-column independence. The
next step is a permutation test similar to (but different from) that of [Korber et al, PNAS USA, 1993] and
others. Our test statistic comes from the hypergeometric distribution, and we use the standard statistical
methods for correcting for multiple tests. To try to avoid being mislead by adaptive evolution (which our
model does not include), we also eliminate columns that strongly correlate with the evolutionary clades
(subtrees of the tree constructed from our alignment). We also checked for correlation with two other
variables (luminous organisms, and taxonomic classification of organism), but no sites correlated
significantly with either. Our alignment consisted of 23 of the closest homologs we could find to the target.
The permutation test resulted in 13 putative contacts, each with 80% or higher probability after correcting for
multiple tests. The adaptive evolution screen removed 4 columns (31, 97, 107, 219) responsible for 8 putative
contacts, six of which were between members of this set. Our prediction consists of the remaining 5 contacts,
which range from 80% to 97% probability. Our probability values represent the probability that mutations are
non-independent; we have not attempted to correct for the fact that there may be other, non-phylogenetic
causes of non-independence besides structural contact. We also have made no attempt to restrict to certain
types of non-independence (e.g., salt-bridge conservation). All deviations from independence are treated
equally. Conceivably, some deviations could arise from shortcomings in our model (such as neglecting the
genetic code) or other approximations. However, previous control studies we have done suggest that these
may not be the cause of false positives. Rather, we think any false positives probably represent real correlated
evolution, caused by some kind of non-local interaction or constraint.



Homology modelling using key residues.

Alex Bateman

Given a basic homology between a known structure and a sequence the key residue method can be used to
make accurate alignments which give a guide to the accessibility and position for each residue. The
alignment can be used to make full atom coordinates for the sequence of unknown structure. During the last
CASP meeting it was found that the alignment step was the most crucial to making a good homology model.
The method used here comes in four parts: 1) Firstly a parent structure is chosen. In most cases this is the
highest scoring match of the target with WU-blastp against the pdb100su database (12110 chains). pdb100su
is a fasta file of sequences from pdb and from structures which are published but not yet available in pdb
(kindly provided by Dr. Tim Hubbard). 2) A rough alignment is generated with clustalW (1.7) using the
structural mask option. Secondary structure assignment was taken from DSSP. 3) Key residues are derived
from the known parent structure. Key residues are those that mainly determine the conformation of the
protein. They are mainly involved in packing, hydrogen bonding and/or have the ability to take up unusual
torsion angles. The alignment is altered manually to maximise the similarity at key residue sites while
retaining a structurally plausible alignment. 4) Construct full atom model with modeller 4. For some
predictions regions that are expected to differ in conformation to the known structure are given zero
occupancy. Details of the can be found in: Bateman A, Chothia C. Nature Struct. Biol. 2:1068-1074(1995).
Bateman A, Jouet M, MacFarlane J, Du J, Kenwrick S, Chothia C. EMBO J. 15:6050-6059(1996).

Model Building by Comparison: Improving Algorithms via Expert Knowledge

Paul A. Bates and Michael J.E. Sternberg

Nine models were constructed for the comparative modelling section of CASP3; T0047, T0048, T0050,
T0055, T0058, TO060, T0069, TO076, and TO082. A tenth target was also constructed that was not initially
classified as a potential comparative model target, TO068. Sequence identity between each target and the best
possible parent(s) ranged between 12 and 64%. The modelling protocol followed is an extension to the work
reported in CASP2 (Bates et al., 1998). The method is a mixture of automated algorithms and manual
intervention. Manual intervention is required at the critical sequence alignment stages and the selection of
parameters for various computer programs. Seven of the targets were constructed from single parent template
and three from multiple. The reasons for such a high ratio of modelling from single parents only are: (1) Only
one parents available (2) The sequence spread between parents, relative to the target, isn't appropriate for the
level of expected model error; (a) Sequence spread too small between parents to be meaningful in three
dimensions, particularly, relative orientations between equivalent secondary structure elements. (b) Sequence
spread between parents too large, thus, the parent with the highest overall sequence identity is expected to
reduce modelling errors. The question of when a single parent is sufficient for modelling will be addressed.
Where multiple parents are needed they are superimposed automatically using a program based upon a



pairwise superposition algorithm (Gerstein & Levitt, 1996). The superimposed co-ordinates are then
separated into conserved secondary structure elements and conserved loops. The conserved elements for the
model are then chosen from the ensemble by a modification of the self consistent mean field approach to gap
closure (Koehl & Delarue, 1995). The remaining loops, all loops in the case of single parent, and all regions
with incompatible backbone angles with the target sequence were modelled via database fragments searches.
Three database were searched in the order: (1) Homologous/analogous structures. (2) Loop classification
database (Olivia et al., 1997). (3) Nonredundant database, 300 protein chains (sequence similarity of less than
25%, R-factor <= 2.5). Fragments were selected automatically and were chosen on the basis of good
sequence similarity with the target and how well the fragments fitted to the take off points both in terms of
rms fit on the Ca atoms used for the take off points and the difference in C=0O angles of the backbones
between template and chosen fragment in the take off region as described in (Bates et al., 1997), a
modification of the Jones and Thirup approach (Jones & Thirup, 1986). Manual intervention was needed if
candidate fragments could not be found to cover a region. In these cases different take off points were
selected and/or different sequence and geometry tolerances set. A number of loop conformations were
selected for each gap and the best candidate was chosen via a second mean field run, using the conserved
secondary structure elements found in the first run. The frequency of loop selection from each of the three
types of database will be addressed. Side-chains are built by tracing the path of the old side-chain. The
maximum number of bond lengths, angles and torsion angles are taken from the old side-chain that are
compatible with the new side-chain. Additional internal co-ordinates to complete the side-chain are taken
from the secondary structure dependant rotamer library (McGregor et al., 1987) as described in (Bates et al.,
1997). After the replacement of all side-chains and the assignment of a single rotamer for each, this parent
rotamer, plus rotamers from a side-chain rotamer library are built at each residue position. Each rotamer feels
the average environment due to rotamers of other residues weighted by their respective probabilities. The
conformational probability matrix is refined to give resultant probabilities for the rotamers of each residue
(Koehl & Delarue, 1994). Energy parameters taken from (Lee & Subbiah, 1991). The highest probability
rotamer was chosen. The selected rotamers were inspected to check that all rotamers look sensible. If not
then the side-chain rotamer from just the first stage in the side-chain replacement mechanism is used. Only a
few rotamers needed to revert back and these were usually polar or charged residues involved in conserved
hydrogen bonding interactions. The reasons for the mean field not always finding the best rotamer is
addressed. To remove the small number of steric clashes remaining in the models 100 steps of steepest
descents energy minimization (unrestrained) were run, on all models, using the program CHARM (CHARM
software version 3.3 (1992) Molecular Simulations Inc. 200 Fifth Avenue, Waltham, MA 02154.). We have
submitted unrefined and refined coordinates, before and after energy minimization. The significance of
performing unrestrained global minimization, irrespective of the expected modelling errors, is addressed.
References Bates, P.A., Jackson, R.M. Sternberg, M.J.E. Model building by comparison: A combination of
expert knowledge and computer automation. Proteins, Suppl. 1,59-67, 1997. Gerstein, M., Levitt, M. Using
interative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures.
Fourth International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
USA, 59-67, 1996. Nine models were constructed for the comparative modelling section of CASP3; T0047,
T0048, T0050, T0055, T0058, TO060, TO069, TO076, and TO082. A tenth target was also constructed that was
not initially classified as a potential comparative model target, T0O068. Sequence identity between each target
and the best possible parent(s) ranged between 12 and 64%. The modelling protocol followed is an extension
to the work reported in CASP2 (Bates et al., 1998). The method is a mixture of automated algorithms and
manual intervention. Manual intervention is required at the critical sequence alignment stages and the
selection of parameters for various computer programs. Seven of the targets were constructed from single
parent template and three from multiple. The reasons for such a high ratio of modelling from single parents
only are: (1) Only one parents available (2) The sequence spread between parents, relative to the target, isn't
appropriate for the level of expected model error; (a) Sequence spread too small between parents to be
meaningful in three dimensions, particularly, relative orientations between equivalent secondary structure
elements. (b) Sequence spread between parents too large, thus, the parent with the highest overall sequence
identity is expected to reduce modelling errors. The question of when a single parent is sufficient for
modelling will be addressed. Where multiple parents are needed they are superimposed automatically using a
program based upon a pairwise superposition algorithm (Gerstein & Levitt, 1996). The superimposed co-



ordinates are then separated into conserved secondary structure elements and conserved loops. The conserved
elements for the model are then chosen from the ensemble by a modification of the self consistent mean field
approach to gap closure (Koehl & Delarue, 1995). The remaining loops, all loops in the case of single parent,
and all regions with incompatible backbone angles with the target sequence were modelled via database
fragments searches. Three database were searched in the order: (1) Homologous/analogous structures. (2)
Loop classification database (Olivia et al., 1997). (3) Nonredundant database, 300 protein chains (sequence
similarity of less than 25%, R-factor <= 2.5). Fragments were selected automatically and were chosen on the
basis of good sequence similarity with the target and how well the fragments fitted to the take off points both
in terms of rms fit on the Ca atoms used for the take off points and the difference in C=0 angles of the
backbones between template and chosen fragment in the take off region as described in (Bates et al., 1997), a
modification of the Jones and Thirup approach (Jones & Thirup, 1986). Manual intervention was needed if
candidate fragments could not be found to cover a region. In these cases different take off points were
selected and/or different sequence and geometry tolerances set. A number of loop conformations were
selected for each gap and the best candidate was chosen via a second mean field run, using the conserved
secondary structure elements found in the first run. The frequency of loop selection from each of the three
types of database will be addressed. Side-chains are built by tracing the path of the old side-chain. The
maximum number of bond lengths, angles and torsion angles are taken from the old side-chain that are
compatible with the new side-chain. Additional internal co-ordinates to complete the side-chain are taken
from the secondary structure dependant rotamer library (McGregor et al., 1987) as described in (Bates et al.,
1997). After the replacement of all side-chains and the assignment of a single rotamer for each, this parent
rotamer, plus rotamers from a side-chain rotamer library are built at each residue position. Each rotamer feels
the average environment due to rotamers of other residues weighted by their respective probabilities. The
conformational probability matrix is refined to give resultant probabilities for the rotamers of each residue
(Koehl & Delarue, 1994). Energy parameters taken from (Lee & Subbiah, 1991). The highest probability
rotamer was chosen. The selected rotamers were inspected to check that all rotamers look sensible. If not
then the side-chain rotamer from just the first stage in the side-chain replacement mechanism is used. Only a
few rotamers needed to revert back and these were usually polar or charged residues involved in conserved
hydrogen bonding interactions. The reasons for the mean field not always finding the best rotamer is
addressed. To remove the small number of steric clashes remaining in the models 100 steps of steepest
descents energy minimization (unrestrained) were run, on all models, using the program CHARM (CHARM
software version 3.3 (1992) Molecular Simulations Inc. 200 Fifth Avenue, Waltham, MA 02154.). We have
submitted unrefined and refined coordinates, before and after energy minimization. The significance of
performing unrestrained global minimization, irrespective of the expected modelling errors, is addressed.
References Bates, P.A., Jackson, R.M. Sternberg, M.J.E. Model building by comparison: A combination of
expert knowledge and computer automation. Proteins, Suppl. 1,59-67, 1997. Gerstein, M., Levitt, M. Using
interative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures.
Fourth International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
USA, 59-67, 1996. Jones, T.A., Thirup, S. Using known substructures in protein model building and
crystallography. EMBO J. 5, 819-823, 1986. Koehl, P., Delarue, M. Application of a self-consistent mean
field theory to predict protein side-chains conformation and estimate their conformation entropy. J. Mol.
Biol. 239, 249-275, 1994. Koehl, P., Delarue, M. A self consistent mean field approach to simultaneous gap
closure and side-chain positioning in homology modelling. Nat. Struc. Biol. 2, 163-170, 1995. Lee C.,
Subbiah S. Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol. 217, 373-
388, 1991. McGregor, M.J., Islam, S.A., Sternberg, M.J.E. Analysis of the relationship between side-chain
conformation and secondary structure in globular proteins. J. Mol. Biol. 198, 295-310, 1987. Olivia, B.,
Bates, P.A., Enrique, Q., Aviles, F.X., Sternberg, M.J.E. An automated classification of the structure of
protein loops. J. Mol. Biol. 266,814-830, 1997. Jones, T.A., Thirup, S. Using known substructures in protein
model building and crystallography. EMBO J. 5, 819-823, 1986. Koehl, P., Delarue, M. Application of a self-
consistent mean field theory to predict protein side-chains conformation and estimate their conformation
entropy. J. Mol. Biol. 239, 249-275, 1994. Koehl, P., Delarue, M. A self consistent mean field approach to
simultaneous gap closure and side-chain positioning in homology modelling. Nat. Struc. Biol. 2, 163-170,
1995. Lee C., Subbiah S. Prediction of protein side-chain conformation by packing optimization. J. Mol.
Biol. 217, 373-388, 1991. McGregor, M.J., Islam, S.A., Sternberg, M.J.E. Analysis of the relationship



between side-chain conformation and secondary structure in globular proteins. J. Mol. Biol. 198, 295-310,
1987. Olivia, B., Bates, P.A., Enrique, Q., Aviles, F.X., Sternberg, M.J.E. An automated classification of the
structure of protein loops. J. Mol. Biol. 266,814-830, 1997.

Model Building by Comparison: Improving Algorithms via Expert Knowledge

Paul A. Bates and Michael J.E. Sternberg

Nine models were constructed for the comparative modelling section of CASP3; T0047, T0048, T0050,
T0055, T0058, T0060, TO069, T0076, and TO082. A tenth target was also constructed that was not initially
classified as a potential comparative model target, T0068. Sequence identity between each target and the best
possible parent(s) ranged between 12 and 64%. The modelling protocol followed is an extension to the work
reported in CASP2 (Bates et al., 1998). The method is a mixture of automated algorithms and manual
intervention. Manual intervention is required at the critical sequence alignment stages and the selection of
parameters for various computer programs. Seven of the targets were constructed from single parent template
and three from multiple. The reasons for such a high ratio of modelling from single parents only are: (1) Only
one parents available (2) The sequence spread between parents, relative to the target, isn't appropriate for the
level of expected model error; (a) Sequence spread too small between parents to be meaningful in three
dimensions, particularly, relative orientations between equivalent secondary structure elements. (b) Sequence
spread between parents too large, thus, the parent with the highest overall sequence identity is expected to
reduce modelling errors. The question of when a single parent is sufficient for modelling will be addressed.
Where multiple parents are needed they are superimposed automatically using a program based upon a
pairwise superposition algorithm (Gerstein & Levitt, 1996). The superimposed co-ordinates are then
separated into conserved secondary structure elements and conserved loops. The conserved elements for the
model are then chosen from the ensemble by a modification of the self consistent mean field approach to gap
closure (Koehl & Delarue, 1995). The remaining loops, all loops in the case of single parent, and all regions
with incompatible backbone angles with the target sequence were modelled via database fragments searches.
Three database were searched in the order: (1) Homologous/analogous structures. (2) Loop classification
database (Olivia et al., 1997). (3) Nonredundant database, 300 protein chains (sequence similarity of less than
25%, R-factor <= 2.5). Fragments were selected automatically and were chosen on the basis of good
sequence similarity with the target and how well the fragments fitted to the take off points both in terms of
rms fit on the Ca atoms used for the take off points and the difference in C=0 angles of the backbones
between template and chosen fragment in the take off region as described in (Bates et al., 1997), a
modification of the Jones and Thirup approach (Jones & Thirup, 1986). Manual intervention was needed if
candidate fragments could not be found to cover a region. In these cases different take off points were
selected and/or different sequence and geometry tolerances set. A number of loop conformations were
selected for each gap and the best candidate was chosen via a second mean field run, using the conserved
secondary structure elements found in the first run. The frequency of loop selection from each of the three
types of database will be addressed. Side-chains are built by tracing the path of the old side-chain. The
maximum number of bond lengths, angles and torsion angles are taken from the old side-chain that are
compatible with the new side-chain. Additional internal co-ordinates to complete the side-chain are taken
from the secondary structure dependant rotamer library (McGregor et al., 1987) as described in (Bates et al.,
1997). After the replacement of all side-chains and the assignment of a single rotamer for each, this parent
rotamer, plus rotamers from a side-chain rotamer library are built at each residue position. Each rotamer feels
the average environment due to rotamers of other residues weighted by their respective probabilities. The
conformational probability matrix is refined to give resultant probabilities for the rotamers of each residue



(Koehl & Delarue, 1994). Energy parameters taken from (Lee & Subbiah, 1991). The highest probability
rotamer was chosen. The selected rotamers were inspected to check that all rotamers look sensible. If not
then the side-chain rotamer from just the first stage in the side-chain replacement mechanism is used. Only a
few rotamers needed to revert back and these were usually polar or charged residues involved in conserved
hydrogen bonding interactions. The reasons for the mean field not always finding the best rotamer is
addressed. To remove the small number of steric clashes remaining in the models 100 steps of steepest
descents energy minimization (unrestrained) were run, on all models, using the program CHARM (CHARM
software version 3.3 (1992) Molecular Simulations Inc. 200 Fifth Avenue, Waltham, MA 02154.). We have
submitted unrefined and refined coordinates, before and after energy minimization. The significance of
performing unrestrained global minimization, irrespective of the expected modelling errors, is addressed.
References Bates, P.A., Jackson, R.M. Sternberg, M.J.E. Model building by comparison: A combination of
expert knowledge and computer automation. Proteins, Suppl. 1,59-67, 1997. Gerstein, M., Levitt, M. Using
interative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures.
Fourth International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
USA, 59-67, 1996. Jones, T.A., Thirup, S. Using known substructures in protein model building and
crystallography. EMBO J. 5, 819-823, 1986. Koehl, P., Delarue, M. Application of a self-consistent mean
field theory to predict protein side-chains conformation and estimate their conformation entropy. J. Mol.
Biol. 239, 249-275, 1994. Koehl, P., Delarue, M. A self consistent mean field approach to simultaneous gap
closure and side-chain positioning in homology modelling. Nat. Struc. Biol. 2, 163-170, 1995. Lee C.,
Subbiah S. Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol. 217, 373-
388, 1991. McGregor, M.J., Islam, S.A., Sternberg, M.J.E. Analysis of the relationship between side-chain
conformation and secondary structure in globular proteins. J. Mol. Biol. 198, 295-310, 1987. Olivia, B.,
Bates, P.A., Enrique, Q., Aviles, F.X., Sternberg, M.J.E. An automated classification of the structure of
protein loops. J. Mol. Biol. 266,814-830, 1997.

Prediction of protein structure using contacts predicted by neural networks

Ole Lund (1), Jan Gorodkin (1), Claus A Andersen (1), Jakob Bohr (2), Soren Brunak(1). (1) Center for
Biological Sequence Analysis, (2) Department of Physics, The Technical University of Denmark, DK-2800
Lyngby, Denmark.

Contacts in proteins were predicted using the SoWhat method (O. Lund, K. Frimand, J. Gorodkin, H. Bohr, J.
Bohr, J. Hansen, and S. Brunak. Protein distance constraints predicted by neural networks and probability
density functions. Prot. Eng., 10: 1241-1248, 1997). In brief, a neural network were used to predict whether
two amino acids were in contact or not. Two residues were defined as being in contact if their C-alpha atoms
were closer than the average distance between residues at the given sequence separation. Contacts were also
predicted using an updated version of the SoWhat method where the window sizes has been optimized
guided by measurements of the information content of the input sequences. These predictions were submitted
to casp3 as MODEL 2. Folds were recognized using the FASTA program. If no significant match were found
the SwissProt entries of the top scoring matches were inspected manually to identify probable evolutionary
relationship. Sequences were aligned using an alignment procedure which disallowed insertions and deletions
between two residues in the same secondary structure element (alpha-helix, beta-sheet) in the template, and
between residues i < j, where the distance between i-1 and j+1 were greater than 10.5 AA. Three dimensional
models were build by homology modeling using the distance constraints predicted by neural networks (the
SoWhat method) and folding using the FOLD program (Lund O, Hansen J, Brunak S, Bohr J. Relationship
between protein structure and geometrical constraints. Protein Sci 1996 Nov; 5(11):2217-2225). C$M\alpha$



atoms only, were used to construct the cost function for the folding program which uses a simple steepest
descent algorithm to minimize the cost function. The above described calculations are available via the
CPHmodels server at http://www.cbs.dtu.dk/services/CPHmodels/

Handling interconnected structural changes in comparative modelling of proteins using
a statistical scoring function, graph theory, and exhaustive enumeration techniques

Ram Samudrala and Michael Levitt

The interconnected nature of interactions in protein structures, thorough sampling of side chain and main
chain conformations, and devising a discriminatory function that can distinguish between correct and
incorrect conformations are the major hurdles preventing the construction of accurate homology models. We
present an algorithm that uses graph theory to handle the problem of interconnectedness. Sampling of side
chain and main chain conformations is accomplished by exhaustively enumerating all possible choices using
a discrete state model. The optimal combination of these possibilities is selected using an all-atom scoring
function. Following is a brief description of the components of this method: 1. Discriminatory function is an
all-atom distance-dependent conditional probability discriminatory function based on a statistical analysis of
known protein structure. The negative log of the conditional probability of observing two atoms interact
given a particular distance is used as a *“pseudo-energy" to assign weights to nodes and edges. Reference: J
Mol Biol 275: 893-914 (1998). 2. Side chains possibilities are generated by selecting the most probable side
chain rotamers based on the interactions of a given rotamer with the local main chain (evaluated using the
discriminatory function above). Reference: Prot Eng 11: (1998). (in press) 3. Main chain sampling is
performed using an exhaustive enumeration technique based on discrete states of phi/psi angles.
(unpublished) 4. The graph theoretic approach represents each possible conformation of a residue in an
amino acid structure is represented using the notion of a node in a graph. Each node is given a weight based
on the degree of the interaction between its side chain atoms and the local main chain atoms. The weight is
computed using a all-atom conditional probability discriminatory function. Edges are then drawn between
pairs of residues/nodes that are consistent with each other (i.e., clash-free and satisfying geometrical
constraints). The edges are also weighted according to the probability of the interaction between atoms in the
two residues. Once the entire graph is constructed, all the maximal sets of completely connected nodes
(cliques) are found using a clique-finding algorithm. The cliques with the best probabilities represent the
optimal combinations of mixing and matching between the various possibilities, taking the respective
environments into account. Reference: J Mol Biol 279:287-302 (1998). 5. Clique-finding is accomplishing
using the Bron and Kerbosch algorithm. Reference: Communications of the ACM, 16: 575-577 (1973). We
test how the above approach works in a comparative-modelling scenario and assess the predictive power of
this method by applying it to properly controlled blind tests as part of the third meeting on the Critical
Assessment of protein Structure Prediction methods (CASP3). Compared to CASP2, where a similar
approach was used, we have dramatically changed the method used to sample main chains (database vs.
exhaustive) and have made minor enhancements to the other components of this approach. It remains to be
seen how the improvements in methodology correlate with model accuracy.




Protein Secondary Structure Prediction Using Optimised Nearest Neighbor Method

G. P. S. Raghava

One of the challenge in the field of protein structure prediction is to improve the accuracy of secondary
structure prediction. Presently, available secondary structure prediction methods, can be classified into i)
statistical methods; ii) physiochemical methods; iii) Artificial Intelligence (AI) based methods; vi) multiple
sequence alignment method and v) Combinatorial methods. The artificial intelligence (AI) based protein
secondary structure prediction methods can be categorize into neural network methods and nearest neighbor
methods. Both approach have their advantage and disadvantage. The basic idea of nearest neighbor methods
is to use the examples closely related to the test instance to determine the secondary structure of the test
instance. The success of prediction of this approach is directly depend upon the closely related known
examples corresponding to a test instance. The nearest neighbor method outperform the neural network if
their are similar or identical examples corresponding to a test instances but perform poorly in absence of
closely related examples. An optimized nearest neighbor method (ONNM) has been developed to predict the
secondary structure of protein from its amino acid sequence. In ONNM, the parameters used in nearest
neighbor method have been optimized, to improve the accuracy of prediction of standard nearest neighbor
method. In past the database of known examples was limited because these examples were generated from
limited set of proteins (around 126) whose structure is known. In order to overcome this limitation, author
generate a database of known examples from all proteins in PDB (Protein Data Bank), which maximize the
number of examples in database. Author also estimates the probability of correct prediction of each amino
acid as well as distribution over the three states. Author also uses the standard neural network method to
predict the secondary structure, of amino acids as well as calculate the probability of correct prediction of
each amino acid. Finally, the secondary structure of amino acids were predicted using either ONNM or
neural network method depending upon which give high probability of correct prediction. This method will
be suitable for prediction of proteins who has high homology with proteins of known structure, because it
uses the nearest neighbor approach and big database of known examples. It will also be suitable for protein
which have very less homology with proteins of known structures because it uses the neural network. The
ONNM would be very useful in future because the number of structure solved by X-ray crystallography is
increasing every day. Thus, in future their will be number of close related or identical examples of known
structures corresponding to each test instance which will improve the accuracy secondary structure
prediction. The database of known examples used in ONNM can be update easily, so that information form
new structure can be added. The method describe in this report uses only single sequence for prediction.

Ab initio folding by using restraints derived from multiple sequence alignments

Angel R. Ortiz, Andrzej Kolinski, Jeffrey Skolnick

Here we described a new method for protein structure prediction based on ab initio folding using Monte
Carlo simulations driven by restraints derived from multiple sequence alignments. Both secondary and
tertiary restraints are derived from multiple sequence alignments. Secondary restraints obtained from a
prediction of secondary structure. Tertiary restraints are obtained on the form of contact map prediction by a
combination of multivariare statistical analysis and inverse folding. The predictions are incorporated as



harmonic restraint penalty functions in a reduced protein model of two interacting particles per residue (one
mimicking the backbone, the other one the side chain). Interaction between the particles is given by a
statistical potential derived from the protein data base, suplemented by the restraint function. Conformationa
sampling is carried out on a discretized underlying lattice by a Monte Carlo simulated annealing procedure.

3D Protein Folds: Why and How Homologs Can Help to Predict them.

Alexei V. Finkelstein (1), Azat Ya. Badretdinov (1,2), Boris A.Reva (3) Dmitry S. Rykunov (4) (1) Institute
of Protein Research, Russian Academy of Sciences, 142292, Pushchino, Moscow Region, Russian
Federation (2) Laboratory of Molecular Biophysics, Rockefeller University, Box 270, 1230, York Ave, New
York NY 10021-6399, USA (3) The Scripps Research Institute, Dept. of Mol.Biology, TPC5, 10550 N.
Torrey Pines Rd, La Jolla, CA 92037, USA. (4) Institute of Theoretical and Experimental Biophysics,
Russian Academy of Sciences, 142292, Pushchino, Moscow Region, Russian Federation

Usually one cannot predict the 3D structure a protein directly from its sequence because of errors in the
energy parameters: due to them, the calculated energy of the native fold is often above the calculated energies
of some other folds. However, using a set of homologs (the proteins having nearly identical 3D structures
despite of numerous amino acid mutations in their chains) one can diminish the errors by averaging the fold
energies over the homologs. A simple analytical theory shows that this can allow to predict common fold of
the homologs - even when this is impossible for separate sequences. The basic analytical estimate is
supported by computer experiments with simplified models of protein chains. The experiments simulate the
lowest-energy fold prediction using the "corrupted" energy parameters and show that a sufficiently large set
of sufficiently remote homologs allows to recognize this fold correctly. The improvement in protein fold
recognition by threading of multiple homologs is also discussed.

KITCHEN SINK FOLD PREDICTION METHOD

Jadwiga Bienkowska, Lihua Yu, Bob Rogers, Jim Freeman, Sophia Zarakhovich Scott Mohr and Temple
F. Smith

The fold prediction procedure was done following a set of steps. First using PSI-Blast, we checked the
available protein databases for the probable homologs. Second, we generated local profile-induced multi-
alignments among all probable homologs. The profile identified conserved residues and multi-alignment
gaps. The residue aligned to gap suggests probable surface loop position. We checked the literature for any
experiments that may identify function- (and/or structure-) determining residues. Additionally we searched
the determined protein structures (PDB) for related or similar biochemical functions. Third, we tried to
identify any conserved catalytic and/or protein protein binding sites either via consensus sequence patterns.
Using information from the above searches, we assigned (when unambiguous information was available)
residues to at least one of three categories: 1) loop or turn residue, probable surface, 2) turn-associated Gly as



probable secondary structure terminal residue, 3) functionally constrained position. Fourth, we ran various
secondary structure prediction methods including our own Discrete State Models (DSMs) (C.M. Stultz, J.V.
White and T.F. Smith, Protein Science (1993) 2:305-314). The DSMs predict secondary structure in
conjunction with fold class. These predictions were compared for consistency and used to identify likely
threading templates. Fifth, we used our threading procedure (R.H. Lathrop and T.F. Smith JMB (1996)
255,641-665) with an updated scoring function to select the best sequence-to-structure alignment. Here we
included the inter-residue pairwise interaction and used a new algorithm to dynamically filter out the unlikely
physical interactions (J.R. Bienkowska R.G. Rogers and T.F. Smith in preparation) . We compared alignments
predicted by threading with the secondary structure predictions. We checked for the positions of the
conserved GLY (which are probable ends of the secondary structure segments). Any clear inconsistencies
between the threading alignment and the above predictions were fixed by manual alignment.

A combined method for low-resolution ab initio tertiary structure prediction of small
proteins

Yu Xia, Enoch S Huang, Michael Levitt, and Ram Samudrala

We present a combined approach to construct low resolution models of protein structure from sequence
information alone [1]. Starting from protein sequence, we uniformly sample protein conformational space by
complete enumeration on a simple lattice and have a pool of up to 10 billion structures. We then use a variety
of selection and reconstruction techniques to both reduce the size of candidates and push the distribution of
candidate structures to more native-like, till a single structure model of the protein sequence is generated. A
detailed description follows: First, we exhaustively enumerate all possible compact bounded lattice walks on
a tetrahedral lattice to capture the overall protein topology [2, 3]. The maximum walk length in our approach
is 50; hence each vertex can represent more than one residue for a protein of size up to 200 residues. To
obtain a model, a lattice walk is threaded with the target protein sequence and the score is evaluated and
minimized using a residue-residue contact function. The 10,000 best scoring structures and their mirror
images are selected. At this stage only protein tertiary topology is captured; there is no secondary structure or
side chain information in these structures. In order to build all-atom models, we fit predicted secondary
structures using a combination of three secondary prediction methods (PHD, DSC, Predator) to the selected
lattice structures using an off-lattice four-state phi/psi model and a sequential build-up algorithm [4]. The all-
atom conformations are minimised using ENCAD and scored using a second scoring function that combined
scores produced by three different functions: an all-atom distance-dependent conditional probability
discriminatory function [5], a hydrophobic compactness function, and a residue-residue contact function
(Shell) [1]. Next, the best scoring 50, 100, and 500 conformations are input to a consensus-based distance
geometry routine that uses constraints from each of the conformation sets and produces a single structure for
each set (total of three) [6]. We again fit secondary structures to the three structures and the resulting
structures are minimised and scored. The lowest scoring conformation is our predicted structure for the give
protein sequence. We tested a prediction procedure similar to the one described above on a set of 12 small
proteins representing different fold classes [1]. Unlike Monte Carlo and molecular dynamics, our approach is
largely deterministic and provides a uniform sampling of structure space. The weakest part in our approach is
the low-resolution nature of the tetrahedral lattice model: structural features such as sharp turns cannot be
accurately represented. In general, our procedure is more effective for alpha and mixed proteins than beta
proteins. [1] Samudrala R, Xia Y, Levitt M, Huang ES. Proc. Pac. Symp. Biocomp., 1999 (accepted). [2]



Hinds DA, Levitt M. Proc. Natl. Acad. Sci. USA, 89:2536-2540, 1992. [3] Hinds DA, Levitt M. J. Mol.
Biol., 243:668-682, 1994. [4] Park B, Levitt M. J. Mol. Biol., 249:493-507, 1995. [5] Samudrala R, Moult J.
J. Mol. Biol., 275:895-916, 1997. [6] Huang ES, Samudrala R, Ponder J. Prot. Sci., 7:1998-2003, 1998.

Improved and extended local structure predictions using the I-sites Library and a
fragment insertion Monte Carlo search algorithm.

Chris Bystroff, Kim Simons, David Baker

A combination of database searching and Monte Carlo (MC) simulation was used in an attempt to predict
local and supersecondary structure from single sequences. This is similar but much less cpu-intensive than
the procedure used by Simons et al (Proteins, in press, see CASP3 abstract) to predict global tertiary

structure. Speed was gained by restraining the residues within ¥ I-sites ¥ of high confidence (Bystroff &
Baker, J.Mol.Biol 281:565-577, 1998). This method updates the I-sites local structure prediction method
usind in CASP2, and is available to the public via the Web at
http://ganesh.bchem.washington.edu/~bystroff/Isites. Multiple sequence alignments were made from single
sequences using psi-blast , and amino-acid profiles were constructed from the alignments using sequence
weighting. All segments of the profile, lengths 5 to 19, were scored against all 261 clusters in the I-sites
Library to generate a large set of potential Monte Carlo fragment insertion moves that are consistent with the
sequence family. The move set was reduced to the highest-confidence 25 fragments, lengths 3 and 9, for each
position in the sequence. Positions in the sequence where the confidence of a fragment exceeded 0.60 were
identified, and backbone angle restraints were used for those positions during the MC simulation. (The
restraint consisted of simply disallowing any angle change greater than 60 degrees from the restrained value).
For longer sequences, the protein was divided up into overlapping fragments . The length of the fragments
was chosen so that each fragment contained approximately 50 unrestrained residues. In practice, the fragment
lengths were 60 to 120 residues. The points of division were always made in positions of low-confidence I-
sites predictions. The sequence to be used in the MC simulation was modified from the target sequence by
substituting polar residues for any non-conserved non-polar residues. If the combined frequency of polar
residues for any non-polar position exceeded 25%, then the most frequent polar residue was substituted into
the sequence and all scoring in the MC simulation was based on this modified sequence. Each fragment was
subjected to 4000 cycles of simulated annealing MC fragment insertion using a knowledge-based, all
backbone atom potential function described previously. This potential function has been shown to identify
near-native conformations in a large (1200) set of decoy structures generated by the MC method . Because of
time constraints, only 15 structures were generated for each of the overlapping fragments. The lowest scoring
5 structures for each fragment were selected and combined via an exhaustive genetic algorithm. All crossover
points between one fragment set and an adjacent, overlapping fragment set were chosen for fusing any pair of
structures. The lowest scoring 5 fused structures were kept and were fused with the resulting structures of
adjacent fragment sets until the fused structures were full length. The lowest scoring (energy) structure after
this procedure was chosen for submission. There was no manual intervention. Secondary structure
assignments, used during the MC simulation, were reported along with the tertiary structure, since often the
tertiary structure models are not fully compact and strand pairing remains poorly defined in many cases. The

method described here was carried out in two ways, each resulting in one £ TS ¥ submission and its
corresponding  SS ¥ submission. In one case the backbone angle restraints were generated so as to be

consistent with the highest-reliability PHD helix and strand predictions. (Reliability was converted to
confidence according to a formula described in the reference above (Bystroff & Baker, JMB), and a single



cutoff, 0.6, was used to select residues to restrain). In the second case, PHD predictions were ignored.
Because of the small number of simulations, we expect the predictions to be accurate only at the level of
local and perhaps supersecondary structure. In test cases, this method correctly located the positions of most
chain reversals but failed to accurately predict strand pairing and other non-local interactions.

Ab initio structure prediction using fragment insertion and simulation annealing

Simons, K.T., Bonneau, R.A., Ruczinski, I. & Baker, D.

To generate structures consistent with both the local and the non-local interactions responsible for protein
stability, fragments of known structure closest to the sequence and predicted secondary structure of the target
sequence for each overlapping segment of length 3 and 9 were assembled into complete, tertiary structures
using a Monte Carlo simulated annealing procedure. (Simons, K.T., et al., JMB 268: 209-25, 1997). The
fragments used to build the structures are often very similar to the native conformation; one-half of the 9
residue fragments are within 1?dme of the native structure. The scoring function used in the simulated
annealing procedure is composed of sequence dependent terms including such features as hydrophobic
burial, electrostatics and disulfide bonds and sequence independent terms capturing the geometrical
arrangements between a-helices and b-strands and the formation of b-sheets from b-strands (Simons, K.T., et
al., Proteins, in press). For each of 21 small, ab initio targets, 1200 structures were constructed, each the
result of 100,000 attempted fragment substitutions. In these sets the ~25 structures with the lowest score in
the broadest minima (assessed through the number of structural neighbors; Shortle, D., et al., PNAS 95:
11158-62, 1998) were evaluated by visual inspection. Preliminary results on 5 of the targets indicate that the
method is useful for ab initio fold prediction; for the first 90 residues of MarA (116 residues total) the best of
the 5 submitted models had an rmsd of 6.6? and for the EH2 domain of EPS15 the best submitted model had
an rmsd of 6.0?over the entire 95 residue structured region.

Fold recognition at CASP3 using 3D-PSSMs, SIVA and machine learning protein
topology rules

Lawrence Kelley, Bob MacCallum, Gidon Moont, Mansoor Saqi, Marcel Turcotte & Michael Sternberg

Fold Recognition for CASP3 using 3D-PSSMs, SIVA and machine learning protein topology rules Group ID
= 3873-9906-1225 e-mail (m.sternberg@icrf.icnet.uk) Lawrence Kelley (1), Bob MacCallum (1), Gidon
Moont (1), Mansoor Saqi (2), Marcel Turcotte (1) & Michael Sternberg (1) (1) Biomolecular Modelling
Laboratory, Imperial Cancer Research Fund Lincoln X s Inn Fields, London WC2A 3PX, UK (2)
Bioinformatics Group, GlaxoWellcome, Stevenage, UK 1 - CASP3 Entries Submission
were made for 24 entries in the fold recognition section. Predictions were submitted for: T0043, T0044,
T0046, T0051,T0053, T0O054, T0O056, TO059, TO061, T0062, TO063, TO064, TO065, TO066, TO067, TOOG6S,
T0074, T0075, T0O077, T0078, T0079, TO080, TO081, TO083 2- Outline ---------- The unknown CASP entry is




the target and the library of known folds are the templates. The key aspects of the approach are: (0) Initial
check for remote homology of target to templates of known structures using PSI-BLAST. (1) A new method
in which multiply-aligned sequences of the target is matched against a multiple sequence alignment
constructed from the homologues (or from homologues and analogues) in the SCOP library (3D-PSSM,
developed at the ICRF). (2) Local hydrophobicity and predicted secondary structure matched for target and
template using SIVA (developed by Bob MacCallum & Janet Thornton, UCL, London). (3) Evaluation of
above results in terms of literature and function of target. (4) In addition, we used some of the CASP3 targets
to test an approach of scanning predicted secondary structures against topological rules for folds derived by
an artificial intelligent machine learning approach (PROGOL, Turcotte, Muggleton & Sternberg). 3 -
Template library The fold (template) library consists of non-redundant SCOP domains with
<40% sequence identity per family (called SCOP40). 4 - Secondary structure predictions

Two versions of secondary structure prediction were used from multiple-
sequence alignments of the target based on PHD (Rost & Sander and DSC (King & Sternberg) implemented
in JPRED (Barton). 5 - 3D-PSSMs -------------- The key method used was our new 3D-PSSMs. The concept
is that structural superposition of remote homologues can be used to generate a multiple sequence alignment
that include more information than can be gathered from sequence searches (such as PSI-BLLAST) alone.
Each master protein in the SCOP40 library is selected (say A0) in turn. The template 3D-PSSM is
constructed from structures within the same SCOP superfamily that can be superposed well in 3D. Based on
the structural alignment of say protein domains B0 and CO to A0, multiple sequence alignments generated by
PSI-BLAST for A (A0, A1,A2..Aa), for B (B0,B1,B2..Bb) and for C (C0,C1,C2,..Cc.) are thus equivalenced
to generate a multiple alignment: (A0,A1,A2,.Aa,B0,B1,B2,..Bb,C0,C1,C2..Cc). The alignment is converted
to a position specific scoring matrix using the approach implemented in PSI-BLAST. Similarly protein BO
and CO of known structure will be used in turn as masters to construct different 3D-PSSMs. The unknown
target is then used to construct a multiple alignment and this is searched in turn against each 3D-PSSM in the
template SCOP40 library. The search algorithm is a global dynamic programming algorithm (with an option
to penalise end gaps) as developed in FOLDFIT (Russell,R.B., Saqgi, M.A.S., Bates,P.A., Sayle,R.A. &
Sternberg, M.J.E. (1998). Prot Eng 11, 1-9.) Additional optional features are introduced into the approach. i)
A search of an alternate 3D-PSSM library which was constructed from structurally superposing proteins in
the same SCOP fold with the aim of recognising either homologues or analogues. ii) The predicted secondary
structure of the target is matched against the known secondary structure of the master AO together with
sequence matching in the 3D-PSSM using the approach of FOLDFIT. iii) Weight up the 3D-PSSM score for
residues forming the buried core of master A0. iv) Weight up the 3D-PSSM score of totally conserved polar
and charged residues as they may be potential functional residues. 6 - SIVA -------- Vector-based alignment of
per-residue hydrophobicity and DSC predicted secondary structure probabilities for both target and template.
This approach could also be used in the absence of known structures for library sequences. Algorithm is
developed by Bob MacCallum & Janet Thornton, UCL, London, unpublished) (7) Visual inspection of
results. The SCOP database was searched to evaluate high ranking hits.
Alignments were constructed manually. (8) Submissions ---------------- Most submissions were either a
sequence alignments to a known fold or a statement that there was no known fold. The exceptions were: i)
T0068 when a 3D model was constructed by Dr Paul Bates, ICRF using the comparative modelling method
described in his abstract ii) Target T0064,65,66 when coordinates were submitted. T0O064 was constructed
from monomers of pdb codes 1169 and 1lmb ; TO065 from 11lmb and the complex TO066 based on the
interactions in the dimer coordinates of 1lmb. 9- Protein Topology Rules derived by Machine Learning

Some of the CASP3 targets were used to explore our prototype
approach of scanning predicted secondary structures against protein topology rules derived using an artificial
intelligence based machine learning algorithm (PROGOL) (Turcotte, Muggleton & Sternberg). These rules
include data on patterns and types of secondary structures including length, loop length and hydrophobicity.




Threading with contact potentials and models of sequence- and structure conservation

Anna Panchenko, Aron Marchler-Bauer, Stephen H. Bryant

Threading database searches and threading alignment models have been calculated with the method
described in "Bryant S.H. (1996) Proteins 26:172-185", "Bryant S.H. et al. (1995) Curr Opin Struct Biol.
5:236-44", and "Madej T. et al. (1995), Proteins 23:356-369", and which already had been used in predictions
for CASP1 and CASP?2 by this team. Several modifications have been introduced, however, which are
discussed below: 1) for most of the models submitted for CASP3 a combined scoring scheme was used: The
physics-based contact potential described in "Bryant S.H. et al. (1993) Proteins 16:92-112" has been
combined with a quantitative description of sequence conservation within protein families. Based on multiple
sequence alignments we construct position-specific scoring matrices (PSSMs) so that the score for aligning a
residue at a given position depends on the log-odds of seeing this residue type appearing within the non-
redundant set of aligned homologs. Contact-based threading scores and the motif matching scores are
combined after refering each to the score distributions obtained for random sequences with the same
composition and length (shuffled sequences). We have specified in the REMARK section of each submission
which scoring scheme has been used for which model. 2) The statistical significance of contact-based
threading scores, and in some cases of PSSM-based and combined scores, is estimated, to rank hits in a
database search and to obtain overall confidence in the models generated. We calculate a P-value that reflects
the probability with which a random sequence (of the given length and composition) has a score equal or
higher than the score obtained for the query sequence. Properties of random-sequence score-distributions are
obtained by simulation or by interpolation from reference data (only in case of contact-based scores), relying
on the observation that the alignment space size is the major variable in determining random-sequence
scores. 3) Sequences are aligned to core structures of structural templates, requiring the minimum core
elements to be included in the alignment and allowing for n- and c-terminal extensions up to the inclusion of
the whole template structure. These core structures are based on the analysis of intra-domain contacts only if
the respective domain does not have a sufficient number of diverse structure neighbors as calculated by
VAST ("Gibrat J.F. et al. (1996) Curr Opin Struct Biol. 6:377-385"). The minimum extent of core
substructures and the constraints on the size of inserted loops are based on models of structural conservation
and divergence within homologous protein families otherwise. Homology is assessed by checking for the
presence of "Homologous Core Substructures" (HCS), see "Matsuo Y. et al. (1999) Proteins, in press". In
general we have submitted more than one model per prediction target. We have assigned the dummy template
"NONE" to model 1 in cases where we have not been able to collect evidence for any other model. We have
not submitted predictions for a variety of targets; our goal was to detect remote homologs and we have
deliberately excluded "trivial" homologs for which a structural template could be identified by sequence
comparison alone (e.g. by BLAST) with high confidence. We have submitted models for a few of the clear
homologs though, in cases where we thought that the alignment was ambiguous and an interesting problem
per se. We also have excluded targets which appeared too small to form globular structures with a buried
hydrophobic core, targets which appeared too large for single domains and where we were not able to do
reliable domain parsing on the basis of sequence analysis, and targets with biased sequence composition. We
have tried to submit models found at the top of the automated database search hit lists in most cases, details
are given in the individual submission REMARKSs. The strict limitation on model numbers, however, has
forced us to manually edit the hitlists in several cases, and models ranked as number 1 do not necessarily
reflect the performance of the fold recognition methods employed. Searching for remote homologs at the
borderline of the signal to noise ratio may be an intricate subject, no matter what method is used. We do not
think that counting how often a correct template has been identified as the single best scoring hit is an
appropriate measure of fold recognition specificity and -sensitivity in the interesting range of "medium to
hard" fold recognition problems. We have assumed that models other than "model 1" will be included in the
automated evaluation and considered in the assessment of predictions.



PrISM: Protein Informatics System for Modeling

An-Suei Yang and Barry Honig

All alignments and 3D structure predictions for the targets in CASP3 were made with the PrISM program.
PrISM (Protein Informatics System for Modeling) is a sequence/structure analysis/modeling system that,
used in either interactive or automatic mode, produces 3D structures of proteins from their amino acid
sequences. PrISM consists of a variety of integrated computational modules and databases, including the
facility to carry out structure topology analysis, sequence homology search/alignment and statistics,
structure-structure alignment, multiple sequence/structure alignment, sequence/structure profile analysis, fold
recognition, comparative model building, sidechain and loop modeling, and model structure assessment. At
present, PrISM make use of SWISS-PROT and PDB as data resources. SWISS-PROT is used without further
processing. PDB entries are divided into structural domains with PrISM structure topology analysis tools to
form structure domain libraries. These libraries serve as alternative structural databases in addition to the
uncut version of the PDB entries. PrISM's sequence search and analysis tools, based on either the Smith-
Waterman or Needleman-Wunsch dynamic programming algorithm, in conjunction with statistics based on
the theory of extreme value distribution, can perform pairwise sequence similarity searches, pairwise or
multiple sequence alignments, sequence family clustering, and sequence profile searches over sequence
databases. Structure search and analysis tools use an algorithm which is built upon double dynamic
programming and rigid-body superimposition methods. This algorithm is capable of performing pairwise
structure alignments, multiple structure alignments, structure similarity searches and clustering over structure
databases. The purpose of the sequence and structure analysis modules is to identify the most suitable
structural template(s) and to predict the best sequence-to-structure alignments, which are then used in the
protein structure modeling modules. Structure templates are recognized first by a Smith-Waterman sequence
alignment score computed with the BLOSUM 62 substitution matrix and then normalized using the extreme
value distribution. If the sequence similarity score between a query sequence and a template is greater than
an empirically determined cut-off of 15, the alignment and the template are used to produce a homology
model for the query sequence with PrISM structure modeling modules. If sequence alignment fails to relate a
query sequence to any structure in the PDB, a fold recognition procedure is applied. This procedure is started
by constructing models (backbone plus carbon beta) of the query sequence based on the predicted alignments
of the sequence to all possible templates in the PDB using a sequence-to-structure mapping algorithm. The
most likely models for the sequence are then decided by a subsequent model ranking procedure based on a
structure fitness score. The structure fitness score is a sum of individual residue scores which are calculated
using statistically derived parameters. These parameters are designed to evaluate these simplified models
based on secondary structure propensities and the number and chemical properties of the contacting
neighbors of each residue. PriISM's structure modeling modules build protein structures using one or more
templates that are simultaneously aligned to the query sequence. When more than one template is used, an
automatic procedure first divides templates into secondary structure segments, and then selects the most
suitable segment templates for model building, segment by segment. Mainchains are built by using the
template conformation when possible. Insertion-deletion regions, usually loops, are then rebuilt using ab
initio methods. Sidechain torsion angles are either taken from the template or predicted based on the
mainchain torsion angles with a neural network algorithm. The model building and the alignment procedures
can iterate until a reasonable model structure is arrived. Finally, the model structures are refined with limited
minimization or simulated annealing. PrISM contains a model assessment module, which is used to assess
the quality of a predicted model as the experimental structure becomes available. The assessment procedure
is started by carrying out a structure alignment to align the model and the experimental structure. This is
followed by RMSD calculations , the evaluation of the predicted alignment on which the model is built, and
the evaluation of the predicted mainchain and sidechain torsion angles. These results provide statistical



indicators for the quality of the predicted model. Using PrISM, we have predicted one model for each of the
43 CASP3 targets. The modeling strategy varies from one target to another because the protocol that is used
depends on the amount and quality of information extracted from the sequence and structure databases. For
example, when a sequence has an EF hand sequence motif but shows very little sequence identity to any
structure in PDB, the structure of the sequence is predicted by applying PrISM's fold recognition procedure
to a subset of structure database that contains only proteins with at least one EF hand motif. When needed,
iterative cycles between information extraction and modeling can be valuable in producing better models.
Overall, PrISM provides a flexible computational environment which can be adapted for a large number of
different modeling challenges.

Fold recognition from secondary structure predictions

Geetha Vasudevan, Philip G. McQueen, Valentina Di Francesco, Jean Garnier and Peter Munson

The ab initio predictions were limited to the secondary structures using three methods (model 1 to 3) ordered
according to the reported accuracy by their authors. SIMPA and QL used homologous sequences to the target
sequence when available but GOR (version IV) was used without homologous sequences. SIMPA is a nearest
neighbor approach using a similarity matrix, an optimized similarity threshold, a window of 13 to 17
residues, and a database of observed secondary structures. This method is based on the assumption that
similar peptide regions have the same secondary structure with a score related to their similarity. (Levin J. et
al. FEBS, 205, (1986) 303-308; Levin J. and Garnier J. Biochim. Biophys. Acta, (1988) 955, 283-295.) The
updated version used, Simpa96, has an extended database of 324 proteins with Blosum 62 as similarity
matrix. Its crossvalidated accuracy ,Q3 , was 67.7% for a single sequence and 72.8% when using multiple
alignments of homologues sequences (Levin J. Protein Eng. (1997),10, 771-776). The predicted secondary
structures are regularized to a minimum of 4 and 2 residues for helix and strand, respectively with a program
developed by Zimmermann K., Protein Eng. (1994), 7, 1197-1202. A confidence scale from 0 to 9 for the
prediction at each amino acid position is provided. The Quadratic Logistic (QL) secondary structure
prediction method incorporates all single and pairwise residue effects within a 17 amino acid residue stretch
upon the predicted secondary structural state of the center residue. Helix and strand periodicity are explicitly
considered in this approach. A cross-validated accuracy (Q3) of 62.4% on single sequences and up to 68.5%
with homologous sequences is achieved (Di Francesco, Garnier and Munson, Protein Science, vol. 5, pp 106-
113, 1996). The GOR, version 1V, is an improved version of the GOR method based on information theory
with directional information included (Garnier J. et al, J. Mol. Biol., (1978) vol. 120, 97-120). Version IV has
an extended database of 267 proteins and counts the frequency of all possible amino acid pairs in a window
of 17 residues, its crossvalidated accuracy was Q3 = 64.4% without homologue sequence (Garnier J. et al.,
Methods in Enzymology, (1996),vol. 266, pp. 540 - 553). The predictions are regularized to 4 residues in
helix and 2 in strand and at each amino acid position the estimated probability for each of the three states is
printed. Fold recognition was performed with the program FORESST (Di Francesco V. et al., J. Mol. Biol.,
(1997), 267, 446-463) in which a sequence of predicted secondary structure states of the target protein is
aligned to hidden Markov models (HMM) of protein structural families. Secondary structure prediction of the
target protein was obtained with the algorithm SIMPA, including homologous sequences when available.
Searches were performed against a library of 344 HMMSs developed at The Institute for Genomic Research
(http://www.tigr.org). These models were trained with sequences of observed structure states of proteins
having similar three-dimensional fold, selected from the homology superfamily level of the CATH database
(http://www.biochem.ucl.ac.uk/bsm/cath/CATH.html). Z scores were computed for negative log-odds scores
assigned by each HMM to the target sequence based on the protein sequences of a control database. The



control database consists of 349 sequences of secondary structures predicted with the SIMPA algorithm, for
unrelated proteins. Fold prediction of a target sequence was obtained by selecting the structural family
described by the HMM for which the following two conditions are satisfied: (1) The Z score for the target
sequence should be greater than 2; (2) the model length should differ by less than 20% from the target
sequence length. If more than one structural model satisfied these two conditions, the structural family with
an activity compatible with that of the target sequence was chosen. A structural template was selected from
the proteins used in training the HMM, which best matched the length, secondary structural pattern and if
possible the proper alignment of functional residues, using the alignment provided by the HMM.

PROSPECT: a threading-based protein structure prediction system

Ying Xu, Dong Xu, Oakley H. Crawford, J. Ralph Einstein Frank W. Larimer, Michael A. Unseren, Ge
Zhang, and Edward C. Uberbacher

We have recently developed a threading-based protein structure prediction system called PROSPECT
(PROtein Structure Prediction and Evaluation Computer Toolkit), and have applied the system in the CASP-3
protein structure prediction contest. The core of the system is an algorithm/program that finds a fold-
sequence alignment that is guaranteed to be globally optimal, measured collectively by (1) singleton match
fitness, (2) pairwise interaction preference, and (3) alignment gap penalties, and does so in an efficient
manner. One fundamental difference between our algorithm and others is that we have discovered and used a
new parameter C, the topological complexity of a fold template in our formulation of the threading problem.
C characterizes the overall structure of pairwise interactions, and is a monotonic function of the cutoff
distance for pairwise interactions. It is known that the globally-optimal threading problem changes from
being NP-hard to polynomial-time solvable as this cutoff distance changes from a fold's diameter to zero.
Some recent research suggests that considering pairwise interactions only between spatially "close" residues
is probably sufficient for accurate fold recognition and accurate fold-sequence alignment. We have
demonstrated that when the cutoff distance between beta-carbon atoms of the interacting residues is set
between 7A to 15A, the computational complexity of our algorithm stays manageable. Mathematically, our
threading algorithm finds a globally-optimal fold-sequence alignment in O(nm+ MnNA{1.5C-1}) time, for a
fold of m residues and M core secondary structures, and a query sequence of n residues, where N is the
maximum number of possible alignments between an individual core of the fold and the query sequence
when its neighboring cores are already aligned. C is typically a small positive integer, and it is less than or
equal to 6 for 90% of the 1300+ folds in FSSP when the cutoff is set at 7A. In terms of wall-clock time, our
algorithm typically takes about two to three days to thread a sequence of 300 amino acids against a database
of about 1000 folds on a DEC workstation. To facilitate easy incorporation of known biological constraints
and knowledge during the fold recognition process, we have generalized our threading algorithm so that it
finds a globally-optimal alignment under various constraints. Currently, PROSPECT allows the incorporation
of the following constraints: (1) (partially) known or predicted secondary structures; (2) specified disulfide
bonds between certain residues in the query sequence; (3) specified active sites with possibly involved
residue species and their geometrical relationship; and (4) specified distance constraints among certain
residues in the query sequence. Our algorithm finds a globally-optimal fold-sequence alignment that satisfies
the specified constraints. For CASP-3, we ran PROSPECT on each specified target against a database of
about 1000 unique folds. Typically the top ten alignments are visually checked and ranked. Then the top one
or two alignments are fed into MODELLER to generate atomic models. PROCHECK and WHATTF are used
to give the final ranking of the generated atomic models for each predicted structure.



methods of protein homology model construction for CASP3 targets 47,55 and 69.

Mark J Forster

The procedures utilised for the construction of the submitted CASP3 homology modelling targets can be
described as the following series of steps. (a) Database search for reference (parent) proteins. (b) Alignment
of selected reference proteins with model sequence. (c) Restraint generation and initial model building phase.
(d) Evaluation of initial model structures. (e) Refinement of initial models to produce final model. Each of
the individual steps used will now be further described. (a) Database search for reference (parent) proteins.
Reference or parent proteins were obtained by searching the PDB using the Washington University version of
the BLAST program (i.e. WU-blastp) with a BLOSUMG62 comparison matrix as implemented on the server
of the European Bioinformtics Institute at http://www?2.ebi.ac.uk/blast2/. In the case of target 47 (rat
alpha(2U) globulin) a single high identity hit (63%) was found against the structure of the mouse major
urinary protein (pdb code 1MUP). Other hits observed for this model sequence were close to or below the
30% identity level, did not structurally superimpose on 1MUP, and hence were not used. For target 55, a
galactose recognising lectin, the highest scoring hit was an E-selectin (pdb code 1ESL) which was only 29%
identical, while the lection domain of mannose binding protein A (pdb codes IMSBA etc) was 27% identical.
Several other hits (1KJB, 1HLI etc) were theoretical models and were not used. This corresponds to a hard
homology problem. For target 69 (bovine recombinant conglutinin) all top hits were mannose binding
proteins, the top scoring being pdb code 1HUP at 38% identity. A total of four parents were ultimately used
(1HUP, 1RTM_1, 1HTN, 1ESL). Targets 55 and 69 were noted to be 23% identical and 28% similar (using
GCG gap). (b) Alignment of reference proteins and model sequence. For T047 a Needleman Wunsch
alignment vs IMUP was used but this was trivial due to high identity and no gaps found. For TO55 many
potential sets of parents and alignment schemes were and the 3D models scored as descibed below. The
alignment used for the submitted model was that of parents IMSB and 1ESL as taken from B.J.Graves et al.
(Nature v367, p532 (1994)). The model sequence was hand aligned the parents using the FSSP structural
neighbours of 1ESL as a guide. For T069 the alignment of the four parents was that given by the Dali/FSSP
database, the model sequence was then hand aligned against these. (c) Restraint generation and initial model
building. The insightII 97.0 Homology module (MSI) and interface to Modeler (A.Sali and co-workers) were
used to create the above alignments and build initial models. Typically four or eight models were created for
each alignment. (d) Evaluation of models. Both initial and refined models were scored by the atomic non
local energy analysis (ANOLEA) of Melo and Feytmans (J. Mol. Biol. vol 277, 1141-1152 (1998) as
implemented at the site http://www.fundp.ac.be/pub/ANOLEA.html. (e) Refinement of initial models to
produce final models. Typically the best initial model, as judged by the ANOLEA e/kT score, was subjected
to an in-vacuo minimisation protocol using the Discover program and CVFF force field. The two models
submitted for TO55 differ in that the first uses a protocol of 2000 steps of steepest descent followed by
conjugate gradient with a fixed backbone, until a low maximum energy gradient was achieved. The second
model submitted did not fix the backbone for the CG stage. Procheck type geometrical checking was
performed using ProStat within insightII 97.0.




Completion and refinement of 3D homology models with Non-Equilibrium Molecular
Dynamics

Jaap A. Flohil Herman J.C. Berendsen

The main aim of the PROMOD collaboration [0] for homology modeling is to improve the quality of
homology models built by commonly used programs such as WHAT IF or the SwissModel server. Targets 47,
50 and 58 were predicted by homology modeling using single sequence alignment. The BLAST2P [4] server
at the EMBL was used to find templates that show at least 50% sequence identity to the CASP modeling
competition targets. After side-chain modeling with WHAT IF [2], using the same parameters parameters as
the version that is available as homology modeling server at the EMBL in Heidelberg, artefacts of the
modeling process have been detected by visual inspection and by automated procedures based on the
structure validation modules of WHAT IF. To remove Van der Waals overlap and to adapt to the GROMACS
(GROMOS87) force field, an energy minimization was done with GROMACS [1]. In case of target 58, an
insertion of a Glycine had to be made at position 34 of template 1AKZ. A Glycine, with a backbone
orientation copied from its neighboring residue backbone, and a database allowed restriction on the backbone
oxygen, was chosen for insertion. The Carbon-Nitrogen bond between the 2 residues to be separated was
removed and replaced by the Glycine, which was shrunk by reducing all its bond lengths to 1/3 of the regular
lengths. The so obtained initial model was then regularised applying all forces of the GROMACS force field
at 0 K until the lowest local potential energy of the structure is achieved. A 300 ps molecular dynamics
simulation in water was performed initially keeping the positions of the crystal waters. A selected fragment of
2 x 3 residues around the insertion were allowed to move, keeping the heavy atom positions of well modeled
residues stationary. Every 1 ps frame in the Molecular Dynamics trajectory was analyzed on context
dependent backbone counterparts in the PDB and residue packing quality [3], which analyses directional
atomic contacts. Only those residues were allowed to move freely that scored poorly in the WHAT IF
validation runs or that were selected by visual inspection. Global verification of the backbone structure for
each frame was monitored by the Ramachandron Z-score. From the best scoring frame a few residues were
selected, in the case of target 58 at 107 ps. Some of the (partly) free residues showing acceptably formed
conformations, hydrogen bonds and salt bridges somewhere else in the trajectory, but not optimal present in
the best selected frame, were replaced. Residues which showed no improvement after the initial simulation
have been exposed to a simulated annealing run of 200 ps, in a 500K - 200K temperature range. This
selection process can be reduced: The second run was validated similarly to the previous run, and the
residues considered uncertain after the previous run were analyzed. For these residues the frames were
selected in which they scored best and those rotamers were carried over to the initial model to create the
second model. This second model was energy minimized and submitted. This final minimization was done
with X-PLOR [5], as that is most likely also the program used by the experimentalists. Targets 47 and 50
have been modeled with a basically equivalent, but simplified protocol, e.g. without inter-model exchange of
side-chains and without visual inspection annotation. Target 58 has been modeled according to the principles
of the PROMOD project under the BIOTECH program of the European Commission, coordinated by G.
Vriend of the European Molecular Biology Laboratory in Heidelberg, Germany. REFERENCES 0. The
PROMOD partners are: G. Vriend, J. Weare, M.C. Peitsch, N. Guex, L. Holm, H.J.C. Berendsen, J.A. Flohil,
S. Hayward, O. Teleman, K. Tappura 1. H.J.C. Berendsen, D. van der Spoel and R. van Drunen GROMACS:
A message-passing parallel molecular dynamics implementation Comp. Phys. Comm. 95 (1995) pp. 43-56 2.
WHAT IF G.Vriend, WHAT IF: a molecular modelling and drug design program, J. Mol. Graph. 8, 52--56
(1990). 3. Quality Control G.Vriend and C.Sander, Quality control of protein models: directional atomic
contact analysis, J. Appl. Cryst. 26, 47--60 (1993). 4. Basic local alignment search tool Altschul, Stephen F.,
Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman (1990). J. Mol. Biol. 215:403-10. 5.
Brunger, A.T. (1992). X-PLOR Software Manual, Version 3.0 Yale University, New Haven, CT.



Prediction of protein secondary structure at 77% accuracy based on PSIBLAST derived
sequence profiles

David T. Jones

In order to assist in the automated prediction of protein structure for genome analysis, a secondary structure
prediction method has been developed which makes use of profiles automatically generated by PSIBLAST
[1]. Critical to the success of the method is to make use of a carefully filtered non-redundant data bank of
protein sequences, which in this case comprised 276030 sequences. Two feedforward neural networks are
used to actually make the predictions. The first network predicts secondary structure, the second network
filters the output of the first network, in a similar fashion to that used by PHD [2]. The first network has 17
groups of 21 inputs and 75 hidden units, the second network has 17 groups of 3 inputs and 55 hidden units.
The networks have been trained on a set of 1887 proteins with an early-stopped training protocol. 10% of the
training data was used to detect convergence. Using cross-validation, and a testing set of 160 unique protein
folds, the method achieves a Q3 score of just over 77%. References 1) Altschul_SF, Madden_TL,

Schaffer_ AA, Zhang_JH, Zhang_Z, Miller_W & Lipman_DJ (1997) Nucl. Acids Res. 25:3389-3402. 2)
Rost_B (1996) Methods Enzymology (1996) 266:525-539.

Secondary structure prediction by Inductive Logic Programming

Igor Mozetic Center for Applied Mathematics and Theoretical Physics University of Maribor

Inductive Logic Programming (ILP) is an approach to learning from examples. One specifies learning
examples in terms of attributes (continuous or discrete) and the result of learning are rules in human-readable
form. We have implemented ALF - an ILP system designed to learn from sequential data. ALF is an
extension of the well-known learning program C4.5 [1] which produces rules in the form of decision trees.
The main advantage of ALF is its flexibility and the ability to efficiently handle large quantities of data (in
the order of 100.000 learning examples and 1000 attributes). Flexibility allows the user to easily extend the
set of attributes (e.g., by extending the window size), introduce new attributes (e.g., hydrophobicity, polarity,
size of residues), or even use previously learned rules as new attributes. The main difference to the neural
network or nearest neighbour learning is that the result of learning are explicit rules. A possible disadvantage
is that in the rules, only a relevant, non-redundant subset of attributes is used and therefore redundant
information cannot be sufficiently exploited. While ALF is a general purpose system for learning from
sequential data, we have applied it to the protein secondary structure prediction problem. We have taken a
subset of the PDB as specified by the June 1998 release of PDB-select ([2], 25% sequence identity threshold)
for which DSSP [3] assigned secondary structure without errors. The subset comprises 887 sequence unique
protein chains with 189.718 residues. For all residues we first obtained the PHD server [4,5] secondary
structure assignments with reliability index R (0-9). We formed attributes with values of PHD predictions for
Hif R >=3,Lif R >=4, E if R >= 5, and unassigned otherwise. We took the window size of +- 6 residues,



and additionally formed new attributes in terms of the distance to the nearest H, L, or E residue. In order to
prevent overfitting the data, the reduced-error pruning [1] with confidence level CF = 1% was used for
learning the rules. 7-fold cross validation on the set of 887 chains yielded Q3 = 72.1 +- 9.7% and SOV
[Zemla & Venclovas] = 67 +- 14%. Incremental learning from the whole dataset was then used to submit
predictions for the CASP3 targets. References [1] Quinlan,J.R. (1993) C4.5: Programs for machine learning,
Morgan Kaufmann. [2] Hobohm,U. & Sander,C. (1994) Enlarged representative set of protein structures,
Protein Science 3, 522. [3] Kabsch,W. & Sander,C. (1983) Dictionary of protein secondary structure: Pattern
recognition of hydrogen bonded and geometrical features, Biopolymers 22, 2577-2637. [4] Rost,B. &
Sander,C. (1993) Prediction of protein secondary structure at better then 70% accuracy, J.Mol.Biol 232, 584-
599. [5] Rost,B. & Sander,C. (1994) Combining evolutionary information and neural networks to predict
protein secondary structure, Proteins 19, 55-72.

Recurrent Bidirectional Neural Network Secondary Structure Predictor Incorporated
With Multiple External Secondary Structure Resources (ANACONDA)

Jaap A. Flohil Lab. of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG
Groningen, The Netherlands Tom de Hoop, Edward E.E. Frietman Delft University of Technology,
Faculty of Applied Physics, Lorentzweg 1, 2628 CJ Delft, The Netherlands

The prediction system ANACONDA is trained on amino residues added with their corresponding secondary
structure as an input array, which is matched with the target secondary structure during training. During
prediction of each residue, the generated secondary structure is returned into the network by a feedback
procedure. Evolutionary information for the sequence input of the network is included by applying a PAM
250 matrix scoring function between the residues in the sliding window shifted along the sequence and a
secondary structure segment database. The segment database is subdivided in coil, helix, sheet and hairpin
fragment groups. The prediction system performs an interactive data exchange between two neural network
systems. Predictions start from the N-terminal side. After completion of the sequence, secondary structure
data is transferred to the network system which itself is trained on sequences in reversed order. The reverse
predictor continues with the reversed sequence and reversed feedback structure array at the C-terminal side.
The completed structure array is added to a structure profile and transferred to the forward predictor and the
prediction process continues and repeats until self-consistency is achieved. Different from CASP2, the initial
assignment for the secondary structure profile is built up using a weighted alignment of secondary structures
combining 3 different structure resources: 1) A statistical predictor based on single sequence nearest neighbor
algorithm with output filtering. Estimated Q3 accuracy and weight contribution is 60%. 2) A secondary
structure threader in which secondary structure segments of the pdbselect* database are threaded along the
target sequence using a scoring function based on PAM 250 matrix. The secondary structure of the central
residue in the sliding window provided by the highest scoring secondary structure segment in the fragment
group database was added to the secondary structure feedback profile. Estimated average accuracy on
maximal scoring segments and average weight contribution to the profile is 65%. 3) Blastp[2] is used to align
regions of the target sequence to fragments of a number of template proteins from the PDB database. The
PDB coordinates of the fragments are translated into dssp secondary structure fragments. This method is
applied only when sequence identities are greater then 25% and the fragment length of the aligned regions is
greater then 30 residues. Gaps between aligned regions are left open. For every residue in the target sequence
a weight factor is added to the structure profile. Weight estimations depend on degree of local sequence
identity and structural overlap of sequence fragments. To compensate for the absence of tertiary contacts,
weights in the structure profile of the sliding window are adapted according consistency of the previous step



between PDB fragments and the structure profile, and memorized for the next step. The (final) secondary
structure prediction assignment is post processed from the structure profile by a rule based decision system.
ANACONDA has been been designed as a stand-alone prediction system for sequences showing less then
25% homology with database sequences. Since in CASP3 also highly homologous sequences are available as
prediction targets, PDB derived secondary structure fragments have been included in the structural feedback
profile to obtain more reliable predictions. *June 1998 release of PDB_Select[1] with 901 chains in the 25%
sequence identity list 1. U.Hobohm, M.Scharf, R.Schneider, C.Sander: "Selection of a representative set of
structures from the Brookhaven Protein Data Bank" Protein Science 1 (1992),409-417. 2. Basic local
alignment search tool Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman (1990). J. Mol. Biol. 215:403-10.

Protocol for Protein Structure Prediction

Dave Timms

Step 1. The target sequence is compared to those in a composite sequence database (SWISSPROT-PIR-
TREMBL-PDB) using SSEARCH(1). Step 2. The resulting similar sequences are aligned using PILEUP(2).
Step 3. Secondary structure is predicted from the alignment using PHD(3)and DSC(4). If identity with
templates of known structure > 35% proceed to step 8 Further sequence analysis using Motifs, Hidden
Markov Models and coiled coil predictors etc is used to identify any non globular or membranous character
which may make fold recognition unsuitable Step 4. The target sequence is threaded against a fold database
using THREADER?2(5) Step 5. The top 30 hits are re-evaluated in the context of threading results from 50
randomly shuffled versions of the target sequence. Step 6. If no threading hit exhibits a Zscore > 3.0 then re-
thread using predicted secondary structure as a constraint. Step 7. The secondary structures suggested from
threading results with Z-scores > 3.0 are compared with the secondary structure predictions. Step 8. If the
secondary structures correspond, adjust the alignment with the template in the light of the known structure.
a)To minimise the structural alterations at insertions or deletions. b)To minimise the replacement of glycines
in 'D-conformations' and c¢)To minimise the introduction of prolines with inappropriate torsions. d)To
juxtapose any disulphide partners. Step 9. Exchange template and target sequences using QUANTA(6). Step
10. Introduce insertions via loop library. Step 11. Undertake hierarchical energy refinement using
CHARMM(7): a) Anneal deletions and inserted loops,constraining peptide torsions as trans. b) Relieve side-
chain clashes c) Aim for minimal movement from original template structure. Step 12. Analyse structure
using PROCHECK(8) and WHATCHECK(9) for unlikely geometries etc. Step 13. Perform corrective
refinement. If fold prediction is unsuccessful, DRAGON(10) is used for distance geometry folding using
constraints derived from secondary structure, disulphide bonds and putative side chain contacts derived from
correlation analysis of the multiple alignments. References 1. Pearson W.R., Methods in Enzymology 1996
266: 227-258. 2. Devereux J. et al, Nucleic Acids Research 1984 12: 387-395 3. Rost B. & Sander C.,
Proteins 1994 19: 55-72 4. King R.D. & Sternberg M.J.E. 1996 Protein Science 5: 2298-2310 5. Jones D.T.
1997 Current Opinions in Structural Biology 1997 7: 377-387. 6. Molecular Simulations Incorporated 1986
7. Brooks B.R. et al, J. Computational Chemistry 1983 4:187-217 8. Laskowski et al, 1993 J. Applied
Crystallography 26: 283-291. 9. Hooft R.-W.W. et al, Nature 1996 381: 272 10. Aszodi A. & Taylor W.R.
1997 Computers & Chemistry 21: 13-23.




Ab initio and comparative modeling of CASP3 targets using thermodynamic model of
secondary structure and distance geometry refinement.

Andrei L. Lomize, Irina D. Pogozheva and Henry I. Mosberg

Ab initio predictions of 3D structure for T0046, T0052, T0059, and T0061 CASP3 targets (gamma-adaptin
ear domain, cyanovirin-N, Sm D3 protein, and HDEA, respectively), and a homology-based 3D model of
T0048 (pterin-4-alpha-carbinolamine dehydratase) have been submitted. The modeling included the
following steps. (1) Identification of tentative alpha-helices and beta-structure, including prediction of beta-
sheet topologies and relative shifts of beta-strands, using an incomplete thermodynamic model of regular
secondary structure [1]. The model combines free energy terms defining alpha-helix and beta-sheet stabilities
in aqueous solution and terms describing immersion of the secondary structures into a nonpolar droplet
created by the rest of the protein to calculate, using the dynamic programming algorithm, the lowest energy
partition of the peptide chain into alpha-helices, beta-sheets, and nonregular structures. The different free
energy contributions to the stabilities of secondary structures were estimated from mutagenesis data, model
peptide studies, experimental transfer energies, accessible surface area for interacting side-chains, and using
several adjustable parameters. So far, the model has been developed and tested only for alpha-helical peptides
and proteins [1]. Therefore, locations of beta-sheets and their topologies were predicted by maximizing
continuous nonpolar surfaces of the possible beta-sheets, without quantitative calculations of beta-sheet
stability, and assuming that each protein considered (or its subdomain in cyanovirin-N) can form only one
beta-sheet. (2) Construction of an initial 3D model by manual (using QUANTA) docking of the predicted
helices and the beta-sheets to match their nonpolar areas, provide "knobs into holes" packing of side-chains,
and maximize hydrogen bonding. Since this is feasible only for the simplest 3D folds (for example, several
alpha-helices packed against a single beta-sheet, a complex of two independently formed beta-sheets, or a
single beta-sheet folded in the beta-barrel), we considered only small CASP3 targets with simple all-beta,
alpha+beta, or alpha/beta organization predicted in step (1), and omitted more complicated folds, including
all-alpha. (3) Distance geometry refinement with evolving system of angle and distance constraints [2]. Each
iteration of the refinement procedure includes (1) modification of hydrogen bonding and side-chain torsion
angle constraints to eliminate structural flaws found in the previously calculated models, and (2) calculations
with DIANA. The flaws (significant distortions of alpha-helix or beta-sheet geometries, buried polar groups
with no hydrogen bonds, exposed hydrophobic groups, holes, etc.) were detected using QUANTA and
supplementary software [2]. The refinement allows adjustment of the spatial positions and geometries of
alpha-helices and beta-sheets and determination of conformations of side-chains, turns, and loops by
satisfying, in a stepwise "trial and error" fashion, several simple criteria, such as polarity matching,
maximization of hydrogen bonding, close packing, and spatial proximity of residues that appear and
disappear simultaneously in multiple sequence alignments [2]. The N-terminal region (first 50 residues) of
T0048 has low homology to its parent protein (1dcp) and includes a long insertion. Therefore, we performed
a "partial" ab initio prediction (steps 1 and 2) for this region. For the rest of the protein, the initial model was
constructed from the structure of the parent, 1dcp. Then, the initial model was refined by distance geometry
(step 3). [1] A.L.Lomize and H.I.Mosberg (1997) Thermodynamic model of secondary structure for alpha-
helical peptides and proteins. Biopolymers, v.42, pp.239-269. [2] I.D.Pogozheva, A.L.Lomize and
H.I.Mosberg (1997) The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with
hydrogen bonding constraints. Biophys. J., v.72, pp.1963-1985.
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Combining Protein Secondary Structure Predictions Using Machine Learning

Ross D. King, Mohammed Ouali, Arbra T. Strong, David Page

The prediction method is based on the premise that combining different prediction methods will give an
improved prediction method - as long as the different prediction methods have some independence of each
other. We have therefore chosen to combine the three best three protein secondary structure methods from
CASP2 (PHD, DSC, and NNSSP) to form a prediction method that we hope is better than either single
method. To do this we formed multiple sequence alignments using the method used in the DSC server for a
learning set of 496 non-homologous proteins (selected by Geoff Barton and James Cuff). We collected
predictions for these alignments from DSC v1.2, from the PHD server at Heidelberg, and from NNSSP
(clu2nnssp v1.2). We were then faced with the problem of how to combine these predictions in the best
possible way. This was a particular problem because it was unclear which of our non-homologous sequences
PHD and NNSSP had previously been trained on; i.e. we could not be sure that we had an unbiased test set.
To overcome this problem we chose a conservative strategy for combining the predictions based on the
assumption that the most reliable predictor was PHD, followed by DSC, and then NNSSP. This strategy was
to collect the predictions where PHD and DSC differed in their predictions, and to use the machine learning
algorithm C5 to find rules to decide which method was correct. The attributes used in the learning were the
probabilities and certainty factors of the methods and a set of other descriptors considered relevant. We
learned a total of 646 rules, 290 of which tell us to replace PHD by DSC. The estimated accuracy of our
method (based on a held-out set) is 73.5%. The estimated accuracy of our rules themselves (by 10-fold cross-
validation) is 90%.

CASP3 & FORESST - a library of hidden Markov models of protein structural families
for distant homology recognition using secondary structure information

Valentina Di Francesco (1), Maria Cueto (2) and Delwood Richardson (1) (1) The Institute for Genomic
Research (2) Novartis

A method for recognizing the three-dimensional structure of a protein from its amino acid sequence based on
a combination of hidden Markov models (HMMs) and secondary structure prediction (Di Francesco et al.,
(1997) J. Mol. Biol. 267: 446-463) has been used for the CASP3 endeavour. Compared to other fold
recognition methods based on HMMs, this approach is different in that only secondary structure information
is used when training the HMMs. In fact each HMM is trained from known secondary structure sequences of
proteins having similar fold selected from the homology superfamily level of the CATH database
(http://www.biochem.ucl.ac.uk/bsm/cath/CATH.html). The current library of HMMs, called FORESST,
consists of 344 models of structural families, which cover about half of the currently known types of 'unique'’
structures. To recognize the fold of a target protein, secondary structure states for its amino acid sequence
were first obtained with a variety of prediction algorithms (such as PHD, PREDATOR, GOR-IV, SIMPA, etc)
in order to increase the chances of having a good prediction on hand. The target predicted sequences were
then aligned to each HMM in the library and the predicted fold was the fold described by the model fitting
the predicted sequences the best. Three different measures of fitness were taken into account: (a) The HMM



scores, i.e. negative log-odds scores normalized by the query sequence length, are an indication of how a
HMM of a particular structural family fits the sequence better of a null model. These scores were ranked
against the same scores assigned by each model to the predicted secondary structure sequences of 349
unrelated proteins of known 3D structure in a control database. (b) Z scores were computed for negative log-
odds (NLO) scores (not normalized) assigned by each HMM to the target sequences relative to the
distribution of the NLO scores for the control database. (c) Jscores are an indication of how well a predicted
target sequence matches the consensus secondary structure sequence of the proteins in the training set of the
HMM of a particular structural family. In the prediction process various other factors were considered, e.g.
the model length should not differ much from the target sequence length; the model should fit well most of
the predicted secondary structure sequences of the target; the proteins in the predicted structural family
should have a biological role compatible with that of the target sequence; the residues involved in the
functional activity of the target should be conserved in the chosen structural family. Among the proteins of
known 3D structure used in training the HMM, the structural template for the target was selected based on a
good agreement in length and pattern of the secondary structures. Often the alignment between template and
target was modified to correct for obvious mismatches of secondary structure elements (such as 2 short
helices aligned to a long one) or for more reasonable domain parsing. In certain cases, FORESST's
predictions were supplemented with profile-searching and motif-finding algorithms such as MoST,
ProfileSearch PSI-BLAST, or HMMs trained with amino acid sequences, in order to search for subtle but
significant hits that could suggest potential structural and functional relationships. HMMs of premade
sequence alignments were built using the HMMER software package. These HMMs were generalized using
Blosum62 with higher weight on the matrix than the defaults or using Dirichilet prior mixtures. Alignments
of the protein families were sometimes further edited by hand to emphasize conserved features across the
family. For a couple of targets (T0062 and T0052) these methods could suggest distant homologues with
known 3D structure, and their folds were used as templates for the target sequences. The FORESST
methodology described here has already been tested during the CASP2 experiment and was shown there to
be successful in a number of cases (Di Francesco et al., (1997) Proteins, Suppl. 1: 123-128). Participation in
CASP3 was motivated by the need to test the methodology in real experimental condition with a more
extended library of HMMs than the one used in CASP2. It should also be noted that FORESST was used by
another CASP3 prediction team (see abstract by Geetha et al., prediction group 3707-4066-9021) by applying
pre-set, not changeable criteria for fold prediction with a minimal amount of human intervention. That
utilization of FORESST is supposed to emulate a systematic application of the selected criteria for prediction
in large fold recognition experiments, such as those for hypothetical proteins from complete genomes.

Fold recognition using ProFIT -- an update

Manfred J. Sippl, Francisco Domingues, Hannes Floeckner, Walter A. Koppensteiner, Peter Lackner,
Andreas Prlic, Christian Weichenberger, Markus Wiederstein

ProFIT, the fold recognition tool of the ProCyon package, searches a representative database of protein
chains for a possible template structure for a target sequence of a globular protein. The program aligns the
given sequence with all protein chains of a data base. The generation of alignments is implemented by a
global dynamic programming algorithm and sequence structure compatibility is measured by knowledge
based potentials. Here is a summary of the main components of the program. Knowledge based potentials of
mean force are derived from the three dimensional structures of proteins [1][2]. Pair interaction potentials are
related to radial distribution functions which are extracted from experimental structures by a statistical
analysis of atom-atom distances. Surface potentials are derived by an analysis of neighbouring residues in a



similar fashion. Two representative subsets of protein chains were extracted from the PDB: one for deriving
knowledge based potentials (approx. 400 entries) and a second serving as a fold data base (approx. 2400
entries). Alignment generation is performed by a Needleman-Wunsch dynamic programming algorithm using
a substitution matrix derived by application of the frozen approximation and knowledge based potentials [3].
Hence, for every structure in the fold data base a model is generated. The individual models are ranked by a
Z-score which takes into account the energy background obtained from a large number of alternative folds.
Z-scores are expressed as the difference in energy of a particular model and the average energy background
in units of the standard deviation [4]. Fold recognition results were cross-checked with additional information
from secondary structure prediction and remote homology searches. Secondary structure predictions were
derived from the EMBL PHD server [5] and the program DSC [6]. Remote homology between a target
sequence and template structures were detected by our implementation of the intermediate sequence search
method [7] which uses gapped BLAST for sequence database searches. References: [1] Sippl MJ, Ortner M,
Jaritz M, Lackner P & Floeckner H. Helmholtz free energy of atom pair interactions in proteins. Folding &
Design 1, 289-298 (1996) [2] Sippl M. The calculation of conformational ensembles from potentials of
mean force. An approach to the knowledge based prediction of local structures in globular proteins. J Mol
Biol 213, 859-883 (1990) [3] Sippl MJ. Boltzmann's principle, knowledge based mean fields and protein
folding. An approach to the computational determination of protein structures. J Comp Aided Mol Des 7,
473-501 (1993) [4] Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins 17,
355-62 (1993) [5] Rost B & Sander C. Prediction of protein secondary structure at better than 70% accuracy.
J Mol Biol 232, 584-99 (1993) [6] King RD & Sternberg MJ. Identification and application of the concepts
important for accurate and reliable protein secondary structure prediction. Protein Sci 5, 2298-310 (1996) [7]
Park J, Teichmann SA, Hubbard T & Chothia C. Intermediate sequences increase the detection of homology
between sequences. J Mol Biol 273, 349-54 (1997)

ToPLign Protein Structure Prediction

Ralf Zimmer, Ralf Thiele, Heinz-Theodor Mevissen, Gudrun Lange’*, Jochen Selbig, Thomas Lengauer
GMD-SCALI, Schloss Birlinghoven, D-53754 Sankt Augustin, P.O. Box 1316, Germany Tel.: +49 2241 14
2818} e-mail: Ralf.Zimmer@gmd.de N*: Protein Crystallography, Hoechst Marion Roussel (HMR) AG,

Frankfurt, Germany.

For CASP-3, we have made 15 predictions out of the 25 targets we regard as belonging to the fold
recognition category with the prediction algorithms implemented in our software tool ToPLign [4]. In
particular, we applied three different methods, sequence alignment and (profile) database search, a dynamic
programming based algorithm for contact capacity potentials, and a heuristic divide&conquer algorithm to
optimize interaction potentials. All three methods align the target sequences against non-redundant
representative sets of structures and the whole PDB. By varying important parameters over a set of
reasonable settings, these procedures produce several scoring lists, which are ranked according to different
criteria. The corresponding alignments are analyzed and reevaluated with various ToPLign tools to come up
with a joint 'consistent' prediction of the most probable model structures. Finally, the alignments/threadings
with these model structures are refined by tuning alignment parameters using path, energy and reliability
profiles as well as parametric optimization algorithms [7] of ToPLign. For the sequence alignment we use
standard sequence alignment algorithms with affine gap cost functions with the usual amino acid substitution
matrices to compute global, shift, and local alignments. Class context substitution matrices are substitution
matrices for pairs of substrings of amino acids instead of pairs of single amino acids. They are derived from
multiple and structural alignments of protein families in order to produce a set of family specific matrices.



We estimate statistically whether the alignment score of the target with a respective protein family using the
corresponding matrix is significant as compared to the expected score for known members of that family
with that matrix. This procedure helps to determine a possible protein family (consisting mostly of proteins
of yet unknown 3D structure) for the target sequence in question and to increase the quality of the alignments
in the refinement step. The 123D method is tailored towards a fast selection of reasonable targets out of a
representative fold library. It is a dynamic-programming based, efficient method for optimally aligning
protein sequences to protein structures according to empirical environmental/profile scoring potentials. These
so-called contact capacity potentials (CCP) [1] are essentially one-body terms, i.e. depend on one amino acid
partner of interactions only and measure the preference of amino acids to have a certain number of contacts
in certain structural environments. The potentials are supposed to be generalized measures of hydrophobicity,
which is assumed to be an essential driving force for folding proteins into their native structure. The
potentials are derived from an analysis of a non-redundant database of highly resolved structures by
converting relative frequencies into pseudo energies using a normalization according to the inverse
Boltzmann law. In a previous evaluation [1] it has been shown that the scoring function is discriminative
enough to recognize native sequence-structure relationships and to detect structural folds in the absence of
significant sequence similarity. The recursive dynamic programming (RDP) method [6] is tailored towards
the discrimination between alternative plausible structure models and the optimization of the respective
alignments. RDP is a heuristic approach for the approximate solution of the full threading problem for a wide
range of scoring functions, exploiting sequence conservation, sequence patterns [2], environmental profiles
[1], and empirical pairwise interaction potentials [10] of the type introduced by Sippl [5]. Threading
problems of this kind are known to be NP-hard [3]. RDP hierarchically assembles locally optimal solutions
into partial sequence-structure alignments by focusing on highly conserved regions with highest priority.
Conservation can be in terms of local sequence similarities, characteristic sequence patterns, or contact
capacity. Then, RDP recursively exploits also interactions derived from already mapped parts (in contrast to
the frozen approximation approach) in order to detect weaker signals. RDP is able to produce good fold
recognition and, at the same time, biologically reasonable sequence-structure alignments using a modest
amount of computing resources. Acknowledgments: This research has been funded in part by the BMBF
funded project "Targld: Methods for the Identification of Protein Targets in Genome Data" under grant no.
0311615. References: [1] N. Alexandrov, R. Nussinov, and R. Zimmer: "Fast Protein Fold Recognition via
Sequence to Structure Alignment and Contact Capacity Potentials", Pacific Symposium on Biocomputing'96,
World Scientific Publishing Co., 1996, 53-72. [2] A. Bairoch and P. Bucher and K. Hofmann: "The PROSITE
database, its status in 1995", NAR, 189-196, 1996. [3] R. Lathrop: "The protein threading problem with
sequence amino acid interaction preferences is NP-complete", Protein Engineering, Vol 7, No 9, 1059-1068,
1994. [4] H. Mevissen, R. Thiele, R. Zimmer, and T. Lengauer: "Analysis of Protein Alignments - The
software environment ToPLign", GMD ToPLign WWW interface: http://cartan.gmd.de/ToPLign.html, 1994-
96. [5] M. Sippl: "Calculation of Conformational Ensembles from Potentials of Mean Force: An Approach to
the Knowledge-based Prediction of Local Structures in Globular Proteins", JMB, 859-883, 1990. [6] R.
Thiele, R. Zimmer, and T. Lengauer: "Recursive Dynamic Programming for Adaptive Sequence and
Structure Alignment", ISMB'95, C. Rawlings et al. (Eds.), AAAI Press, 384-392. [7] R. Zimmer and T.
Lengauer, "Fast and Numerically Stable Parametric Alignment of Biosequences", First Annual International
Conference on Computational Molecular Biology (RECOMB'97), M. Waterman (Ed.), ACM Press, to appear
1997. [8] C.Lemmen, A. Zien, R. Zimmer, and T. Lengauer: "Application of parameter optimization to
molecular comparison problems", PSB'99, World Scientific, to appear. [9] R. Thiele, R. Zimmer, and T.
Lengauer: "Recursive Dynamic Programming", 1998, submitted. [10] Ralf Zimmer, Marko W"ohler, Ralf
Thiele: "New Scoring Schemes for Protein Fold Recognition based on Voronoi Contacts", Bioinformatics,
1998, Vol. 14, Nr. 3, 295--308




Comparative Modeling of Targets T0050 and T0060

Ursula Egner

The aim of the study was to refine those procedures for comparative modeling, which were tested at the
CASP2 experiment. The structures of the targets were predicted by comparative modeling refining the
models by energy minimization techniques. As different refinement procedures influence the final model
structures considerably, the refinement protocols used in CASP2 were further tested. Model structures were
generated for two targets TO050 and T0060. The sequence identity between the target and the homologous
structures in the PDB are 82% and approx. 34%, respectively. The structure of target T050 was determined
by NMR techniques. Target descriptions: T0050 (glutamase mutase component S, species: C. cochlearium,
137 amino acids) One homologous structure is known: PDB entry 1bel, sequence identity to target 82%.
This protein is a glutamase mutase as well (B12-binding subunit) from C. tetanomorphum. The experimental
structure is a minimized average structure from NMR experiments. No indels were observed in the sequence
alignment. TO060 (D-dopachrome tautomerase, species: homo sapiens, 117 amino acids) Three homologous
structures were identified in the PDB, entries 1gif, 1mif and 1fim with sequence identities to the target
sequence of 36%, 36% and 33%, respectively. The model was built based on the 1mif structure, one insertion
with respect to 1mif (macrophage migration inhibitory factor from homo sapiens). was found in the sequence
alignment. This insertion was placed by the BESTFIT algorithm of the GCG package within a helix. In the
model, the insertion was modeled into the loop preceding the helix. A thorough search of candidate loop
structures was performed with the loop building facilities of the INSIGHT software from MSI. A template
loop was taken from PDB entry larb residues B60-B61 corresponding to residues 68-70 of the target. For all
other residues, the coordinates were taken from the parent structure and mutated for the correct amino acid
residues of the target. The model was built as a trimer as found in related crystal structures, submitted to
CASP3 was a monomeric structure. Methods: The software used for sequence alignment was the current
GCG package of the University of Wisconsin. The software used for modeling was Insight97.0 and
Discover2.97 from MSI Inc. The cff91 force field was applied, with a force constant on the omega angle of
100. The starting structures were soaked with a 9A layer of water. In the first 500 cycles, all heavy atoms
were allowed to move. This was followed by a relaxation of all water molecules within a 5A layer around the
protein. The outer layer of water molecules was kept fixed during the energy minimization. Finally, the
protein and the water molecules were minimized until the maximum derivative was less than 0.5. Three
different protocols were tested in the refinement, differing whether the protein atoms were allowed to move
freely during the calculations (Model 1) or not (Model 2 and 3). In Model 2, the Calpha atoms in secondary
structural elements were tethered with a force constant of 50 and in Model 3, the Calpha atoms in secondary
structural elements were fixed.




CALCULATION OF SPATIAL STRUCTURE OF ENGINEERED PEPTIDE RLZ
(TARGET T0084)

S.Galaktionov, G.V. Nikiforovich, G.R. Marshall

The procedure starts with the predictions of secondary structure using 12 methods available on internet. All
of them predict strong helicity. The consensus pattern contains two longer helical fragments at positions 5 -
19 and 24 - 36. This location of secondary structure was used for prediction of coordination number vector
(Rodionov, Mol. Biol.,26,777,1992). The algorithm of reconstruction of contact matrix included the follows
elements: 1. Delineation of the constant part Q of contact matrix (contacts between the neighbors, intrahelical
contacts/no contacts) and extension of the fixed contact/no contact areas on the basis of probability matrix
which elements are functions of combination of "contact" and "no contact" links in the corresponding
pathways of length k (k = 2 - 6) determined by Q. 2. Prediction of 3 largest eigenvalues of contact matrix. 3.
Reconstruction of sets of eigenvectors 1 - 3 compatible with the extended constant part of contact matrix. 4.
Reconstruction of the set of starting matrices from the corresponding eigensystems. 5. Editing starting
matrices using specific "goodness criteria" (Galaktionov, Proc. Int. Conf. Syst. Sci., 5, 326, 1994).
Predictions of 3D structures were performed on the basis of 4 resulting matrices. The initial reconstruction of
spatial structure employed elements of distance geometry. A refinement procedure was oriented at correction
of chosen intraglobular distances and removal of stressed contacts by minimization of the corresponding
squared deviations with respect to Ca coordinates. The structures 1 and 3 have been found very similar to
structures 4 and 2, respectively (RMS< 2 A). Structure 1 has been refined to all-atom resolution. The Ca-
trace was used as a template for systematic search for closest low-energy 3D structures (ECEPP/2 force
field). The highest number of low-energy backbone structures has been obtained for fragment 1 - 23 (98
conformers); however only one conformer has been found at the level of whole molecule being
distinguishingly stable and reasonably close to the template conformation.

Self-Organizing Models of Protein Structure

Robert W. Harrison

We developed an efficient model building algorithm based on Self-Organizing Neural Networks, or Kohonen
Networks. There is a strong isomorphism between a linear Kohonen network and a folded polymer chain.
The network converges to an ordered self-avoiding structure which satisfies a priori data about the system.
This is accomplished with an efficient randomized algorithm. The modified algorithm which includes
distance information which greatly enhances convergence. In test cases the implementation in AMMP could
readily find compact self-avoiding structures which satisfied distance data. The implementation was tested on



32 CASP3 targets, including 11 ab initio and19 homology models. The ultimate goal for the development of
the Kohonen algorithm is ab initio folding of proteins and other polymers. In the absence of long range
interaction data, the algorithm readily generates a compact self-avoiding model. However, the model
generally has little resemblance to the correct structure. With good distance data, such as NOE derived
distances or NOE derived distances in combination with secondary structure, or limited subsets of observed
distances the algorithm readily converges to a correct structure. To fold proteins, a good fold recognition
potential will need to be integrated with the algorithm. Three simple potentials were evaluated for CASP3.
The first was a sequence-based folding potential, where distances were taken from the most similar protein
sequences in the PDB. The target distance was the median, and the error bounds were defined by the
minimum and maximum distances. Even if this potential were extremely accurate, it would be unsatisfactory
because it is not based on first principles. Two hydrophobicity contact potentials were evaluated. One used
just alpha carbons; the other added beta carbons. Limited secondary structure predictions were used, where 1-
4 distances were restrained for pairs which had well-defined bounds. Since the distance terms alone could
converge to either a right handed or a left handed solution, both the initial structure and its enantiomorph
were submitted. The difficult part of homology or similarity modeling is treating regions of low homology
including insertions, and around deletions. Therefor the network was evaluated as a model-building
algorithm for difficult regions. Tests showed that the combination of the network algorithm with a torsion
search generated the best models. Five targets were predicted with both "standard" methods and the Kohonen
algorithm in order to test the convergence. A new distance restraint generating program was also tested. This
program aligned parent structures by the RMS error on each alignment window and used the aligned
structures to generate distance terms. Such an approach should be more robust with low-homology families
of structures where the individual sequence alignments are less accurate. The goal is to use a family of
structures to define a molecular architecture. A major recurring problem in homology/similarity modeling is
errors in sequence alignments. The cryptographic technique, known as the incidence of coincidence,
combined with dynamic programming, was tested. As implemented, the algorithm aligns sequences when the
underlying residue probability distributions are most similar, without explicitly calculating or modeling the
probability distributions.

CASP3 & FORESST - a library of hidden Markov models of protein structural families
for distant homology recognition using secondary structure information

Valentina Di Francesco, Maria Cueto and Delwood Richardson

A method for recognizing the three-dimensional structure of a protein from its amino acid sequence based on
a combination of hidden Markov models (HMMs) and secondary structure prediction (Di Francesco et al.,
(1997) J. Mol. Biol. 267: 446-463) has been used for the CASP3 endeavour. Compared to other fold
recognition methods based on HMMs, this approach is different in that only secondary structure information
is used when training the HMMs. In fact each HMM is trained from known secondary structure sequences of
proteins having similar fold selected from the homology superfamily level of the CATH database
(http://www.biochem.ucl.ac.uk/bsm/cath/CATH.html). The current library of HMMs, called FORESST,
consists of 344 models of structural families, which cover about half of the currently known types of 'unique'
structures. To recognize the fold of a target protein, secondary structure states for its amino acid sequence
were first obtained with a variety of prediction algorithms (such as PHD, PREDATOR, GOR-IV, SIMPA, etc)
in order to increase the chances of having a good prediction on hand. The target predicted sequences were
then aligned to each HMM in the library and the predicted fold was the fold described by the model fitting
the predicted sequences the best. Three different measures of fitness were taken into account: (a) The HMM



scores, i.e. negative log-odds scores normalized by the query sequence length, are an indication of how a
HMM of a particular structural family fits the sequence better of a null model. These scores were ranked
against the same scores assigned by each model to the predicted secondary structure sequences of 349
unrelated proteins of known 3D structure in a control database. (b) Z scores were computed for negative log-
odds (NLO) scores (not normalized) assigned by each HMM to the target sequences relative to the
distribution of the NLO scores for the control database. (c) Jscores are an indication of how well a predicted
target sequence matches the consensus secondary structure sequence of the proteins in the training set of the
HMM of a particular structural family. In the prediction process various other factors were considered, e.g.
the model length should not differ much from the target sequence length; the model should fit well most of
the predicted secondary structure sequences of the target; the proteins in the predicted structural family
should have a biological role compatible with that of the target sequence; the residues involved in the
functional activity of the target should be conserved in the chosen structural family. Among the proteins of
known 3D structure used in training the HMM, the structural template for the target was selected based on a
good agreement in length and pattern of the secondary structures. Often the alignment between template and
target was modified to correct for obvious mismatches of secondary structure elements (such as 2 short
helices aligned to a long one) or for more reasonable domain parsing. In certain cases, FORESST's
predictions were supplemented with profile-searching and motif-finding algorithms such as MoST,
ProfileSearch PSI-BLAST, or HMMs trained with amino acid sequences, in order to search for subtle but
significant hits that could suggest potential structural and functional relationships. HMMs of premade
sequence alignments were built using the HMMER software package. These HMMs were generalized using
Blosum62 with higher weight on the matrix than the defaults or using Dirichilet prior mixtures. Alignments
of the protein families were sometimes further edited by hand to emphasize conserved features across the
family. For a couple of targets (T0062 and T0052) these methods could suggest distant homologues with
known 3D structure, and their folds were used as templates for the target sequences. The FORESST
methodology described here has already been tested during the CASP2 experiment and was shown there to
be successful in a number of cases (Di Francesco et al., (1997) Proteins, Suppl. 1: 123-128). Participation in
CASP3 was motivated by the need to test the methodology in real experimental condition with a more
extended library of HMMs than the one used in CASP2. It should also be noted that FORESST was used by
another CASP3 prediction team (see abstract by Geetha et al., prediction group 3707-4066-9021) by applying
pre-set, not changeable criteria for fold prediction with a minimal amount of human intervention. That
utilization of FORESST is supposed to emulate a systematic application of the selected criteria for prediction
in large fold recognition experiments, such as those for hypothetical proteins from complete genomes.

Fold-recognition using hidden Markov models

Christian Barrett, Melissa Cline, Mark Diekhans, Leslie Grate, Kevin Karplus, David Haussler, and
Richard Hughey

Group name: UCSC-compbio (9070-5088-8627) Authors: Christian Barrett, Melissa Cline, Mark Diekhans,
Leslie Grate, Kevin Karplus, David Haussler, and Richard Hughey Computer Science and Computer
Engineering Departments University of California, Santa Cruz Faculty leader: Kevin Karplus Student leader:
Christian Barrett Fold recognition was performed using the Target98 (SAM-T98) method [3] using SAM
version 2.1.1 [1], a refinement of the methods developed by this group for CASP2 [2]. This method attempts
to find and multiply align a set of homologs to a given sequence, then create an HMM from that multiple
alignment. Each of the following general steps are discussed further below. First, an iterative method is used
to create a multiple alignment of homologs for a given target sequence. Sequence weights are then calculated



for the this multiple alignment. Next, SAM's modelfromalign program is used to build a model from the
alignment and the sequence weights. Finally, SAM's hmmscore performs a local, all-paths scoring of the
sequences, using a reversed-model normalization feature [3]. The weighting method, detailed in upcoming
publications [3,4,7], combines the Henikoffs' scheme [5], Dirichlet mixtures [6], and an entropy method to
set the final weights. Alignment generation While a more detailed description of this process will be available
in an upcoming publication [7], we provide the basic outline of it here. The initial step uses BLASTP to
search NRP to get two sets of homologs: one of very similar sequences that are almost certainly homologs,
and one of vaguely similar sequences. The second set should contain most of the homologs that can be found
by any sequence- or profile-based method, but also contains a large number of false positives. The method
then uses multiple iterations of a selection, training, and alignment procedure. Each iteration involves an
initial alignment, a set of search sequences, a threshold value, and a transition regularizer. The first iteration
uses a single sequence (or seed alignment) as the initial alignment and the close homologs found by BLASTP
as the search set. The threshold is set very strictly, so that only strong matches to the sequence are considered.
This iteration uses a transition regularizer that was designed to match the gap costs used by BLASTP. On
subsequent iterations the input alignment is the output from the previous iteration, the search set is the larger
set of possible homologs found by BLASTP, and the thresholds are gradually loosened. The second through
second-from-last iteration use a ~"long-match" transition regularizer, and the final iteration uses a transition
regularizer trained on FSSP alignments. CASP3 We carefully examined the top few predictions of the
automatic method, often hand-editing the alignments produced. The visual examination of the prediction and
hand-editing of the alignment were the only places that structural information were included in the method.
The automatic part of the method is available on http://www.cse.ucsc.edu/research/compbio/HMM-apps/
With few exceptions, we made one prediction for every CASP3 target. For some targets, we had no strong
predictions, but chose to make a highly speculative one anyway. For each of these, we provided a probability
that it is a false positive, based on our previous fold-recognition tests [7]. References [1] Richard Hughey and
Anders Krogh, Hidden Markov models for sequence analysis: Extension and analysis of the basic method.
CABIOS 12(2): 95-107, 1996. http://www.cse.ucsc.edu/research/compbio/sam.html [2] K. Karplus, K.
Sjolander, C. Barrett, M. Cline, D. Haussler, R. Hughey, L. Holm, and C. Sander, Predicting Protein Structure
using Hidden Markov Models. Proteins: Structure, Function, and Genetics, Suppl. 1, 134-9, 1997. [3] Kevin
Karplus, Christian Barrett, Richard Hughey, Hidden Markov Models for detecting Remote Protein
Homologies. To appear in Bioinformatics. [4] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T.
Hubbard, and C. Chothia, Sequence Comparisons Using Multiple Sequences Detect Twice as Many Remote
Homologues As Pairwise Method. http://cyrah.med.harvard.edu/assess_final.html to appear in JMB, 1998.
[5] Steven Henikoff and Jorja G. Henikoff, Position-based Sequence Weights. IMB, 243(4), pp 574-578, Nov
1994. [6] K. Sjolander, K. Karplus, M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, and D. Haussler, Dirichlet
Mixtures: A Method for Improving Detection of Weak but Significant Protein Sequence Homology. CABIOS
12(4):327-345, 1996. [7] Kevin Karplus, Christian Barrett, Richard Hughey, Hidden Markov Models for
detecting Remote Protein Homologies. To appear in Bioinformatics.

A Strategy for High Resolution Comparative Modeling

Michal Vieth,Leszek Rychlewski, Valentine J. Klimkowski

Our participation in the competition was predominately limited to the targets with high sequence identity to
existing structures in the Protein Data Bank(1). This is in line with our interest in using the structure of the
protein target to assist in scoring new compounds, and virtual libraries of possible drug candidates. We
strongly believe that only very high quality, structural information of the target is useful in making



predictions of binding affinities. Therefore, the most relevant information lies in the arrangement of the
binding-site residues. As a consequence, for our intended purposes, the quality of the structure is not
necessarily determined by a global structural comparison, but rather by the comparison of the active-site
neighborhood. The goal of our participation is to evaluate our approach to comparative modeling, and
compare it to recognized, cutting edge methods currently available. The general strategy used involved the
following steps: I) For each target considered, homologous sequences were identified from the PDB by
BLAST(2) and FASTA(3) searches. Standard parameters were applied as given in the Biology
Workbench(4). IT) The determined percent identity and number of gaps were used to select the best FASTA
alignments. IIT) Modeller(5), with partial refinement run from the Quanta97(6) interface, was used to
generate the models. Depending on the target being constructed, one or more parent structures were chosen
for model building. IV) The resulting model structures were each then evaluated by the Protein Health
module in Quanta97; the Luthy-Eisenberg 3D profile scores(7); and then by visual inspection. V) Each model
was then energy minimized with CHARMM(8) using the param19/toph19 force field. VI) The structures
were then subjected to the iterative refinement procedure described in detail in Vieth et al(9). The key feature
of the referenced refinement protocol is the iterative molecular dynamics, simulated annealing in the
presence of a water shell while incorporating restraints to preserve secondary structure elements. At the end
of each stage of refinement, the resulting structures were averaged, and then energy minimized. The resulting
minimized average structure was then used as the starting point for the next iteration of refinement. VII)
After three to six applications of the refinement protocol, the final structures were used to determine their
Luthy-Eisenberg 3D profile score, and also the number of interior holes. The structures having a similar
number of holes were ranked by their Luthy-Eisenberg scores. In three cases (target t0084, target t0056, and
second domain of target t0069) there were no homologous structures found in the PDB. Target t0084 showed
high probability to form a helical coiled coil structure(10). Further examination of this sequence revealed a
98% sequence identity to a retro sequence of the leucine zipper (rlz) from the GCN4 transcriptional
activator(11). The associated structure was subsequently used for model building of the two stranded, helical
coiled coil using the refinement protocol described above. The second domain of target t0069 also showed a
high probability of forming a coiled coil structure. The similarity of the first domain of t0069 to the PDB
entry 1hup, whose second domain forms a three stranded coiled coil, prompted us to model the second
domain of t0069 as a three stranded helical coiled coil. The orientation of the two domains was modeled
based on the structure of 1hup. It is our expectation that the results of the competition will be of benefit not

only our group X s specific interests, and also others trying to determine what approaches are most successful
in comparative modeling. References 1)Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.;
Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M., The Protein Data Bank: a computer-
based archival file for macromolecular structure,J. Mol. Biol. 1977, 112, 535-542. 2)Altschul, S. F.; Gish, W,;
Miller, W.; Myers, E. W.; Lipman, D. J., Basic local alignment search tool,J. Mol. Biol. 1990, 215, 403-410.
3)Pearson, W. R.; Lipman, D. J., Improved tools for biological sequence comparison,PNAS 1988, 85, 2444-
2448. 4)Subramanian, S. Biology Workbench v.1.5; Subramanian, S., Ed.; University of Illinois: Urbana-
Champaign, 1996. 5)Sali, A.; Blundell, T. L., Comparative protein modelling by satisfaction of spatial
restraints,J. Mol. Biol. 1993, 234, 779-815. 6)MSI QUANTA; 4.6 ed.; MSI, Ed.; Molecular Simulations Inc.:
San Diego, CA, 1997. 7)Luthy, R.; Bowie, J. U.; Eisenberg, D., Assesment of protein models with 3-
dimensional profiles,Nature 1992, 356, 83-85. 8)Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D.
J.; Swaminathan, S.; Karplus, M., CHARMM: A program for macromolecular energy, minimization and
dynamics calculations,J. Comp. Chem. 1983, 4, 187-217. 9)Vieth, M.; Kolinski, A.; Brooks, C. L. I;
Skolnick, J., Prediction of the folding pathways and structure of the GCN4 leucine zipper,J. Mol. Biol 1994,
237, 361-367. 10)Lupas, A.; Van Dyke, M.; Stock, J., Predicting Coiled Coils from Protein
Sequences,Science 1991, 252, 1162-1164. 11)O'Shea, E.; Klemm, J. D.; Kim, P. S.; Alber, T., X-ray structure
of the GCN4 leucine zipper, a two-stranded, parallel coiled coil,Science 1991, 254, 539-544.




Suite of threading and profile-based methods for structure prediction

Godzik A, Jaroszewski L, Pawlowski K, Rotkiewicz P, Rychlewski L, Zhang B

Secondary Structure prediction: We have utilized two methods: PHD (Rost & Sander, PNAS, 1993, 90, 7558-
7562; Rost & Sander, JMB, 1993, 232, 584-599; and Rost & Sander, Proteins, 1994, 19, 55-72) and the NO
NAME method (Rychlewski L, Zhang B and Godzik A, "Searching for the optimal sequence similarity
function", Protein Eng, in revision) available on our server (http://cape6.scripps.edu/). Both predictions are
combined by adding both reliabilities obtained for prediction of the helix, coil and extended state and
choosing the state with the highest sum. The NO NAME method is based on a nearest neighbor approach.
For the query sequence and all sequences in the fold database an alignment with homologous proteins is used
to generate profiles. The profiles based on vectors of frequencies of 20 amino acids are transformed into
profiles based on vectors of 6 features. The transformation procedure was optimized for highest secondary
structure prediction accuracy. Every profile is divided into overlapping 12-residue long segments. For every
query segment the set of 40 most similar segments from the fold database is determined. The secondary
structure distribution in this set of similar segments is used to estimate the preferences of the query sequence.
Fold prediction: Two methods: Hybrid Threading (Jaroszewski L, Rychlewski L, Zhang B and Godzik A,
"Fold predictions by a hierarchy of sequence, threading and modeling methods" Protein Science 7:1431-
1440) and BASIC (Rychlewski L., Zhang B and Godzik A, "Function and fold predictions for Mycoplasma
genitalium proteins”, Fold Des 1998 3:229-238) are used to find and validate sequence structure
compatibility. The Hybrid Threading method utilizes sequence similarity, secondary structure prediction,
burial state prediction, and R14 prediction (distance between C-alpha of residue i and i+4) to estimate the
sequence-structure fitness between the query protein and a fold in the database. BASIC (available on
http://cape6.scripps.edu/) is a sequence-only profile-to-profile alignment method (gaps are allowed). Profiles
are built using PSI-BLAST to find homologous sequences for the query sequence as well as for the proteins
in the fold database. Homology modeling: MODELLER (Sali A and Blundell TL, J Mol Biol 234, 779-815,
1993) is used based on alignments obtained with BASIC.
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Secondary Structure prediction using neural nets and SAM-T98 multiple alignments

Kevin Karplus and Christian Barrett

Group name: UCSC-secondary (1751-3146-3362) Authors: Kevin Karplus and Christian Barrett Computer
Engineering and Computer Science Departments University of California, Santa Cruz Neural net prediction
We made predictions using only neural nets, even though obvious homologies for some targets could have
given much more accurate predictions. All of our secondary structure predictions employed a 4-layer neural
net. A window over the previous layer's output was used to generate the input for each layer. The number of
units specified the number of different outputs that were available for each layer. Most of our predictions
used a neural net with the following structure: layer window units 196 2 11 9 3 3 8 4 7 3 The three units of
the last layer specified the secondary structure, strand(E), helix(H), or coil(C). Network input Our neural net
accepts as inputs a multiple alignment generated by the SAM-T98 method, an iterative HMM-building
process that is more fully described in our fold recognition abstract and in an upcoming publication [1]. The
networks were trained on multiple alignments for each of the proteins that were leaves of the 3-May-98 FSSP
tree (except 1cm4A, which has obviously incorrect labeling by DSSP). The training output was defined by
DSSP, with H and G (alpha and 3-10 helix) treated as helices, E (beta strand) treated as beta, and everything
else as coil. For all of the alignments, sequence weighting and regularization with a 20-component Dirichlet
mixture (usually recode3.20comp) were applied to arrive at amino acid probabilities for each column of the
multiple alignment. The relative weights of the sequences were set by the Henikoffs' weighting scheme [2],
and the absolute weights were set so that the regularized distributions of all columns averaged 1-bit of
savings relative to the background distribution. These sequence weights were used to generate weighted
amino acid counts for each column, which were regularized to probabilities using the same Dirichlet mixture
as above. These resulting probabilities were the input to the neural network, as were the weighted
probabilites of deletions or of insertions before columns. References [1] Kevin Karplus, Christian Barrett,
Richard Hughey, Hidden Markov Models for detecting Remote Protein Homologies. To appear in
Bioinformatics. [2] Steven Henikoff and Jorja G. Henikoff, Position-based Sequence Weights. JMB, 243(4),
pp 574-578, Nov 1994.

Bayesian model (profile-like model) for remote homology search

Jun Zhu, Roland Luethy and Charles Lawrence

This method is for fold recognition. The target is compared with PDB25 database (U.Hobohm et al., 1992),
which is our fold database. For each structure in PDB25, a model is built in the following way: (1) the
sequence (query) is compared with NR database using transitive BLAST (Neuwald et al. 1997). Similar
sequences are collected and purged at score 150. (2) Then, these sequences are aligned with query sequence
using Bayesian aligner (Zhu et al., 1998) and a Bayesian model (profile-like model)is built (Lawrence et al.
1993; Gribskov et al., 1987; unpublished result by Jun Zhu, Roland Luthy and Charlse E. Lawrence). After
we have all the models for structures in PDB25, the target file is compared with the models. The result is
sorted according to Bayesian evidence of the two not related (Zhu et al., 1998). If the smallest Bayesian
evidence is larger than 0.1, we say the target is new fold. Otherwise, we simply choose the structure with the
smallest Bayesian evidence to our target as the prediction fold. If we do find target matching to structure in



PDB25, we generate an alignment from marginal posterior probability, as similar in Zhu et al. (1998).

Beta-sheet Prediction Using Inter-strand Residue Pairs and Refinement with Hopfield
Neural Network

Minoru Asogawa

The aim of this research is to predict not extend strands but beta-sheetsheets. We gathered statistics of pairs
of three residue sub-sequences inbeta-sheets, calculated propensities for them. When a sequence is given,all
possible three residue sub-sequences are examined whether they formbeta-sheets. A shortcoming is that many
false predictions are made. Thenature of protein tertiary structure precludes the existence of thesefalse
predictions. To exclude false predictions and improve theprediction, we employed a Hopfield Neural
Network, in which the naturallimitations on protein tertiary structure and preference of chemicallystable long
beta-sheet are expressed in a form of energy functions.
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possible three residue sub-sequences are examined whether they formbeta-sheets. A shortcoming is that many
false predictions are made. Thenature of protein tertiary structure precludes the existence of thesefalse
predictions. To exclude false predictions and improve theprediction, we employed a Hopfield Neural
Network, in which the naturallimitations on protein tertiary structure and preference of chemicallystable long
beta-sheet are expressed in a form of energy functions.




A self-consistent field based threading algorithm for recognition of protein structure

B.A.Reva, J.Skolnick and A.V.Finkelstein

tervening positions i, i+2 along a chain; (iii) chiral energies depending on a residue pair in positions i+1,i+2
intervening positions i,i+3 along a chain. For each of the target sequences we use 1150 PDB structures as
templates. Five lowest energy folds were chosen for prediction submission. REFERENCES 1. Finkelstein,
A.V. & Reva, B.A. (1991). A search for the most stable folds of protein chains. Nature 351, 497-499. 2.
Finkelstein, A.V. & Reva, B.A. (1996). Search for the most stable folds of protein chains. I. Application of a
self-consistent molecular field theory to a problem of protein three-dimensional structure prediction. Protein
Eng. 9, 387-397. 3. Reva, B.A. & Finkelstein, A.V. (1996). Search for the most stable folds of protein chains.
II. Computation of stable architectures of (-proteins using a self-consistent molecular field theory. Protein
Eng. 9, 399-411. 4. Reva, B.A., Finkelstein, A.V., Rykunov, D.S., Skolnick, J. (1998) Optimization of protein
structure on lattices with self-consistent field approach. J.Com.Biol., 5, 531-538. 5. Reva B.A, Finkelstein,
A.V., Sanner MLF, Olson A.J. (1997) Residue-residue mean-force potentials for protein structure recognition.
Protein Eng. 10, pp.865-876.

A self-consistent field based threading algorithm for recognition of protein structure

B.A.Reva, J.Skolnick and A.V.Finkelstein

The threading algorithm used in predictions is based on a self-consistent field theory [1-4]. Details of the
SCF-based free energy optimization are given in [4]. The algorithm computes free energy and finds one of
the lowest energy structures of a target sequence on a given template structure. In free energy calculation, we
take into account all chain conformations including those, which are produced by "loop transitions" between
template positions. A loop is given by coordinates of its ends: each of them includes a target sequence
coordinate and a 3D coordinate of a template position. No actual loop conformation is considered. Only
surface positions on a template can be be connected by loops. Loop lenghs are restricted from 3 to 10 and
only the transitions which satisfied a chain connectivity condition are allowed. Due to "loop-transitions", any
fragment of a target chain can choose between a position on a template where it contributes to structure
determinative interactions, or a position out of a template structure, where it is penalized by non-specific
adjustable linear function of a loop length. Thus, a fragmnet of target chain can avoid an unfavorable
structural fragment on a template by choosing a transition over the loop. A template structure is given by Ca
atom coordiantes. We use Ca atom based distance dependent phenomenological pairwise energy functions
which are described in [5]. Distance dependence is approximated by a piecewise constant function which is
defined on equal size 1A intervals. With these energy functions, a chain energy is given by a sum of (i) long-



distance interactions between residues separated along a chain by 5 or more residues; (ii) local bending
energies depending on a residue occuppying position i+1 intervening positions i, i+2 along a chain; (iii)
chiral energies depending on a residue pair in positions i+1,i+2 intervening positions i,i+3 along a chain. For
each of the target sequences we use 1150 PDB structures as templates. Five lowest energy folds were chosen
for prediction submission. REFERENCES 1. Finkelstein, A.V. & Reva, B.A. (1991). A search for the most
stable folds of protein chains. Nature 351, 497-499. 2. Finkelstein, A.V. & Reva, B.A. (1996). Search for the
most stable folds of protein chains. I. Application of a self-consistent molecular field theory to a problem of
protein three-dimensional structure prediction. Protein Eng. 9, 387-397. 3. Reva, B.A. & Finkelstein, A.V.
(1996). Search for the most stable folds of protein chains. II. Computation of stable architectures of beta-
proteins using a self-consistent molecular field theory. Protein Eng. 9, 399-411. 4. Reva, B.A., Finkelstein,
A.V.,, Rykunov, D.S., Skolnick, J. (1998) Optimization of protein structure on lattices with self-consistent
field approach. J.Com.Biol., 5, 531-538. 5. Reva B.A, Finkelstein, A.V., Sanner M.F, Olson A.J. (1997)
Residue-residue mean-force potentials for protein structure recognition. Protein Eng. 10, pp.865-876.

Jpred - An automatic consensus secondary structure prediction server

J. A. Cuff, M. E. Clamp and G. J. Barton.

Summary Jpred is an interactive protein secondary structure prediction Internet server. The server allows a
single sequence or multiple sequence alignment to be submitted, and returns predictions from six secondary
structure prediction algorithms that exploit evolutionary information from multiple sequences. Method The
target is searched with BLAST against the OWL v29.4 database, which contains 198,742 entries. The
BLAST output (down to a p-value of 0.001) is then screened by SCANPS, an implementation of the Smith
Waterman dynamic programming algorithm, with length dependent statistics. Sequences are rejected if their
SCANPS probability score is higher than 1x10/-4. Sequences are also rejected if they do not fit a length
cutoff of 1.5. For example, if the query sequence is 90 residues long, the sequence length would have to
range between 60 and 135 residues to be included. If sequences exceed the length criterion, they are
truncated by removing end residues until the length of the sequence satisfies the cut off value. Sequences
falling short of the lower length limit are discarded. The value of 1.5 for the length cutoff was reached by
visual inspection of a number of multiple sequence alignments, produced with different cut-off values. The
method removes both ridiculously long, short and unrelated sequences. However it does allow sequences that
are longer than the query, and are related, to be included after truncation. The sequence similar proteins
selected by this method, are then aligned by CLUSTALW, with default parameters. The multiple sequence
alignments are modified so that they do not contain gaps in the first or 'query' sequence. A slightly different
method is used for PHD, whereby only gaps at the end of the target sequence are removed. Without this
modification, the conversion of MSF to HSSP file format fails, as a correct insertion table is not constructed.
Six different secondary structure prediction methods are then run on the alignment, PHD, DSC, PREDATOR,
NNSSP, MULPRED and ZPRED. These methods were chosen as representatives of current state-of-the-art
secondary structure predictions methods that exploit the evolutionary information from multiple sequences.
Each derives its prediction using a different heuristic, based upon nearest neighbours (NNSSP), jury decision
neural networks (PHD), linear discrimination (DSC), consensus single sequence method (MULPRED),
hydrogen bonding propensities (PREDATOR), or conservation number weighted prediction (ZPRED). A
consensus prediction is calculated by examining the prediction for the four most accurate methods, DSC,
PHD, PREDATOR and NNSSP. At each position the prediction is recorded and most popular state is chosen.
For example if a residue had the following predictions: NNSSP = Helix, PREDATOR = Helix, DSC = Strand,
PHD = Helix the consensus prediction would be Helix. If there was no consensus for a particular residue, the



result from the PHD method was used. The Jpred server implements all of the automatic alignment and
prediction features described, along with a number of visualisation tools, including a JAVA multiple sequence
alignment viewer and editor (JALVIEW). With JALVIEW one can modify the alignment for re-prediction, or
interactively change the colouring within the alignment to highlight functionally important residues or
conserved features, to aid prediction. For the final prediction the multiple sequence alignment and algorithm
predictions were carefully examined by eye, using all of the online visualisation techniques. Simple rules of
protein structure were applied to the predictions, such as forcing predicted helices to be at least three residues
long. Regions where predictions were ambiguous, and where the alignment contained insertions and
deletions were re-considered as indicators of random coil state. Turn predictions from MULPRED were also
examined, and used to locate regions where overly long secondary structure elements could be split in to
shorter segments. Reliability information from the different predictions was also used to resolve conflicting
predictions. Once these filters had been applied, a single line prediction format was generated for CASP3
submission. All confidence values were set at 1.0. http://barton.ebi.ac.uk/servers/jpred.html

Prediction of static local backbone deviations in homology models.

Tim Cardozo, Serge Batalov and Ruben Abagyan

We have recently developed an algorithm which assigns a local backbone conservation score to each residue
in a homology model. The score, which represents the potential of that residue to deviate in space in its
backbone atoms between homologous 3D structures, combines local sequence and local flexibility potential
to correctly predict the locations of deviating backbone segments in a homology model 100% better than
local sequence or B-factor alone in a benchmark set. The algorithm is here applied tothe CASP3 homology
modeling targets and assessed both for its direct accuracy in predicting the precise locations of ungapped
loops and gapped loop boundaries and for the improvement knowledge of such boundaries incurs in loop
prediction by global optimization methods.

Structure prediction for CASP3 targets

David F. Burke, Nuria Campillo, Charlotte Deane, Mercedes Martin-Martinez, Kenji Mizuguchi, Franck
Molina, Hampapathu A. Nagarajaram, Jeff Perry, B.V.B. Reddy, Robert E. Steward, Mark Williams,
Joaquim Mendes, Claudio Soares, Maria Armenia Carrondo, Tom L. Blundell

Our predictions for the targets in the Third Meeting on the Critical Assessment of Techniques for Protein
Structure Prediction (CASP3) were made using a combination of techniques developed both inside and
outside the group. An initial sequence search was carried out on the latest release of the SWISS-PROT and
PDB databases using the NCBI WWW PSI-BLAST server[Altschul SF et al. (1997) Nucleic Acids Res.
25:3389-3402]. Secondary structure prediction was performed using the programs DSC[King RD &
Sternberg MJE (1996) Prot.Sci. 5(11):298-310], Predator[Frishman D and Argos P (1996) Prot.Eng. 9:133-



142], Sapiens[Wako H & Blundell TL (1994) J.Mol.Biol. 238:693-708], Spetor[Zhu ZY & Blundell TL
(1996) J.Mol.Biol. 260:261-276] and the ProteinPredict(PHDsec) server[Rost B & Sander C, (1993)
J.Mol.Biol. 232:584-599]. Fold recognition was performed using the UCLA-DOE server|[Fischer, D &
Eisenberg, D(1996) Protein Sci. 5:947-955] and the program Qslave[Johnson MS et al. (1993) J.Mol.Biol.
231:735-752]. The list of possible structural templates and sequence homologues was compared with
suggestions discussed in the literature and the secondary structure predictions. The structure-based
alignments of the family and superfamily of the templates were extracted from the HOMSTRAD [Mizuguchi
K, et al. (1998) Protein Sci. in press] and CAMPASS [Sowdhamini R et al. (1998) Structure 6(9):1087-94]
databases respectively. The target sequence and its close homologues were aligned with the template family
using the profile alignment option of CLUSTALW [Thompson JD et al. (1994) Nucleic Acids Res. 22:4673-
4680]. This alignment was formatted using the JoY program [Mizuguchi K et al.(1998) Bioinformatics
14:617-623] and examined to give a clearer indication of conserved structural features and conserved amino
acid patterns. The alignment was then optimised by hand. The alignment of the templates to the target
sequence was used as the basis to the input of the programs MODELLER [Sali A & Blundell TL (1993)
J.Mol.Biol. 234:779-815; Sali A et al. (1995) Proteins 23(3):318-326] and COMPOSER [Srinivasan BN &
Blundell TL (1993) Protein Eng. 6:501-512]. With MODELLER, several models were generated and the
model with the fewest restraint violations was used for further evaluation. Loops were also predicted by
searching the SLoop database [Donate L et al. (1996) Protein Sci. 2600-2616; Rufino S et al. (1997)
J.Mol.Biol. 267:352-367] and were compared with those built using COMPOSER and MODELLER. Side-
chains were placed using the backbone-dependent rotamer side-chain method of Dunbrack as well as an
improved version [Mendes et al., submitted] of the Self Consistent Mean Field Theory Method [Koehl P and
Delarue M, (1994) J.Mol.Biol.239(2):249-75]. In the latter, interaction energies were calculated with a novel
method based on a Flexible Rotamer Model [Mendes et al., in preparation]. For targets with a large number
of possible templates, alternative models were produced using only a selection of the templates. The models
were validated manually and by using the programs PROCHECK [Laskowski RA et al. (1993) J.Appl.Cryst.,
26:283-291],HARMONY [Topham CM et al. (1993) J.Mol.Biol. 229(1):194-220], Prosall, and
Verify3D[Bowie JU et al. (1991) Science 253:164-170; Luthy R et al. (1992) Nature 356:83-85]. New
structural alignments were produced using the program COMPARER [Sali A & Blundell TL. (1990)
J.Mol.Biol. 212:203-428] and these were used to refine the models.

A new threading algorithm for proteins

Oakley H. Crawford, Ying Xu, Dong Xu, and Edward C. Uberbacher

Threading is a useful technique for predicting the fold of a new protein whose sequence shows no recognized
homology with proteins of known structure. The sequence of an unknown protein is aligned to a 3D structure
in a way that minimizes a free-energy-like score. This procedure is repeated for all the templates in a fold
library. Those templates (if any) giving low enough values of normalized scores are considered to represent
likely folds. The threading algorithm has the task of finding the optimal (i.e., lowest score) alignment of a
given sequence-structure pair, given a scoring function. The performance of threading algorithms has been a
shortcoming in fold-recognition methods. This work assumes a conventional threading model, in which the
sequence of an unknown is aligned with the core elements of a template. The scoring function contains
singleton and pair terms and a penalty term for indels, which are allowed only in loops. In this case,
alignment is in general an NP- complete problem [1]. Thus, any method that always find the global
minimum, even in the worst case, requires computational effort that increases exponentially with the number
of core elements. Such a method was recently developed by Lathrop and Smith [2]. Xu, et al. [3] have



presented an exact threading algorithm that runs in polynomial time when the interactions in the score
function are pairwise with a fixed distance cutoff. A new threading algorithm [4] is described here, which

3 while not guaranteed always to find the global minimum 3 offers an attractive combination of speed and
reliability. The following stochastic search procedure is used. An approximate scoring function consisting of
(effective) singleton terms and gap penalties is constructed by replacing the pairwise terms in the score by
samples drawn at random from appropriate distributions. A trial alignment is then generated by simple
dynamic programming, and its score is subsequently calculated from the original scoring function. The
procedure is repeated a predetermined number of times, always drawing new values for the random variables.
A limited amount of iteration is employed, to take advantage of information gained as to the likely alignment,
but in a way that avoids getting stuck for a long time in a local minimum. The final result is the lowest-score
alignment encountered. Comparisons are made with the frozen and iterated frozen approximations [5], which
are very fast, and with the exact method of Xu, et al. The new algorithm is found to be considerably more

Protein Eng. 7, 1059-1068. 2. Lathrop,R.H. and Smith,T.F. (1996). J. Mol. Biol., 255, 641-665. 3. Xu,Y. and
Uberbacher,E.C. (1996). CABIOS 12, 511-517; Xu,Y., Xu,D. and Uberbacher,E.C. (1998). J. Comput. Biol.
5, 597-614. 4. Crawford,O.H. (1998). Bioinformatics, in press. 5. Godzik,A., Kolinski,A., and Skolnik,J.
(1992). J. Mol. Biol. 227, 227-238.

Using the CE Structure Neighbors Database to Analyse and Predict Protein Structure
Similarity by Sequence

L.N. Shindyalov and P.E. Bourne

The Protein Structure Neighbors Database has been produced from an all-against-all comparison of protein
structures in the PDB using the Combinatorial Extension (CE) algorithm [1]. No prefiltering based on
sequence similarity has been used. Filtering is performed on structure similarity using a 2A RMSD threshold
with 2/3 of residues aligned between two structures. Similarities found were quite different (~60%) than
those found by Dali/FSSP [2]. A representative set of structural similarities has been used to calculate an
amino-acid substitution matrix. The substitution matrix is similar to the Dayhoff matrix, but with stronger
emphasis on hydrophobic interactions. Local dynamic programming alignment of the query sequence with a
representative set of unique sequences from the PDB has been performed to reveal compatible structure
models. Scores have been normalized to the average score obtained for every representative unique sequence
when compared to the sequences from a small set of random folds. The final step was manual selection of the
model from the list of top scores. [1] Shindyalov [.N. & Bourne P.E. (1998) Prot. Eng. 11, 739. [2] Holm L.
& Sander C. (1993) J. Mol. Biol. 233, 123.




Consensus Approach to Fold Assignment

Robert M. Weiss, Danny W. Rice, Parag Mallick, and David Eisenberg

Some targets required adaptations to our approach, however, most assignments were based on the consensus
of three methods: 1. Sequence-derived predictions (Daniel Fischer and David Eisenberg, Protein Science
5:947-955, 1996). This method is based on sequence matching, using a sequence comparison matrix
optimized for structural comparisons, but also takes into account the match between observed secondary
structure (of the prospective fold) and predicted secondary structure of the target, and uses sequences
homologous to the target to aid in the alignment. 2. The modified H3P2 method (Danny W. Rice and David
Eisenberg, JMB 267, 1026-1038, 1997), which uses a 3D-1D substitution matrix derived from a set of pairs
of homologous structures of low sequence identity, with positions classified by secondary structure type and
burial class. The variant of the method used in CASP3 differs from the published one in that the 20 amino
acids are treated individually, not divided into seven classes, and a more extensive library of structure pairs
was used. 3. Directional profiles, a method currently under development, which (as used in CASP3) looks for
patterns in the distribution of sums of atomic solvation parameters within a radius of 14 Angstroms from C-
alpha carbons in each of four tetrahedrally arranged directions based on the local path of the main chain. Of
these methods, only the first has been calibrated so as to allow a high degree of confidence (in some cases) to
be associated with a given prediction. In the process of making a decision, therefore, if the sequence-derived
prediction method gave an authoritative prediction, we generally accepted it. Otherwise, we first looked for
agreement among the approximately 20 top-ranked predictions between at least two of the three methods.
The H3P2 method gives predictions for individual sequences, but also reports them according to their SCOP
class. In the interpretation of its results, a higher degree of confidence might be afforded to several top-
ranking predictions in the same SCOP class than to a single isolated prediction, even one with higher rank.
When information was given or known about a target sequence's function or associated prosthetic groups we
typically gave extra consideration to prospective folds that shared those properties. Occasionally, ad hoc
tricks were attempted. For example, one fairly long sequence which failed of any prediction was arbitrarily
cut in two, and each half considered separately. (When domain boundaries were given by the organizers, the
same procedure was applied, less arbitrarily). For difficult targets, we would sometimes also consider the
results of Blast searches and use dynamic programming sequence-based methods. One disadvantage of using
this farrago of methods is that we probably assigned folds to sequences that should have been assigned to "no
known fold". Although we knew that there were probably more sequences in this group than we were
predicting, it seemed that, with so many methods available, for each sequence we could come up with some
excuse for assigning it to a known fold.




New Methods for Accurate Secondary Structure Prediction, and a Local
Pseudopotential for Threading

John-Marc Chandonia, Martin Karplus, and Fred Cohen

Ab initio secondary structure prediction on the CASP3 targets was done using a recently developed neural
network based method (Chandonia & Karplus, Proteins, in press). In this paper, a primary and a secondary
neural network are applied to secondary structure and structural class prediction for a database of 681
nonhomologous protein chains. A new method of decoding the outputs of the secondary structure prediction
network is used to produce an estimate of the probability of finding each type of secondary structure at every
position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this
method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these
predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126
proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An
estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction
over all residues in the sequence. As an example, analysis is applied to the target b-cryptogein, which was a
difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the
present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger
database and use of a new network training protocol also improve structural class prediction accuracy to
86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable
to spectroscopic methods such as vibrational or electronic circular dichroism and Fourier transform infrared
spectroscopy. Secondary structure and structural class predictions of CASP3 targets were performed using
the Java software available on our web server (http://www.cmpharm.ucsf.edu/~jmc/pred2ary/). Accuracy of
the CASP3 target predictions is unknown at this time, but expected to be lower than on the above databases
due to lack of multiple homologous sequences for several targets. Predictions done on the CASP3 targets will
be discussed at the meeting, and the Java software will be demonstrated. Secondary structure predictions are
used to derive a potential energy function representing the conformational preferences of sequentially local
regions of a protein backbone. Predictions for each residue in a sequence are used to construct expected
distributions of backbone dihedral angles. These are converted into a potential function using the
quasichemical approximation. The potential is used in combination with non-local potentials to identify
known folds structurally similar (but not identical) to the native structure, and produce global alignments of
sequences on these target structures. Preliminary results on test sequences used in previous studies are
encouraging. Predictions of sequence alignment for several CASP3 targets, and for larger datasets, will be
discussed at the meeting.




Structure prediction using threading, HMMSs, and phylogenetic analysis

Kimmen Sjolander and Paul D. Thomas

First of all, we apologize for the length of this abstract. We describe here two methods and their combination.
Both of us made predictions for CASP2, independently of each other, and using very different methods. PT
developed a threading algorithm while at SmithKline Beecham. KS was on the original team to develop
HMMs at UCSC. Since CASP2, we have made substantial changes to each algorithm. The threading
algorithm now makes use of predicted secondary structure. The HMMs take subfamily-specific conservation
patterns into account. For our CASP3 predictions, we have used these two very different methods in
combination. Our philosophy for CASP3 was to automate the process of structure recognition. Accordingly,
we submitted the alignments that were generated automatically by our threading and HMM models. We
avoided the temptation to improve these alignments even where it was obvious (by eye) that there were
correctable errors. We caved in to a single exception: our last prediction of a cytochrome suggested that there
might have been a circular permutation, so in Model 2 we added a short stretch predicting the position of the
C-terminal CXXCH motif. Hidden Markov Models (HMMs) First, we constructed a library of HMMs, one
for each member of a non- redundant (at the 40% identity level) subset of PDB. Sequence homologs were
gathered using FASTA, and aligned using PRRP (Gotoh, JMB 1996). Sequence weighting in HMM
construction Because HMM construction using Dirichlet mixture priors to estimate the posterior amino acid
distributions in HMMs (Sjolander et al., CABIOS 1996) is quite sensitive to both correlations in the data as
well as the number of observations, careful sequence weighting is critical to the effectiveness of the HMMs
in remote homolog identification. (If training data contains even a small number of highly correlated
sequences, the models are likely to be very specific, but lack sensitivity.) To obtain the relative weights
assigned the sequences, we used Henikoff weighting (Henikoff & Henikoff, JMB 1994). To assign the total
weights allotted, we estimated the number of independent observations in the data, and chose that number as
the total weight. Note: this method departs from the method used in the UCSC-EBI CASP2 HMM library
construction (in which Sjolander participated, Karplus et al., Proteins 1997), where the total weight was set to
control the information content of the HMM; the information content per column was set uniformly for all
HMMs in the library. Subfamily HMM construction One of the outcomes of CASP2, was the realization that
building a single HMM for a large and variable subfamily reduced specificity, and resulted in poor
alignments in variable regions (such as the specificity loops of 1try, the structure chosen as the template for
T0031). This motivated what eventually became a chapter in Kimmen Sjolander's Ph.D. thesis: a method for
constructing HMMs for subfamilies that used the information in the family as a whole, where appropriate,
but kept statistics separate when necessary. We used a variant of the subfamily HMM construction method
described in (Sjolander, ISMB 1997). This method first estimates a phylogenetic tree, and then cuts the tree
into subtrees, using a combination of information-theoretic and Bayesian tools (pubs). Each subtree defines a
subfamily, and the statistics in each subfamily are combined in a position-specific manner in constructing an
HMM for each individual subfamily. To be precise, when we construct an HMM for subfamily s, we add
pseudocounts to subfamily s at position p from each subfamily s' (s' != s), proportional to the probability of
the amino acids seen at position p in subfamily s', given the posterior Dirichlet mixture density estimated for
subfamily s at position p. What this amounts to in practice is that we will use statistics from another
subfamily at a position when the other subfamily appears to share common physico-chemical constraints at
that position. If the two subfamilies appear to have conflicting physico-chemical constraints, the statistics



will be kept separate. In this way, we maintain specificity but can still increase sensitivity. Due to time
constraints, in the HMM library construction we constructed general (i.e., whole family) HMM:s only.
However, subfamily HMMs were constructed for each target family (when possible; some targets had too
few homologs, or only very closely related ones, for this task), and for individual folds as needed in
discriminating between alternative target-structure matches. Interpreting HMM scores HMM scores are not
all equally informative. For an HMM built for one family, a NLL-NULL score of -12 could mean a definite
homolog. For another family, a non-homolog, having an entirely different fold, could get the same score.
Because of this, we normalized the scores each HMM gave a subset of PDB, obtained Z-scores, and found a
cutoff (both in terms of z-score and in terms of NLL-NULL score) for each family where non-homologs
came in. Later, when we scored each target against each HMM, we found that in some cases, sorting by z-
score put the correct fold to the top of the list (as, for instance, was the case for target T0084, which we
identified as a leucine zipper), whereas in other cases sorting by NLL-NULL score produced what we felt
was the correct fold. In all cases, we examined potential matches between the target and the top- scoring
folds sorted by each method. Protein threading This threading algorithm is a variant of the "3D-1D" profile
method first proposed by Bowie & Eisenberg (Science 1991). The protein structure is represented as a linear
string of "structural environments." There are nine different types of environment: 3 secondary structure
types (helix, strand, other) times 3 degrees of solvent accessibility. This representation has fewer different
environment types than used by Bowie & Eisenberg. The target sequence is also represented as two different
strings: an amino acid sequence and a sequence of predicted secondary structure for each position. The truly
unique part of the algorithm is in the scoring of sequence-structure matches. Rather than using log-odds
scores for matches, and arbitrary gap penalties, the scoring problem is cast as an optimization problem
(Thomas & Dill, PNAS 1996). Scores for matching target sequence strings with structure strings are
determined by an iterative procedure. The target function of the iterative procedure is based on known
sequence-structure alignments inferred from structural alignment of distant homologs (sequence identity <
25%). Gap penalties depend on structural environment, and are optimized simultaneously with matching
scores. This results in a self-consistent scoring function. An important part of the method is in calculation of
structural templates (3D- 1D profiles). A problem with this string representation is in solvent accessibility
representation. Accessibilities are calculated in the presence of the entire chain, so deletions of structure
positions often make these values inaccurate. We solve this problem by dividing protein structures into
domains, and assuming that deletions will affect the representation. The alignment is global-local, i.e.
terminal gaps are penalized. For multidomain proteins, we calculate a structural template for each domain,
and for the entire protein. For each domain, we calculate two different templates, one for the domain in
isolation, and one in the presence of other domains and chains in the PDB structure. This enables us to treat,
even if in a simple way, quaternary stabilization effects. This proved to be critical, for example, in identifying
the engineered leucine zipper. Combining threading and HMMs For all targets, we used three approaches: (1)
standard sequence similarity searching (FASTA, PSI-BLAST) (2) HMMs (3) Threading For all targets, we
ran all three methods. All sequences identified as clearly similar to the target by approach (1) were used in
approaches (2) and (3). In general, for targets with sequence similarity to a known structure (i.e. a "hit" by
approach (1)), the same structure was always identified by the HMMs, and almost always by threading.
When the threading and HMMs differed for a strong HMM hit, we submitted the HMM prediction. For cases
with little sequence similarity to a known structure, HMMs were, in some cases, able to find a significant
match. Again, if these predictions differed from the threading hits, we submitted the HMM prediction. The
really interesting cases are, of course, the most difficult ones. For these predictions, HMMs found no
significant matches. In these cases, when there was a strong threading hit, we confirmed using HMMs that it
was a plausible prediction (among the top weak HMM hits). When neither threading nor HMMs revealed a
strong hit, we had two options: to make a speculative prediction or not to predict (i.e. predict a novel fold).
We made a speculative prediction if there was a single fold in common among the top threading and HMM
predictions. Flow diagram Our basic approach to each target was as follows. 1. Search NR for sequence
homologs for each target, using PsiBLAST or iterated FASTA (clustering new sequences found in each
iteration into groups, and choosing a representative from each group as a query in the next iteration). 2.
Construct an MSA (multiple sequence alignment) from the target and homologs using ClustalW. 3. Construct
an HMM from the MSA using modelfromalign. 4. Reestimate the HMM using sequence weighting (as
described above). 5. Construct subfamily HMMs. 6. Search PDB with each HMM using local-local



alignment (SAM program hmmscore, using swscore 2). 7. Score all the sequence homologs identified in (1)
above against the HMM and threading model libraries. 8. Post-hoc analysis: Examine the top-scoring
matches found in (6) and (7). If no one match has a high significance (strong z-score or NLL-null score),
identify SCOP superfamilies or fold families having overall high scores. Estimate and examine multiple
alignments of the target and homologs against putative homologous structures and their homologs. 9. For two
of the targets, we submitted 3D coordinates rather than alignments. These were the two examples of high
sequence similarity without insertions or deletions. The models were built automatically using two different
methods available in the Look and GeneMine products from Molecular Applications Group. The first
algorithm is SEGMOD (Levitt, JMB 1992), which allows movement of both backbone and sidechain atoms.
The second algorithm, CARA (C. Lee, JIMB 1996), fixes the backbone and optimizes only sidechain
coordinates. These models were built by Dr. Michael Mueller at MAG.

Trials, Difficulties and Success of Predicting CASP3 Targets

Motonori Ota, Takeshi Kawabata, Akira Kinjo, Ken Nishikawa

We organized the team UNAGI which consists of independent predictors having their own threader. We
shared the information about the target, that is, we exchanged information about the sequences or published
papers of the experiments, discussed the results of the calculations by our own threaders, motif search,
hypothesis for the evolution of the target and the quality of alignments etc., and finally determined our
submissions of which we reached agreement. First the target sequences were analyzed with the available
tools on WWW: 1) sequence homology search: FASTA, BLAST, PSI-BLAST, and its homologous sequences
were aligned by CLUSTALW for the input of threaders; 2) bibliography search from the SWISS-PROT
references or PubMed. If there were any structural information such as disulfide-bonds, we tried to confirm
its significance by reading the original paper thoroughly. Second the more complicated analysis by open
WWW or in-house tools were carried out: 1) secondary structure prediction by SSThread (Ito, Nishikawa),
PHD, JOINT (Noguchi, Nishiakwa) and BW-MGOR (Kawabata); 2) motif search by PROSITE and by a
program developed by Kawabata which allows more complicated conditions than the former. Third the target
sequence, its homologs and their multiple alignment were thread on the PDB representative set. For a single
sequence, we performed the threading by COMPASS (Matsuo, Nishikawa), S3 (Kinjo) and LIBRA (Ota).
COMPASS uses a set of knowledge-based functions which take into account four physico-chemical terms:
side-chain packing, hydration, local-confirmation, and hydrogen-bonding. S3 (Kinjo) uses functions similar
to those of COMPASS but more emphasis on local terms (secondary structures and hydrations) than pair-
wise long-range terms. LIBRA uses the same terms as COMPASS, but employs different normalization
scheme, so it uses the different score table. Also it can accept multiply aligned sequences. If necessary, the
inverse folding search, the structure-recognizes-sequence protocol, was carried out with LIBRA. Results of
the inverse-folding searches were sometimes useful to confirm those of the forward-folding searches.
Sometimes, the inverse-folding searches yielded convincing results even when the forward-folding searches
could not give significant results. For the targets whose secondary strucutures were already known, a simple
structure alignment program developed by T.Kawabata was performed. The final decision-making was not an
easy nor straight-forward process. We could agree immediately on easy targets: our threader yielded the same
results and we recognized apparent homology, or multiple results agreed and sequence motif was conserved.
Yet most of the time, we could not decide the most appropriate models. In these cases, We customized the
programs that took into account the target-specific features such as sequence motifs and disulfide-bonds. In
the cases when we could not find any consistency among our results at all, we concluded that the fold was a
new one (submitted as NONE). We submitted on 56 models for 25 targets. Among them, 8 structures are



determined and publicized by now. We evaluated our submissions and, although further and more thorough
assessment is necessary, so far we could say to have succeeded in 4 predictions, namely VanX,
polygalacturonase, EH2 domain of EPS15 and MarA protein (1 wrong prediction for Protein HDEA, 3
predictions about which we are not yet sure if we have succeeded or not).

Two Stage Protein Fold Recognition using GenTHREADER and THREADER

Caroline Hadley, Michael Tress and David Jones

For our fold recognition predictions in CASP3, two methods were routinely applied to each target sequence:
THREADER (version 2.5) and GenTHREADER (version 3.0). Over the past six years, we have been
developing approaches to fold recognition, using a set of statistically determined pairwise potentials, which
have proved to be highly effective, and offer considerable scope for future improvement. THREADER 2.5 is
the latest incarnation of our threading program, and although it now incorporates a number of new features
(including options for locating domains in target sequences), and a more refined set of potentials, the overall
concept of the method remains more or less unchanged since CASP2. Firstly, a library of unique, continuous
protein domain folds is derived from the database of protein structures. Each fold is considered as a chain
tracing through space; the original sequence being ignored completely. The test sequence is then optimally
fitted to each library fold (allowing for relative insertions and deletions in loop regions), using a double
dynamic programming algorithm, with the 'energy’' of each possible fit (or threading) being calculated by
summing the proposed pairwise interactions and solvation parameters. The library of folds is then ranked in
ascending order of total energy, with the lowest energy fold being taken as the most probable match. Recent
features added to the method allow sequence information and predicted secondary structure information to be
considered in the fold recognition process. The latest feature is the option to combine threading results for a
family of related proteins in order to enhance sensitivity. GenTHREADER is our latest fold recognition
method which has been designed to be both fast and reliable, and is particularly aimed at automated genome
annotation. The method uses a traditional sequence alignment algorithm to generate alignments which are
evaluated by threading techniques. As a final step, each threaded models is evaluated by a neural network in
order to produce a single measure of confidence in the proposed prediction. The speed of the method, along
with its sensitivity and very low false-positive rate makes it ideal for automatically predicting the structure of
all the proteins in a translated bacterial genome. The method has been applied to the genome of Mycoplasma
genitalium, and analysis of the results shows that as many as 47% of the proteins derived from the predicted
protein coding regions have a significant relationship to a protein of known structure. In some cases,
however, only one domain of the protein can be predicted, giving a total coverage of 30% when calculated as
a fraction of the number of amino acid residues in the whole proteome. In making CASP3 predictions,
GenTHREADER was used as a pre-filter. Where GenTHREADER was able to make a confident prediction
(generally in cases where a clear evolutionary link is apparent between the target program and an entry in the
fold library), this fold was assumed correct and THREADER was used to generate the final alignment
(though with appropriate sequence weighting options). In cases where GenTHREADER did not produce an
unambiguous result, full runs were performed with THREADER itself in order to deduce a set of likely folds.




The Generate and Select Ab-inito Prediction Hierarchy: Protein Fold Determination
from Sparse Distance Restraints

Derek A. Debe & W. A. Goddard IIT

We have developed the generate-and-select hirarchy for ab-initio tertiary protein structure prediction. The
foundation of this hierarchy is the Restrained Generic Protein (RGP) Direct Monte Carlo method (submitted,
J. Chem. Phys.). The RGP method is a highly efficient, off-lattice residue buildup procedure that can quickly
generate the complete set of polypeptide topologies that satisfy a very small number of inter-residue distance
restraints. For a 100-residue protein with just 4 inter-residue restraints, the RGP method can generate the
complete set of topologies (~10/5 structures) in less than one hour using a Silicon Graphics R10000 single
processor workstation. Following structure generation by the RGP method, a simple criterion that measures
the burial of hydrophobic and hydrophilic residues can reliably select a reduced set of ~10A2 structures that
contains the native topology. Next, each of the structures in this reduced set is minimized with repsect to the
residue burial function and rescored. This minimization can often rank a native topology structure in the five
lowest energy folds. We have developed methods to incorporate secondary structure predictions and
sidechains into the folds. The entire prediction hierarchy for a 100-residue protein with 4-10 inter-residue
distance restraints can be completed in less than six hours on a single processor workstation. The objective of
the generate-and-select hierarchy is to quickly rule out large regions of conformation space based on known
inter-residue restraints and hydrophobic criteria. Once large regions of fold space have been eliminated, far
more computationally intense methods, such as molecular dynamics or dynamic Monte Carlo can be applied
in order to refine the native topology fold. Hence the generate-and-select hierarchy relieves the burden of
analyzing large, diverse regions of conformation space with computationally expensive simulation methods.
For the CASP3 prediction conference, we used the generate-and-select hierarchy to make predictions on
targets T0056, T0059, T0061, T0O072, T0075, and TO079. For each target, the initial inputs to the RGP
algorithm were a set of 3-8 distance restraints obtained from predictions of disulfide bond connectivity,
hydrophobic core residue predictions, or correlated mutation analyses. Sets of on the order of ~10"4 were
generated for each target, and the five lowest energy folds were refined to incorporate predicted secondary
structure (PHD) and sidechains. For each target, these five lowest energy folds were submitted. Total single-
processor computation time for each target was 5-10 hours. Successful application of the generate-and select
hierarchy depends on three procedures that are currently of intense interest in the ab-intio structure prediction
field: 1. predicting inter-residue contacts by analyzing correlated mutations in distant homologous sequences;
2. efficiently generating folds that satisfy a set of inter-residue distance restraints; 3. recognizing near-native
structure from large sets of misfolded candidates. Because of the hierarchical nature of our prediction
method, it is possible to understand exactly which stage in the hierarchy is responsible for an inaccurate
prediction in instances where the native topology fold is not isolated. Thus, the generate-and-select hierarchy
is an excellent vehicle for studying the performance that is required by each of the three procedures to enable
accurate low-resolution tertiary structure predictions.




Protein structure prediction with combinatorial optimization

Eckart Bindewald, Ulrike H?er, Matthias Heiler, J?gen Hesser, Reinhard M?ner

A branch and bound algorithm was implemented to search for low energy structures of proteins. The space of
possible protein conformations was discretized using a library of building blocks. Each building block
represents several amino acids of a protein backbone. A library of 124 building blocks with the length of 6
amino acids was used. This library of building blocks was developed in our group by applying clustering
algorithms to a set of fragments of backbone conformations which were taken from protein structures from
the PDB database. Protein conformations are represented by the non-overlapping concatenation of building
blocks. The branch and bound algorithm searches the energetic minimum in the space of possible building
block combinations. The used scoring function is a contact potential. The total energy in this model is the
sum of the interaction energies between all its atoms (or pseudo atoms). Interactions between atoms of the
same amino acid are not considered. Interactions between atoms of adjacent amino acids are only considered,
if they both belong to the side chain. The energy model is based on the atom types and Van der Waals radii
described in: Ai-Jun Li, Ruth Nussinov: PROTEINS, 32: 111-127 (1998) . The interaction parameters of the
energy model were fitted such that the native structures of 10 test proteins have a lower energy than "good"
alternative structures. Predictions were submitted for the Casp-3 targets 59, 61, 65 and 84. They were chosen
because among the other targets because they consist of less than 100 amino acids. Possible side chain
conformations were taken from a rotamer library given in Ponder, Richards: J.Mol.Biol. 193, 775-791
(1987). Before the start of the conformational search, side chains were placed on the building blocks: For
each building block and each possible position on the protein, possible side chain conformations were
optimized with a branch and bound algorithm. The library of building blocks was processed, such that for
each building block position of the given protein a specialized library of building blocks with side chain
information existed. The conformational search was restricted using consensus results from secondary
structure predictions given by the JPRED server. The building blocks were classified into 7 different classes,
depending on whether they represent a random coil piece or the N-terminal border, C-terminal border or
middle part of an alpha helix or a beta sheet. For each building block position the consensus prediction of the
JPRED server determined the class of building blocks, which were allowed at this position. The sulfur atoms
of the cysteine residues were constrained to have a distance lower than 5 Angstrom in the case of the
proteins, which had 2 cysteine residues. The submitted structures correspond to intermediate results of the
search algorithm.




Comparative Modelling of CASP3 targets

Nicolas Geux and Mansoor Saqi

Comparative modelling for CASP3 targets was carried out using the Swiss-PdbViewer modelling and
visualization tool (SPDBV 3.1). The same general procedure was followed for each model, namely each
target sequence was aligned onto its best template (the one with the maximum identity with the target); the
alignment was adjusted manually, with particular consideration to the placing of gaps; whenever possible,
additional templates were superimposed onto the best template in hope of adding information about sidechain
position; then, an average model was built with SWISS-MODEL. Geometrically possible loops were
generated de novo directly within Swiss-PdbViewer by a combinatorial approach and inspected manually.
Those with favourable H-bonding network and acceptable polarity of exposed sidechains were retained.
Finally, all models were energy minimized. In the case of t0069, the best template was a trimer. Sidechains
present at the interface of the three monomers were optimised by performing a combinatorial search of
sidechain rotamers. When too many sidechains were interacting with each other to perform an exhaustive
search, a simulated annealing procedure was applied.

Threading score functions without Boltzmann statistics

Thomas Huber, Daniel Ayers, Anthony Russell, Andrew E. Torda ANU supercomputing Facility and
Research School of Chemistry, Australian National University Canberra ACT 0200 Australia

Our methodology used sequence to structure threading, but with unusual score functions and three distinct
computational steps: 1. alignment of the sequence to each structure in a library of templates using a purpose
built score function / force field 2. ranking of model structures using a second score function 3. sidechain
placement using a third force field and iterative mean field approach For the first step (sequence to structure
alignment) we used a score function which allowed direct use of a Needleman and Wunsch algorithm,
without relying on the frozen approximation or double dynamic programming. This score function is quite
unique in using the identity of only one member of each interaction pair. This means that one can truly score
each residue at each possible template position without further approximation. It allows one to make the
outrageous claim of a guaranteed optimal sequence to structure aligment, with the caveat of a distinctly non-
optimal force field. The second step was the ranking of alignments (models). A second score function was
used with the original approximations removed and using the identity of both members of each interaction
pair. Finally, in a third step, we showed unbounded faith in our ranked models by trying to place side-chain
atoms on the backbones. This was done with a mean-field approach and a more conventional atomistic force
field. Side-chains were placed according to a rotamer library and assigned probabilities according to their



energies. Rotamer populations were then recalculated in the field due to their neighbours and iterated to self
consistency. For the first and second steps, score functions were built without the reliance on Boltzmann
statistics used in many other "knowledge-based" force fields. Instead, our goals were described and translated
into a cost function whose parameters were to be optimised. In this case, the cost function was based on the
ability to distinguish a library of native folds from a very large (10 000 000) number of misfolded structures.
Thus, we required that the score functions discriminate good from bad sequence-structure pairs. There was
no requirement that the functions have any relation to a physical energy. The method was applied for the
second force field, but could also be used for the first force field which only used the identity of one member
of each interaction pair. The score functions were low-resolution force fields with 5 or less interaction sites
per residue and all of the residue's identity carried by a site on the beta carbon. Separate interaction
parameters were used for short, medium and long range sequence separation and were usually based on a
hyperbolic tan (sigmoidal) functional form. Although they were not used for CASP3, we have tried several
variations of score functions. The optimisation methods have been used to build table-driven force fields
which have very similar performance and we have experimented with slightly fewer interaction sites per
residue. Since CASP3, we have begun to work on methods to produce more specialised force fields,
optimised specifically for properties such as alignment capability.

Protein Structure-sequence threading using mean force potential with 6 degrees of
freedom

Kentaro ONIZUKA, Tamotsu Noguchi, Yutaka Akiyama

Multiple dimensional distribution is represented with fewer number of parameters by linearly expanding the
distribution and controlling the cut-off orders of expansion. We adopted this method to the distribution of the
relative position between two amino-residues in a protein chain, and applied it to the protein fold recognition
problem. We compared the recognition ratio of three cases, adopting the distribution 1) with respect to the
distance (one degree of freedom) , 2) with respect to the 3D position (three degrees of freedom), and 3) with
respect to the 3D position and the relative orientation (six degrees of freedom). The result is that the self-
recognition ratio of multiple dimensional distribution is far better than that of the conventional distribution
with respect only to the relative distance.

Protein Structure Prediction Using Potentials Derived from the Knowledge-Based
Database RELOR

Alfons Haedener

A Knowledge-Based Database of Parameterised Interactions of Amino Acids in Proteins Of three-
dimensional structures of proteins, available via the Protein Data Bank (PDB) [1] a representative subset [2]
was used to construct a database containing records associated with pairs of amino acid residues of a



particular protein of the subset. For the parameterisation, each residue pair of a protein was considered
separately and gave rise to one record of the database. A record basically comprises six floating-point
numbers which, as an ensemble, relate to the interactions of the pair of residues being considered. The
database, called RELOR, currently contains 1'529'378 records derived from 53'915 residues of 267
polypeptide chains. Another part of the RELOR database contains 658'686 records, each associated with the
interactions of an individual amino acid residue with an ion or a particular molecule that is not part of the
polypeptide chain, such as a metal ion, a water molecule of the ordered solvent structure, or a cofactor (A.
Haedener, unpublished). Potentials for Protein Conformations The database RELOR was used to derive a
potentials that are useful in calculations of the relative stability of given conformations of a protein.
Basically, a potential is evaluated by considering individual residue pairs of a given conformation of the test
protein, followed by estimating the frequency of the occurrence of similar residue pairs in the database. This
evaluation generates a number that can be related to the relative stability of the given conformation. The
method can be validated by checking the output number against empirical data describing the relative
stabilities of particular proteins and their site-directed mutant variants. Such empirical data has been
generated for some well-studied test proteins such as barnase [3] or bacteriophage-T4 lysozyme [4]. The
software that creates the potentials, called PROFITUFT, is written in C and runs on a Silicon Graphics O2
Workstation. Both RELOR and PROFITUFT are continuously under development. In principle, interactions
of a protein with the ordered water structure or a contingent cofactor, as encoded by RELOR, could be taken
into consideration by PROFITUFT. This is not currently implemented in the program, however. Simulation
of Folding Processes Potentials generated by PROFITUFT can be integrated into methods of all major fields
of protein structure prediction, i. e. homology modelling, threading, and, in particular, ab-initio methods [5].
The algorithm for the submitted ab-initio prediction for target T0084 tries to simulate the folding process of a
protein. It is based on methods using simulated annealing in both discrete and continuous conformational
space [6] [7] in which the dihedrals phi and psi of individual residues are independent variables. Due to a
number of restrictions built into the current version of the algorithm, the predicted model of T0084 is thought
to merely represent a kind of molten-globule state of the polypeptide chain. References [1] F. C. Bernstein, T.
F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, M.

Tasumi, J. Mol. Biol. 1977, 112, 535 & 542, [2] U. Hobohm, M. Scharf, R. Schneider, C. Sander, Prot. Sci.
1992, 1, 409 % 417. [3] A. R. Fersht, FEBS Lett. 1993, 325, 5% 16. [4] B. W. Matthews, Annu. Rev. Biochem.
1993, 62, 139 % 160. [5] J. Moult, J. T. Pedersen, R. Judson, K. Fidelis, Proteins: Struct. Funct. Genet. 1995,
23, issue no. 3. [6] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C/,

2nd edition, Cambridge University Press, Cambridge, 1992. [7] J. A. Nelder, R. Mead, Computer Journal
1965, 7, 308.

fold recognition for casp3

daniel fischer

I have submitted predictions to most of the available targets for casp3, including those with homology to
known structures. The latter submissions are interesting to assess the alignment accuracy. The predictions
were based on the SDP method of Fischer & Eisenberg as implemented in the fold recognition server frsvr.
As far as possible, I attempted to submit the automatic results of the server with no manual intervention. No
biological/literature information was used to bias the predictions. When a target had homologous sequences
in the database, independent runs for each of the homologous sequences was attempted. When similar results
were obtained for the homologous sequences, the confidence of the prediction increased. When the prediction



scores were low and/or inconsistent, I suspected of a possible novel fold. The main problem encountered was
when the prediction seemed to be weak and one fold needed to be selected. In such cases a rather arbitrary
decision was taken

Methodology and strategy for comparative modeling

Lisa Yan, David J Edwards

This abstract outlines the methods and our strategy for predicting protein structures using comparative
modeling method. Among the list of CASP3 target sequences, 14 of them are marked as having homologous
sequences of known structures. We entered predictions for 10 such sequences. Searching PDB database using
FASTA or BLAST program identifies the template structures used to create homology models. Models are
built using either Modeler4 or Modeler5 program based on all possible templates together or separately.
Since the accuracy of sequence alignment is a crucial part in homology modeling, we tried to create sequence
alignment using various alignment methods and parameters. If there are multiple template structures
available, the first step is to align the template sequences based on their structure similarity or sequence
similarity. Multiple sequence alignment based on structure similarity is generated by comparing the C alpha
distance matrix using the automatic divide and conquer algorithm in InsightIl. Multiple sequence alignment
based on sequence similarity is created using ClustalW or divide and conquer algorithm in InsightIl. Then,
the model sequence is aligned to template(s) using pairwise global alignment algorithm in InsightII or using
structure enhanced global alignment algorithm (Align2D) provided by Modeler. We also tried to align all
sequences, including templates and model, in one step using multiple sequence alignment method from
ClustalW. Based on the alignments generated by various methods, models are created using either Modeler4
or Modeler5. For some models, loop regions are refined using statistical pair potential in Modeler5. The loop
regions are defined automatically by Modeler5 as the sequence segments not aligned to any templates.
Models are then selected according to model evaluation score calculated by Profile-3D/verify in InsightIl. We
found that the models created based on the alignments generated using Align2D method usually give better
verify scores.

Threading score functions without Boltzmann statistics

Thomas Huber, Daniel Ayers, Anthony Russell, Andrew E. Torda ANU supercomputing Facility and
Research School of Chemistry, Australian National University Canberra ACT 0200 Australia

Our methodology used sequence to structure threading, but with unusual score functions and three distinct
computational steps: 1. alignment of the sequence to each structure in a library of templates using a purpose
built score function / force field 2. ranking of model structures using a second score function 3. sidechain
placement using a third force field and iterative mean field approach For the first step (sequence to structure
alignment) we used a score function which allowed direct use of a Needleman and Wunsch algorithm,



without relying on the frozen approximation or double dynamic programming. This score function is quite
unique in using the identity of only one member of each interaction pair. This means that one can truly score
each residue at each possible template position without further approximation. It allows one to make the
outrageous claim of a guaranteed optimal sequence to structure aligment, with the caveat of a distinctly non-
optimal force field. The second step was the ranking of alignments (models). A second score function was
used with the original approximations removed and using the identity of both members of each interaction
pair. Finally, in a third step, we showed unbounded faith in our ranked models by trying to place side-chain
atoms on the backbones. This was done with a mean-field approach and a more conventional atomistic force
field. Side-chains were placed according to a rotamer library and assigned probabilities according to their
energies. Rotamer populations were then recalculated in the field due to their neighbours and iterated to self
consistency. For the first and second steps, score functions were built without the reliance on Boltzmann
statistics used in many other "knowledge-based" force fields. Instead, our goals were described and translated
into a cost function whose parameters were to be optimised. In this case, the cost function was based on the
ability to distinguish a library of native folds from a very large (10 000 000) number of misfolded structures.
Thus, we required that the score functions discriminate good from bad sequence-structure pairs. There was
no requirement that the functions have any relation to a physical energy. The method was applied for the
second force field, but could also be used for the first force field which only used the identity of one member
of each interaction pair. The score functions were low-resolution force fields with 5 or less interaction sites
per residue and all of the residue's identity carried by a site on the beta carbon. Separate interaction
parameters were used for short, medium and long range sequence separation and were usually based on a
hyperbolic tan (sigmoidal) functional form. Although they were not used for CASP3, we have tried several
variations of score functions. The optimisation methods have been used to build table-driven force fields
which have very similar performance and we have experimented with slightly fewer interaction sites per
residue. Since CASP3, we have begun to work on methods to produce more specialised force fields,
optimised specifically for properties such as alignment capability.

Post-processing of Secondary structure prediction by using reverse protein sequences.

Jong H. Park and George M. Church

Present protein secondary structure prediction programs rely on training or utilizing secondary structure
assignment information from 3D structures. The highest average accuracy of them is below 75%. There are
various post-processing approaches to extend the accuracy of such prediction methods. Most of them
combine different prediction algorithms and produce consensus predictions with various intuitive rules. If
any target sequence has many homologous sequences known, the secondary structure prediction programs
can utilize multiple sequence alignments resulting in relatively higher prediction accuracy. It can also be
useful to analyze how difficult a prediction can be, especially when there are few homologous sequences for
the target. CASP3 can provide people with independent test protein sequences for such post processing
programs as the target sequences chosen are pre-filtered and categorized into sequences with known and
unknown structures resulting in only relatively unique protein targets. We have tested a post processing
approach that utilizes the reverse protein sequences to see 1) how unreliable the predicted sequence segments
can be 2) how we can improve the accuracy of the predictions made by major prediction algorithms. The
method is based on previous empirical observation that strongly predicted secondary structures of for- and
backward sequences of the same protein tend to be similar and often identical. The program developed in perl

programming language, L predict_ssop', accepts the output of PHD (Rost and Sander, 1993) and Predator
(Frishman and Argos, 1997) programs. It first runs either or both of the 2 programs with a sequence or a



homologous sequence set. Then it reverses the given sequence(s) and runs the programs again. It, then,
reverses back the predictions for the reversed sequences. With both forward and backward secondary
structure predictions it compares the prediction made for each position while rewarding and penalizing the
prediction according to the identity of the comparison. For example, with a given single sequence, if both
forward and backward sequences showed alpha helix prediction for a certain residue position, the score is the
average multiplied by incompletely optimized positive factor of the reliability of the predictions from either
PHD or Predator. If forward and backward predictions do not match for a residue position, penalty is given to
the prediction reliability lowering the original reliability. When helix and beta sheet prediction with high
reliability is matched to a no prediction or coil prediction with low reliability, helix and beta prediction is not
penalized. If a multiple sequence alignment is given there can be two ways to deal with the prediction. One is
to run a prediction program for each sequence in the alignment and give reliability scores in comparison with
all the corresponding backward sequences of the alignment with the same rule described above. The other
way is to run the prediction program over the multiple sequence alignment and calculate the reliability score
from the back- and forward sequences of the target sequence in the alignment. At the assessment of the
prediction competition, we hope to be able to analyze the result to know 1) if there is any biological reason
for a reversed sequence has the same or similar secondary structure prediction 2) how to utilize the control
information given by the reverse sequence in post-processing prediction outputs 3) how to improve the
prediction algorithms to integrate the control reverse sequence in the stage of neural net training (for PHD
like program) and propensity table generation (most other programs). Acknowledgement J.P. is supported by
a grant from Hoechst Marion Roussel. References Rost B, Sander C., Proc Natl Acad Sci U S A 1993 Aug
15;90(16):7558-62 Improved prediction of protein secondary structure by use of sequence profiles and neural
networks. Frishman D, Argos P., Proteins 1997 Mar;27(3):329-35 Seventy-five percent accuracy in protein
secondary structure prediction.

Evolution-based Transparent Structure Prediction

Steven A. Benner, Gina Cannarozzi, Dietlind L. Gerloff

The use of alignments of multiple protein sequences to predict the conformation of proteins, first proposed in
1977 by Lenstra et al. (Lenstra, J. A., Hofsteenge, J. & Beintema, J. J. (1977). Invariant features of the
stuructre of pancreatic ribonuclease. J. Mol. Biol. 109, 185-193) has become commonplace since the
approach generated a "remarkably accurate" prediction for protein kinase in 1991 (Benner, S. A. & Gerloff,
D. (1991). Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure:
The catalytic domain of protein kinases. Adv. Enzyme Regulat. 31, 121-181). This prediction provided the
first example where structure prediction was used to deny long distance homology implied by limited
sequence similarities, an example of "compensatory covariation analysis" in structure prediction, and an early
example of functional genomics based on evolutionary analysis. Despite numerous papers (reviewed in
Benner, S. A., Cannarozzi, G., Chelvanayagam, G., Turcotte, M. (1997) Bona fide predictions of protein
secondary structure using transparent analyses of multiple sequence alignments. Chem. Rev. 97, 2725-2843)
showing the importance of higher order "non-Markovian" analysis of the divergence of protein sequences,
rigorous evolutionary modelling, and human involvement in the process by which analytical tools are
developed, the overwhelming majority of structure predictors continue to rely on Markov models, first order
analyses, neural nets, and fully automated computational tools to predict protein structure and analyze its
implications for function. This poster will make another attempt to persuade our computational friends and
colleagues to think "outside the box" when using sequence data to analyze and predict protein structure, and
to apply it to functional genomics.



Monte Carlo Threading

Leonid Mirny and Eugene Shakhnovich

The energy of a protein conformation is computed using a contact pairwise approximation. Two residues are
said to be in contact if the distance between their Cb atoms is less than 8A. Conformation of the lowest
energy is found by threading of the target sequence through known protein structures. The major features of
our method are the following. * Parameters of the energy function (potential) are obtained by an optimization
procedure, which minimizes the Z scores of the proteins in the training set. The Z score is the deviation of the
energy of the native conformation from the average energy of compact random conformations, measured in
the units of standard deviation. To minimize the Z scores simultaneously for all proteins in the training set we
minimize the harmonic mean of individual Z scores. For a given form of energy function, this procedure
yields a potential which provides minimal Z scores. We extensively studied convergence and generalization
of the method. * In threading, the target sequence is used together with its close homologs. Sequences
homologous to the target are found by a standard sequence alignment procedure. For each homologous
sequence (m) we compute a matrix of interactions BA(m). An element BijA(m) of this matrix gives the energy
of a contact between residues in positions i and j of sequence (m). Then we compute an average matrix of
interactions Bij= where averaging is done over all homologous sequences and the target sequence. This
matrix is used in the threading procedure to compute the energy of a protein conformation. * We start from
fast fold recognition procedure which makes threading through every structure in a non-redundant database
(about 1000 structures). Fast fold recognition does no relay on the frozen approximation, instead, for each
structure it enumerates all possible sequence-structure alignments containing a single gap. Finding a
sequence-structure alignment of the lowest energy in a general case (any number of gaps) is computationally
expensive, therefore we first select best scoring structures using a fast but approximate fold recognition and
then subject these structures to the exact algorithm. Fifty structures which provide the lowest Z scores are
selected for detailed threading. * Monte Carlo (MC) threading is the core of our prediction algorithm. MC
threading is able to find a sequence-structure alignment of the minimal energy in a general case without
relaying on frozen approximation or any a-priory knowledge of aligned fragments. No gap penalties are used
and the whole process of threading is driven by energy function alone. To avoid too short fragments in the
alignment we constrain the minimal length of a fragment to 6 residues. MC threading starts from a random
sequence-structure alignment. At each step it makes a small change in the alignment (moves/shrinks/extends
or splits a fragment) and then accepts of rejects this move according to the energy change and Metropolis
criteria. Simulated annealing protocol is used to find an alignment of the lowest energy. Importantly, this
algorithm also allows sampling of sub-optimal alignments. A structure and an alignment with the lowest Z
score constitutes a prediction. Alternately, contact maps obtained from 20 structures with the lowest Z score
are clustered into groups of similar maps and the average map of the largest cluster is used as the predicted
contact map. REF: Mirny, L.A and Shakhnovich, E.I. "How to determine protein folding potential? A new
approach to the old problem." J.Mol.Biol. 1996, v264, p1164-1169 Mirny, L.A. and Shakhnovich, E.I. "Fold
Recognition by Threading: Why it Works, Why it Doesn't" J.Mol.Biol. 1998, v283, p507-526




Iterative sequence search method using intermediate sequences to detect very distant
sequence homologs for fold recognition.

Jong H. Park

It has been shown that iterative sequence search method with multiple intermediate sequences can increase
the sensitivity of popular sequence search method by 2 folds
(http://cyrah.med.harvard.edu/Proj/Bio/Search_meth_comp/assess_final.html, Park, et al., in press). Iterative
search method using Hidden Markov Model (HMM) has shown to be marginally more sensitive than position
specific matrix blast algorithm (PSI-blast, Altschul, et al). However, PSI-blast is simpler and easier to do the
iteration for the moment. Optimal evalue has been sought for PSI-blast using already known structural
database (PDB40D) based on structural classification of proteins (SCOP). Utilizing the optimally estimated
evalue for PSI-blast as well as HMM and manual sequence search, fold recognition was carried out for
CASP3. The assessment result will show the extent of the latest sequence search method which uses multiple
sequence information with iteration in comparison with threading algorithms. The search was done against
non-redundant sequence search database which is used as a sequence pool for intermediate sequences. Each
prediction target was subject to automated perl script which runs PSI-blast algorithm with the evalue of 0.001
which is known to be the optimal value at the error range of 1%. Iteration was done up to 20 times unless
conversion occurred. At each stage of iteration, HMM (HMMER beta version 2.0) was built to search the
non-redundant and PDB100D database which contains all the domain sequence for known protein structures.
Also, manual checking was carried out to identify functionally similar matches in the iteration process.
Sequence alignments which belonged to boundary regions of evalue (close to 0.001 in both ways) were
checked manually at each iteration. With extremely unique sequence targets, all the hits of the initial PSI-
blast were examined for any distant functional and alignmental links. This comparison experiment of latest
pure sequence search method against threading algorithm with unknown prediction targets of Casp3 will
provide us a valuable insight on how well the latest sequence search methods compare with threading, how
different in their ranked hits and knowledge on future improvements on sequence search algorithms.
Acknowledgement J.P. is supported by a grant from Hoechst Marion Roussel. References Altschul, S.F.,
Madden, T.L., Sch,,ffer, A.A,, Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997). Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389-3402. Jong
Park, Kevin Karplus, Christian Barrett, Richard Hughey, David Haussler, Tim Hubbard and Cyrus Chothia,
Sequence Comparisons Using Multiple Sequences Detect Twice as Many Remote Homologues as Pairwise
Methods, JMB, in press.




The protein secondary structure prediction by New Joint Method and the SSThread
method.

Tamotsu Noguchi

The joint prediction method for protein secondary structure combines the result of different prediction
methods. In the original New Joint Method, the five best methods (QS: Qian-Sejnowski, Na: Nagano, PF:
Ptitsyn-Finkelstein, NO: Nisikawa-Ooi, GGR: Gibrat-Garinier-Robson) of eight examined, are chosen, each
of which represents a different methodology (Nishikawa and Noguchi, 1991). The average prediction
accuracy of a test set was 64.8 % in the three-state assessment of alpha helix, beta sheet and coil. In the New
Joint Method at present, the Na method has been replaced by a method for the prediction of protein
secondary structure using the 3D-1D compatibility algorithm (SSThread method), which have been proposed
by Ito et al.. The New Joint Method is available through the protein secondary structure prediction menu on
the PAPIA (PArallel Protein Information Analysis) WWW. The PAPIA WWW page can accessed by the URL
(http://www.rwcp.or.jp/papia/papia.html). The structural library of the 3D-1D compatibility search used in
the SSThread method contains 325 protein chains, which have been selected from PDB release 69 by Matsuo
and Nishikawa (1994). The average prediction accuracy by the SSThread method is 70.3 %. Though the New
Joint Method replaced from the Na method to the SSThread method have improved the prediction accuracy
from 64.8% to 66.6 %, the SSThread method is better than the New Joint Method. However, the prediction
accuracy for the SSThread method drops in the case of no similar protein in the structural library. Therefore,
we prepare the SSThread using the new structural library, which contains 817 protein chains selected from
PDB release 83 besides the SSThread used in the New Joint Method. We have predicted the protein
secondary structures of CASP3 target proteins by the New Joint method and the SSthread method using the
new structural library. The result of the prediction of protein secondary structure have been based on the
results of the New Joint Method, in case the target size is smaller than 100 residues or a similar protein with a
target, whose total compatibility score is better than -2.8, is not found in the new structural library by the 3D-
1D compatibility search. We have predicted the secondary structure of the other target proteins by the
SSthread method using the new structural library, since the SSthread method is better than the New Joint
Method in that case. In this case, we have aligned the target protein with the highest score protein according
to the 3D-1D alignment and submitted in format to express unambiguous alignment to PDB entries.

Comparative protein structure modeling by MODELLER-5

Andras Fiser, Roberto Sanchez, Francisco Melo, Azat Badretdinov and Andrej Sali

Template selection: Templates were identified by programs PSI-BLAST (1), ALIGN (2), PROFIT (3),



UCLA-DOE fold assignment server (4), and MODELLER (5,6). In general, several different template
combinations were used, finally picking those templates that resulted in the best model, as evaluated by the
program PROSAII (7). Alignment: Alignments were generated with programs PSI-BLAST (1), ALIGN (2),
MODELLER (5,6), ITERALIGN (8), and CLUSTALW (9). Template structures were aligned by the least-
squares rigid body superposition in MODELLER-5. When possible, sequences from GENPEPT that were
easily alignable with the template structures were added to the alignment, as were those sequences that were
easily alignable to the target sequence. Multiple sequence alignments (ITERALIGN) as well as profile to
profile sequence alignments were performed (CLUSTALW, MODELLER-5). In many cases, the alignment
was also edited by hand taking into account the template structures, predicted secondary structure, functional
residues, etc. Among the many generated alignments, the final alignment was that which resulted in the best
model, as evaluted by the program PROSAII (7). Model building: Model building was done with
MODELLER-5 (5,6). The input to the program was the alignment between the target sequence and the
template structures. The output, obtained without any user intervention, was a model with all non-hydrogen
atoms. When possible, additional restraints originating from ligand binding and quaternary interactions were
used. Loops were modeled subsequently with a new automated procedure in MODELLER-5 (A. Fiser and A.
Sali, in preparation). Model evaluation: All models, except one, were checked with PROCHECK (10),
PROSAII (7), and WHAT-CHECK (11). 1) S.F. Altschul et al. Nucl.Acid.Res. 25, 3389, 1997. 2) S.F.
Altschul. Proteins 32, 88, 1998. 3) H. Flockner et al. Proteins 23, 376, 1995. 4)
http://www.mbi.ucla.edu/people/frsvr/preds/MG/MG.html 5) A. Sali and T.L. Blundell. J.Mol.Biol. 234 779,
1993. 6) http://guitar.rockefeller.edu/ 7) M.J. Sippl. Proteins 17, 355, 1993. 8) L. Brocchieri and 11) S.
Karlin. J. Mol.Biol. 276, 249, 1998. 9) D.G. Higgins and P.M. Sharp. CABIOS 5, 151, 1989. 10) R.A.
Laskowski et al. J.Appl.Cryst. 26, 283, 1993. 11) R.W.W. Hooft et al. Nature 381, 272, 1996.

The protein secondary structure prediction by New Joint Method and the SSThread
method.

Tamotsu Noguchi, Kentaro Onizuka, Yutaka Akiyama

The joint prediction method for protein secondary structure combines the result of different prediction
methods. In the original New Joint Method, the five best methods (QS: Qian-Sejnowski, Na: Nagano, PF:
Ptitsyn-Finkelstein, NO: Nisikawa-Ooi, GGR: Gibrat-Garinier-Robson) of eight examined, are chosen, each
of which represents a different methodology (Nishikawa and Noguchi, 1991). The average prediction
accuracy of a test set was 64.8 % in the three-state assessment of alpha helix, beta sheet and coil. In the New
Joint Method at present, the Na method has been replaced by a method for the prediction of protein
secondary structure using the 3D-1D compatibility algorithm (SSThread method), which have been proposed
by Ito et al.. The New Joint Method is available through the protein secondary structure prediction menu on
the PAPIA (PArallel Protein Information Analysis) WWW. The PAPIA WWW page can accessed by the URL
(http://www.rwcp.or.jp/papia/papia.html). The structural library of the 3D-1D compatibility search used in
the SSThread method contains 325 protein chains, which have been selected from PDB release 69 by Matsuo
and Nishikawa (1994). The average prediction accuracy by the SSThread method is 70.3 %. Though the New
Joint Method replaced from the Na method to the SSThread method have improved the prediction accuracy
from 64.8% to 66.6 %, the SSThread method is better than the New Joint Method. However, the prediction
accuracy for the SSThread method drops in the case of no similar protein in the structural library. Therefore,
we prepare the SSThread using the new structural library, which contains 817 protein chains selected from
PDB release 83 besides the SSThread used in the New Joint Method. We have predicted the protein
secondary structures of CASP3 target proteins by the New Joint method and the SSthread method using the



new structural library. The result of the prediction of protein secondary structure have been based on the
results of the New Joint Method, in case the target size is smaller than 100 residues or a similar protein with a
target, whose total compatibility score is better than -2.8, is not found in the new structural library by the 3D-
1D compatibility search. We have predicted the secondary structure of the other target proteins by the
SSthread method using the new structural library, since the SSthread method is better than the New Joint
Method in that case. In this case, we have aligned the target protein with the highest score protein according
to the 3D-1D alignment and submitted in format to express unambiguous alignment to PDB entries.

Structure prediction of CASP targets T0056, T0059, T0065 and T0084.

Chen Keasar and Michael Levitt

We predicted the structures of four target proteins: T0056, T0059, TO065 and T0084. The conformation space
of each protein was sampled as well as those of distant but clearly related homologous proteins (if available).
The submitted models were low in energy, compatible with the homologous proteins and different from one
another. As a major guideline for the conformation space sampling of T0059, T0065 and T0084, we used
consensus secondary structure prediction. For TO056, we used the available secondary structure. The
conformation space of all given proteins were sampled by selecting a large number (>= 10,000) of random
(but rather extended) structures with the predicted secondary structure. These structures were then minimized
with the program ENCAD using the va09a algorithm in torsion angle space. The torsion angles of residues
with assigned secondary structures were forced to remain close to the ideal value during the minimization.
The energy function used is a combination of the united atoms ENCAD forcefield and heuristic terms for
hydrogen bonds hydrophobicity and hydrophilicity. These heuristic terms were developed in an iterative
process. First, the conformation space of ten small proteins (1bba, fc2, 1gpt, 2ovo, 4pti, 1shf, 1igd, 2cro, 1ctf
and 1ubi) were sampled with the above procedure, using the native secondary structure. Then the heuristic
terms were modified in order to penalize the most bizarre low energy conformations and the conformation
spaces were sampled again. Although sometimes these modifications resulted in unexpected artifacts, the
process gradually increased both the fraction of native-like structures in the samples and the correlation
between the RMS deviation from the native structure and the energy. A major challenge in this process was
the generation of beta sheets. With only a simple two-atom hydrogen bond term, the collapse of the protein to
a compact structure stopped after the generation of few random hydrogen bonds that fixed the structure. The
current term thus includes a cooperative four-atom terms that favors the characteristic hydrogen bond
patterns of beta sheets and alpha helices. Less common patterns are penalized. With this type of hydrogen
bond term, we are able to generate protein like parallel and anti parallel beta sheets. The hydrophilicity term
is penalizes contacts between hydrophobic (aliphatic and aromatic carbon) atoms to charged ones. This is
also a cooperative term. For each charged atom, the energetic price grows exponentially with the number of
hydrophobic atoms that contact it. Thus, charges on the surface (with few contacts) are hardly penalized but
buried ones (with many contacts) are penalized heavily. In contrast, he hydrophobic term is non-cooperative.
It pushes each pair of hydrophobic atoms towards one another. This term grows very slowly (log) with the
distance. This way even in the beginning of each simulation, when the structures have a very large radius of
gyration, the hydrophobicity does not override the other energy terms. At the time of writing this abstract we
do not know yet how accurate our predictions are. Our expectations are rather modest. First, the correlation
between rms and energy is still rather low and second, the results depend heavily on the quality of the
secondary structure predictions. We do believe however that we present a novel approach to protein structure
prediction that can be developed into a useful tool.



Modeling by (possibly remote) homology using PSI-BLAST and SCWRL

Roland L. Dunbrack, Jr.

We base our protein structure prediction on finding proteins homologous to the target sequence within the

Protein Databank. That is, we are not looking for ¥ analogous ¥ folds -- proteins which share the same fold
but are not related by evolution to the target sequence. And we are not performing long simulations, which at
this time are not likely to succeed in any significant fraction of cases to be useful in real situations of interest
in biology. To find homologues in the PDB of each CASP3 target sequence, we first used PSI-BLAST
(downloaded from NCBI and run locally) to find homologues of the target sequence in the non-redundant

(t nr ¥) GenBank protein sequence database. PSI-BLAST was run through four iterations, using an E-value
cutoff of 0.0001 on each round to construct the position-specific matrix for each subsequent round. The final
matrix was saved and used to search the PDB sequence database. We also used ¥ intermediate sequences ¥ to
establish relationships between the target sequence and a PDB sequence. This was accomplished by using
each relative of the target sequence as a query sequence against the PDB. Alternatively, we also constructed a
database of all sequences in GenBank related to PDB sequences and used this database as the target of
BLAST searches. Both of these methods are in fact more sensitive than using the profile constructed by PSI-
BLAST, but more time-consuming. When the target sequence was defined by the experimentalists as
homologous to a PDB sequence, this method provided the identity of the homologous sequence and a
preliminary sequence alignment. When the target was supposedly not related to a sequence in the PDB, this

method was used for  fold recognition ¥ -- in some cases finding a sequence very distantly related to the
target sequence and providing a reasonable alignment. In both situations, the alignments were adjusted
manually by inspection of the PDB structure and the positions of insertions and deletions in the target-PDB
alignment provided by BLAST. In most cases, these insertions and deletions were already in loop regions and
looked quite reasonable. In a few cases, these occurred in regular secondary structure, usually in regions of
the alignment that were not highly conserved. The alignments were adjusted to move these insertion or
deletion into nearby loop regions. Once an alignment was obtained, we built the backbone by copying the
backbone coordinates for all residues from the PDB sequence aligned to any residue in the target sequence.
Sidechains were built with the program SCWRL (Bower M, Cohen F, & Dunbrack RL, J. Mol. Biol. 267,
1268 (1997)), keeping sidechain conformations of non-mutated residues, and using SCWRL to build all
mutated sidechains. Sidechain conformations were taken from the backbone-dependent rotamer library of
Dunbrack. The most recent version of SCWRL (2.1) achieves a prediction rate of 80% correct chil angles in
self-backbone tests on 316 proteins. SCWRL uses an energy function consisting of log probabilities from the
backbone-dependent rotamer library for the local backbone-sidechain interaction and a simple steric function
for non-local sidechain-backbone and sidechain-sidechain interactions. Given the approximate nature of the
backbone model for homologous targets, we did not refine or perform energy minimization on the sidechain
conformations predicted by SCWRL.




Predictor Assessment of Four de novo Tertiary Structure Predictions, Three Motif-
Assisted Tertiary Structure Models and Three Threading Alignments Generated
through Transparent Analysis of the Patterns of Evolutionary Divergence in
Homologous Sequences

Dietlind L. Gerloff, Gina M. Cannarozzi, Marcin Joachimiak, Fred E. Cohen, and Steven A. Benner

In a collaborative effort to explore the potential for predicting supersecondary/tertiary structure in the
transparent secondary structure prediction method developed by some of us [1], predictions were submitted
for ten CASP3 target proteins lacking significant overall sequence similarities with previously known protein
structures. Most importantly, using transparent approaches for secondary and supersecondary/tertiary
structure prediction allows us to rationalize why prediction mistakes occurred where they did, and to refine
our heuristics based on these insights.Target selection was based primarily on the availability of homologous
protein sequences in adequate numbers and evolutionary distributions for the particular problems and for the
approaches we chose to apply in each case. As such, we have divided our submissions in three groups,
reflecting the differences in starting information and, accordingly, the particular structural aspects we
attempted to predict. 1. De novo targets: T0043 HPPK, T0052 CN-V, T0063 IF5A, T0075 ETS-1. Because of
the absence of indications for known folds for these targets, predictions for T0043, T0063, and T0075 were
approached "ab initio", according to the guidelines described in [1]. Secondary structures were predicted
from manually refined multiple sequence aligments [2] based on periodicity in 'SURFACE', INTERIOR' and
'ACTIVE SITE' assignments through evolutionary sequence analysis heuristics. In general, plausible
supersecondary and tertiary structures were then predicted semi-systematically from indications regarding the
relative orientation of secondary structural elements, other indications (e.g. minimum connection lengths
between elements), and functional considerations. Where possible, we performed combinatorial analyses of
plausible topologies to predict low resolution tertiary structures. Encouraged by our CASP2-results for
Hsp90 (T0011) [3], we put particular emphasis on modeling the active site arrangement for T0043, a
pyrophosphokinase, based on a predicted mechanism. The active site model narrowed down the number of
preferred topologies to six (only one of which could be modeled for CASP due to time constraints). For non-
catalytic targets in this group models had to be based on known structures, with suspected similarities in
supersecondary structures, due to insufficient distance constraints. A prediction for T0052 was submitted as a
modeling excercise of a target lacking sufficient homologous sequences, mostly to reflect our prediction of
all-beta secondary structure based on an internal sequence repeat. 2. Targets with sequence motifs containing
structural information: T0054 VANX, T0074 EPS15, T0079 MARA. For these targets, the core folding
topologies could be conjectured, partially, based on the occurrence of PROSITE [4] or unlisted sequence
motifs/signatures including key functional and structural residues. While this information facilitated tertiary
structure prediction, subsignificant scores by publicly accessible fold recognition programs (see below)
indicated significant structural divergence between the target and possible fold templates (major
insertions/deletions, differences in orientation between the modules of bipartite structures, etc.). In our
submissions, we attempted to identify peculiarities in the multiple sequence alignments of the targets vs.
templates (e.g. conserved Gly positions). We interpreted our observations and predicted specific
structural/functional roles for the respective positions which were then used as the guiding constraints for our
coordinate models. 3. Targets with significant fold recognition matches according to publicly available
programs/servers: T0044 RTCA (first domain), T0O067 PBP, T0077 L30. For this group of targets, manual
threading alignments were submitted for fold templates suggested by the UCLA-DOE server [5] and
ProCyon [6] methods with high expected accuracy, with the goal to identify clues used by experts aligning
manually that could be explored systematically. In particular, we attempted to identify "anchor" positions
first, through evolutionary sequence analysis and functional considerations, where possible, and then adjusted
the remainder of the sequence-structure alignments based on SURFACE / INTERIOR / ACTIVE SITE
assignments [1]. [1] S. A. Benner, G. Cannarozzi, D. Gerloff, M. Turcotte and G. Chelvanayagam (1997).



Bona fide prediction of protein secondary structure using transparent analyses of multiple sequence
alignments. Chem. Rev. 97, 2725-2843. [2] G. H. Gonnet, T. F. Jenny, L. J. Knecht, C. Korostensky, M.
Hallett. URL: http://cbrg.inf.ethz.ch/ [3] D. L. Gerloff, F. E. Cohen, C. Korostensky, M. Turcotte, G. H.
Gonnet and S. A. Benner (1997). A predicted consensus structure for the N-terminal fragment of the heat
shock protein hsp90 family. Proteins 27, 450-458 [4] A. Bairoch. URL:
http://www.expasy.ch/sprot/prosite.html [5] D. Fischer, D. Rice, D. Eisenberg. URL: http://www.doe-
mbi.ucla.edu/frsvr/frsvr.html [6] M. Sippl, H. Floeckner. URL:
http://lore.came.sbg.ac.at/People/seb/snoopy.html

The information about sequence conservation, correlation and apolarity is sufficient for
recognizing incorrectly-folded protein models.

Osvaldo Olmea and Alfonso Valenci

Protein families are a rich source of information, sequence conservation and sequence correlation are two of
the main properties that can be derived from the analysis of multiple sequence alignments. Sequence
conservation is related to the direct evolutionary pressure to retain the chemical characteristics of some
positions in order to maintain a given function. Sequence correlation is attributed to the small sequence
adjustments needed to maintain protein stability against constant mutational drift. It is shown here that
conservation and correlation contain sufficient information to detect incorrectly-folded proteins in a
significant number of cases. Indeed, they seems to contain as much information as polarity, a property that
has been extensively used in this field. The combination of conservation, correlation and polarity leads to an
almost perfect discrimination of incorrectly-folded protein models.

Prediction of the structural interaction between different components of the DnaK
system and structural interpretation of the functional cycle.

Prediction of the structural interaction between different components of the DnaK system and structural
interpretation of the functional cycle. Florencio Pazos and Alfonso Valencia

The Hsc70 chaperon system is essential for protein re-folding and transport in cells. The action of Hsc70 is
well regulated by the presence of different effector proteins (DnaJ and GrpE in bacteria) and co-factors (ATP,
Mg++ and the refolded peptide). A considerable body of experimental evidence about the structure and
function of these proteins has been accumulated during the last years, including the 3D structure of the main
components. Still we are far away of fully understanding the mechanism of action and the structural and
functional relations between components and states. With the aid of methods for molecular docking based on
protein structures and different sources of sequence information (tree-determinants and correlated mutations),
we propose a physical model for the interaction of the main components of the system. The model explain
part of the functional cycle and leads to detailed predictions that can be further tested experimentally.



Simplified Flexible Geometry Model for Protein Folding

D.J. Osguthorpe

The Reduced Representation Model and Force Field Simplified Geometry Model The model involves
representing the backbone of each residue by one sphere, or 'atom’, and the sidechains by up to 3 'atoms'. The
side chains of Ala, Val, Ile, Ser, Thr and Pro are represented by 1 sphere, Leu, His, Asp, Glu, Asn, Gln, Cys
and Met by two spheres and Phe, Tyr, Trp, Lys and Arg by three spheres. The different number of spheres
reflects the anisotro- pic nature of the average shape of the corresponding side chains. It also enables
assigning different characteristics to parts of the side chain of a residue, for example, the side chain of Arg
includes a hydrophobic chain and a polar/charged end. Although in this representation many residues have
the same number of atoms, they do not lose their unique identity since they have different parameters.
Simplified Potentials The potentials required can be split into three major groups, the virtual internal
potentials which stabilise the geometry of the protein, secondary structure stabilisation potentials and the
global potentials, which deal with the effects of the environment but do not require the environment to be
modelled explicitly. The potential energy function for the model is defined as: E total = E Internal + E
Secondary Structure + E van der Waals + E Global Internal Potentials The values of the parameters were
derived by fitting observed distributions of the corresponding internals in experi- mental structures and by
emulating the energy surface calculated using a full atom model. The internal energy is defined in terms of
virtual bond, angles and torsions (or out of plane). A number of functional forms are used, the standard full-
atom model harmonic terms, quadratic functions and gaussian functions plus combinations of these terms.
Additionally an out of plane-virtual valence angle cross-term is defined. E Internal = E V. bond + E V. angle
+ E V. torsion + E V. oop + E V. oop X V. angle Virtual angle - virtual angle - virtual torsion angle (theta-
theta-phi) cross-terms are defined for dealing with correlations between the two internal valence angles of a
torsion angle in the backbone. These are particularly important for turn conforma- tions. Secondary structure
energy/Backbone Hydrogen bonding Potentials - 2 - With the simplified geometry model only C alpha atoms
exist for the backbone and yet backbone hydrogen bonding is very important in the stabilisation of the
standard secondary structures. How- ever, the standard secondary structures have a fixed and specific set of
distances between the C alpha atoms. Hence the basic approach was to determine the equilibrium distances
between C alpha atoms in 3-10, alpha-helices and parallel and anti-parallel beta-sheets and to use gaussian
functions to stabilise these dis- tances. E Secondary Structure = E Helix + E Sheet For the beta-sheets it was
also necessary to include some vector terms as well to ensure only when the two strands were aligned was the
potential strong. Further improvements were necessary to the sheet potentials after trial folding runs as it
became clear that additions were needed to remove conformations created that are never seen in real proteins.
It should be noted that in all cases the secondary structure potentials merely stablise distances that are found,
this is not a pre-imposition of secondary structure. Indeed the beta-sheet potentials do a full search of all
residue pairs to find any that are close enough to form sheets in each energy calculation. Secondary structure
prediction energy This is a new term added since CASP2 to account for the observa- tion that certain residues
prefer a particular secondary struc- ture which is not accounted for by simple side chain interac- tions, e.g.
the significant preference of Ala for helix (possi- bly caused by side-chain entropy). Ala, Lys, Arg, Glu, Gln,
Leu and Met are assigned a helix preference, while Val, Ile, Thr, His, Phe, Tyr, Trp and Cys are assigned a
strand preference. An overall preference for any residue has been added by stabilising virtual torsions and
angles using i-i+2, i+1-i+3, and i-i+3 dis- tances and gaussian functions for both the helical and strand
conformations. As individual residue conformations only affect the virtual valence angle, the overall
preference is specifically increased only for contiguous pairs of residues which both prefer the helical
conformation or both prefer the strand conformation. That is, the two central C alphas of a backbone virtual



torsion must both prefer the helical or strand conformation to increase the secondary structure prediction
potential of the virtual tor- sion. E Secondary Structure Prediction = E Turn + E Strand Global/Solvation
Potentials The remaining potentials are used to represent the non-bonded interactions of the residues with
each other and the interactions with solvent. The fundamental idea behind the solvation poten- tials was to
use fast approximations to the physical forces involved in real protein structures. Also, as molecular
dynamics was seen as one of the primary tools to be used in the - 3 - parameterisation procedure and for first
attempts at protein folding the potentials had to have analytical derivatives for speed. Physical Model
Solvation Potentials. In this potential model the physical forces of solvation were included using simple
potential models. The main idea was that most protein atoms should not have an attractive interaction with
other protein atoms, reflecting the fact that the real interac- tions with protein atoms would be replaced by
solvent interac- tions if the atom became exposed, hence its overall energy would not change depending on
whether it was buried or exposed. How- ever, the atoms should still have excluded volume so a repulsion
potential is required at short distances. Just removing the dispersion term from the Lennard-Jones is not good
enough as the repulsion component is well above 0 at the minimum of the origi- nal Lennard-Jones potential.
What is required is a potential which is zero at the Lennard-Jones minimum and which increases to fit the
original Lennard-Jones repulsion as the distance between atoms decreases. In order to achieve this a very
high power repulsion is required using the same form as the Lennard-Jones repulsion component, currently a
30th power is being used. Addi- tionally an offset is subtracted from the distance between atoms to increase
the repulsion. This potential is used for most atoms, in particular the C alpha backbone atoms and any atom
which does not have a specific Lennard-Jones potential. E van der Waals = E Lennard-Jones repulsion only
Physical Model Solvation Potentials - Hydrophobicity The next effect to consider is the "hydrophobic" effect.
I con- sider this to be associated with two parts, the Van der Waal's potential between atoms (which is
attractive) and effects due to the interactions with water. When side-chains are buried in the hydrophobic core
of a protein the only interactions available are the standard Van der Waal's interactions, as there is no water
present. Hence side-chain atoms of hydrophobic groups were given a standard Lennard-Jones potential with
an initial energy assign- ment for interactions between the same atom close to the enthalpy of vapourisation
of the most similar hydrocarbon. This would reproduce the energy of the hydrophobic core when
hydrophobic side-chains are buried. This determined the potential between the same side-chain atom types.
Interactions between dissimilar side-chain atom types were then considered. Analysis of the distribution of
side-chain atoms around an atom in known protein structures showed to a first approximation little difference
in preference between the atoms. This distribution is not that which is created by rules such as the geometric
mean rules. A function was created which would give such as a distribution and this was used to generate the
mixed terms for the Lennard-Jones parameters of hydrophobic side chain atoms. - 4 - Having accounted for
the potential of hydrophobic side-chains when buried and away from water, a potential for hydrophobic
atoms when exposed to water is required. It is only this term which I consider to be truly the "hydrophobic"
part, in the sense it reflects the effect of hydrophobic groups on water structure. This was done by introducing
a hydrophobic sigmoid potential. (The initial folding work of Levitt had used a sigmoid potential for
hydrophobic residues.) In this type of potential the dis- tances from one atom to all other atoms of the same
type are com- puted and converted through some form of sigmoid function before being summed to give the
potential value for the atom. A final adjustment to the "hydrophobicity" potential was to give certain groups
in residues not normally considered hydrophobic a non-zero Lennard-Jones function so that an interaction
existed between them and hydrophobic groups. These groups were not included in the sigmoid potential.
Such groups were the Ala C beta, the Thr C beta (because of the methyl group), the C beta of the charged
amino-acids Asp, Glu, Lys and Arg and Asn and Gln. It also included the C gamma atom of Lys and Arg.
Observations of experimental structures and surface accessibility calculations show that these groups are as
buried as any of the atoms in the classic hydrophobic side-chains. E Global = E van der Waals + E
hydrophobic sigmoid Physical Model Solvation Potentials - Electrostatics The Kirkwood-Tanford model
assumes a spherical "protein" which has a low dielectric constant in an environment with a high dielectric
constant plus ionic effects, in which point charges are embedded and the paper gives full formulae for the
calcula- tion of the electrostatic energy, including self energy. Using model calculations based on these
formulae if the charges are exactly on the boundary between the high and low dielectric region, the
coulombic interactions between atoms to a very good approximation are given by the standard formula with
the dielec- tric constant of the high dielectric region. Hence the first approximation used is to ignore buried



salt bridges and consider all charged atomic groups of charged residues to be on the "sur- face" of the protein
and hence the simple coulomb law could be used. To take into account of ionic strength effects, which are
assumed to have an affect at large distances between charges but not at short range (as the Debye-Huckel
theory on which this aspect is based assumes an averaged ionic atmosphere around each charge which is
certainly not true for charges on the surface of a protein), a combined coulomb law based on two distance
powers and dielectrics was used, the standard distance (power one) and a distance cubed term. The other
feature of electrostatics that needs to be covered is the difficulty of burying charges. It is actually a much
stronger rule of proteins that the charged group of charged resi- dues is exposed than that the sidechains of
hydrophobic residues are buried. Charged groups are only buried if in a salt bridge or extensively hydrogen
bonded. The simple electrostatic - 5 - explanation for this is the self-energy of a charge which says it requires
a lot of energy to move a charge from a high dielectric region into a low dielectric region. An inverse sigmoid
function based on distances between all charge centres of like charge type and residue type. This poten- tial
gets larger as atoms get closer together, hence preventing charged groups from being buried. As there is a big
difference in surface accessibility between the 4 charged residues, Lys, Glu, Asp, and Arg independent
potentials are used for Lys, Asp/Glu and Arg. The Lysine charged end point is the most sol- vent exposed
group of proteins, with an average relative surface accessible area of greater than 50%. Glu is next followed
by Asp, both in the 45% region, and Arg is the least exposed at around 35%. This is what you would expect
based on charge den- sity considerations, the self energy being much greater for a charge field which small
and highly charged. The amine group of Lysine is the smallest charged group, with only one heavy atom, the
carboxyl spreads the charge further while the guanidinium group charge is spread over a very large area (four
heavy atoms). To create a dielectric boundary this inverse sigmoid function is divided by a fixed radius and
taken to an arbitrary power. Note that at the fixed radius the value of these terms is one. E Global = E
Electrostatic + E inverse charge sigmoid Physical Model Solvation Potentials - Scaling In the low dielectric
environment of the folded protein the sta- bility of the backbone-backbone hydrogen bonds is significantly
enhanced as these hydrogen bonds are excluded from solvent and a hydrogen bond is essentially an
electrostatic interaction. In the unfolded protein the stability of backbone-backbone hydrogen bonds is likely
to be similar to that of backbone-water hydrogen bonds, hence there should be no energy stabilising
backbone hydrogen bonds. This effect has been included by scaling the backbone hydrogen bond energy term
(E Helix and E Sheet) accord- ing to some radius of gyration of the protein, on the assumption that a large
radius of gyration indicates an unfolded protein. The radius of hydrophobic gyration was used to measure
how far the protein had created a low-dielectric hydrophobic core. The same scaling factor was also used to
scale the "self-energy" term, the inverse charge sigmoid, as again charges would only not like to be buried
when the hydrophobic core of the protein had been formed. Folding Simulations - Simulated Annealing
procedure The starting conformation was an all-extended structure using a rigid geometry procedure based on
a standard geometry for the RR model. A random Maxwell-Boltzmann distribution was used - 6 - to assign
initial velocities. The initial temperature was set such the average temperature initially was around 340-350K.
84000x5 steps were run before starting cooling. The annealing protocol was first to reduce the total energy by
the energy equivalent to 25 degrees of temperature in 84000 steps followed by 84000x4 steps at constant
total energy. This was repeated three times. Then the energy was reduced by 12.5K in 84000 fol- lowed by
84000x4 steps at constant total energy, repeated 15 times. Final annealing was by 12.5K in 84000 steps
repeated 10 times.




Toward Automatic Methods for Identification of Structural Similarities

Michael B. Bass and Roland L?hy

The process of rapid structural classification of unknown coding sequences is important for identifying novel
sequences which might be candidates for development as therapeutics. We describe here a protein threading
method using statistical potentials to classify sequences into structural families by comparison to a unique
subset of PDB structural database. AmgenThread is a sequence-structure comparison program based on the
Needleman-Wunsch algorithm. Global alignments without end penalties are used. The comparisons to known
structures are made through the use of three statistical (log-odds) potentials based on surface exposure,
pairwise contacts, and Phi-Psi dihedral angle propensities. All statistical potentials are derived from a
collection of PDB structures which share less than 35% sequence identity (Hobohm and Sander). The surface
exposure term is calculated from the relative surface exposure as compared to Gly-X-Gly using the method
of Ponder and Richards. Pairwise contacts are determined by the closest sidechain atom distance between
two residues which are separated by at least 5 residues in the primary sequence. The distances are collected

into 0.5 ?bins for the statistical sampling. The dihedral angle term was determined using 18 # bins in each
angle. In the comparison to the structural database, a set of unique protein structures sharing less than 45%
sequence identity was used (Hobohm and Sander). A second comparison database composed of domains
derived from this structural database was also used. Alignment scores were normalized by dividing by the
length of the longer of the two sequences. If the Z-score was greater than 5, a successful prediction was
reported. If the Z-score was less than 5, a further examination was done to see if the target sequence could be
divided into domains which would yield an acceptable Z-score.

Multiple features approach to protein fold recognition.

Krzysztof A. Olszewski

Secondary structure enhanced sequence similarity scoring based fold recognition [Fischer and Eisenberg,
1996] has been demonstrated to be very effective in CASP2 experiment either in combination with other
methods [Rice et al., 1997] or alone (in post CASP2 experiment) [Olszewski et al., 1998]. The approach was
proven to be successful on the verge of the twilight zone of protein similarity but become more difficult when
the homology between the target and the available fold dropped below 12% (as measured by the average
percent identity). Interestingly, very often the correct answer is obscured by a few false positive hits,
appearing because the scoring system is not selective enough. The possible way to deal with this problem is
to use different scoring functions with the goal to discern false positives. In this experiment, the novel
approach has been proposed based on rescoring high scoring hits obtained with primary scoring function,



with secondary scores derived from the alignment features descriptors. In this approach sequence similarity
score enhanced with predicted secondary structure is used to obtain initial order and alignments of putative
hits. Then for alignments obtained in the previous step, their characteristic features like gapped and gapless
alignment length coverage, gapped and gapless percent identity, mean gapples score per residue, etc. are
calculated. It has been shown [Olszewski, in prep.] that such features can be defined as intensive properties
(i.e. they do not depend on the length of the alignment), which facilitates statistical analysis of each property
with respect to the random alignment model. It also allows to directly compare alignments with drastically
different alignment length. For each property, its z-score is calculated, using two models: all alignments
model and equal alignments model. E.g. average percent identity relative to the gapples alignment length has
been found to be very sensitive for the remote homology in the twilight zone. This property must, however,
be accompanied by the high gapples alignment coverage of the hit to be significant. Such concurrent analysis
of alignment scores and z-scores is conducted by constructing a series of scattered plots in the application
that offer a possibility to track down the location of inherited annotations. The analysis outlined above has
been performed for all CASP3 targets with a nontrivial sequence homology to sequences with known
structures and predictions for most of them have been submitted. Fischer D. and Eisenberg D., Prot. Sci., 5,
947 (1996) Olszewski K.A., Edwards, D. and Yan L., Theor. Chem. Acc. in press (1998) Rice D.W., Fischer
D., Weiss R. and Eisenberg D., Proteins, Suppl.1, 113 (1997)

Neural Network Assignment of Protein Secondary Structure with Increased
Predictability

Claus A. Andersen, Soeren Brunak

A large data set of 707 non-homologous protein chains has been analyzed, mainly with respect to the
mapping between secondary structure and amino acid sequence. It is shown that the commonly used
assignment scheme DSSP performs a sub-optimal capping assignment with respect to the sequence signals.
In contrast to other schemes DSSP has an excess of length four $\alpha$-helix assignments. This is shown
not to have a structural basis with regard to the C$_{\alpha}$-coordinates or the $\phi$/$\psi\mbox{-angles}
$. The main factors to achieve a high secondary structure prediction performance from the amino acid
sequence have been identified as the use of evolutionary information in the form of sequence profiles and the
selection of predictable categories. Evaluating predictors from their total percentage performance is argued to
be sub-optimal, since this measure favors over-prediction of the largest structural class \textit{i.e.}\ coil. In
order to improve secondary structure prediction a novel approach is put forward, where new assignments are
evaluated by their predictability from the amino acid sequence. These new assignment algorithms are
constructed by training neural networks to predict the DSSP assignments from the 3-dimensional structural
data. Two representations of the structural data have been tested as inputs to the neural network, which has
shown that an assignment based on the C$_{\alpha}$-coordinates is more predictable than one based on the
$\phi$/$\psi\mbox{-angles}$. By evaluating the neural network assignments on their predictability the best
network configuration is selected. This new assignment is more predictable than that of DSSP tested on the
707 protein chain data set. The prediction performance increases to $Q_3/{tot}=\,$68\%, $C_{\alpha}=\,
$0.55, $C_{\beta}=\,$0.42, and $C_{coil}=\,$0.49 in a ten-fold cross-validation, without the use of
evolutionary sequence profiles or structure-to-structure postprocessing. Through an inspection of a neural
network without hidden neurons and its assignment, it is found that 85\% of DSSP's $\alpha\mbox{-helix}$,
$\beta\mbox{-sheet}$ and coil classifications can be learnt by a network performing a linear separation of
the C$_{\alpha}$-coordinates from small windows of local sequence segments. A test of the neural network
assignment's predictability, on the 126 protein Rost and Sander data set, using evolutionary sequence profiles



and a simple multi-level setup, increases the correlation coefficients with respect to other predictors:
$Q_3M{tot}=73.5\%3$, $C_{\alpha}=0.66$, $C_{\beta}=0.51%, and $C_{coil}=0.52% in a seven-fold cross-
validation. The improvement is mainly due to the exclusion of 3$_{10}\mbox{-helices}$ from the helix
class, but further improvements are outlined by using several sets of neural network assignments.
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Homology modeling for target 47

zhen wang

METHOD Comparative modeling was used to predict the structure of T0047. A METHOD database search
identified that t0047 belongs to the lipocalin family. METHOD All the proteins in this family have eight
stranded antiparallel METHOD beta_barrel structures. They bind small hydrophobic molecules. METHOD
1mup was selected as the template. T0047 has 64% identities and 78% METHOD similarity with 1mup.
METHOD The method of mainchain building: Because of the large number of METHOD identities, the
mainchain conformation of 1mup was used throughout. METHOD Method of sidechain building: Minimum
perturbation (MP) method METHOD implemented by the program MUTATE was used to generate initial
METHOD sidechains for all the residues. The MP method preserved the METHOD same Chi angles for the
t0047 from 1mup. METHOD Graph method ( Samudrala and Moult, JMB, 1998, 279, METHOD 287-302)
was then used to refine the sidechain conformations. METHOD Computing limitations made it necessary to
treat no more than METHOD about 12 residues at a time. Therefore, the structure was METHOD divided
into 20 groups, each group containing 6 to 12 residues. METHOD The sidechain conformations in each
group were optimized by the METHOD graph method against the background of the current model. Up to
METHOD 6 sidechain conformations were selected per residue ( Samudrala METHOD and Moult, Protein
Engineering, in press). The 100 best scoring METHOD cliques were selected and reevaluated with the
knowledge-based METHOD potential (Samudrala and Moult, JMB, 1998, 275, 895-916). The METHOD
conformation from the best scoring clique was then incorporated METHOD into the model. METHOD Use
was also made with the published picture of the ligand binding METHOD cavity (Bocskei and Colin, etc.
Nature, 1992, 360(12):186-189). METHOD One sidechain (residue 60) was adjusted to fit the picture, rather
METHOD than accepting the generated conformation. METHOD The model was checked by using
PROCHECK, cavity inspection METHOD using QUANTA and a check for large unfavorable electrostatic
METHOD interactions (Toner-Oliva and Moult, submitted). Sidechains with METHOD a large amount of
exposure hydrophobic areas were also inspected. METHOD As a result of these checks, a few sidechains
were adjusted by METHOD hand.

All-Atom Threading Models

Levitt,Samudrala with Xia,Brenner

The method used for the submissions by the Levitt group (7936-3040-4355) for the fourteen targets, T0048,
T0055, T0O057, T0062, TO064, TO065, T0068, TO069, TO070, TO074, T0076, TO079, TO082, and T0O085, is as
follows: (1) Find a putative template sequence of known structure for each query sequence by a combination
of three methods: (a) A FASTA search against the sequence file from the currect set of PDB coordinates
(ftp://pdb.pdb.bnl.gov/pub/pdb_seqres.txt). (b) A PSI-BLAST search invoving a database of 267000 non-



redundant protein sequences to make profiles, followed by a search of these templates against the pdb
sequences. (¢) An intermediate sequence FASTA search using a sequence data base of 250,000 non-redundant
protein sequences and the scop 1.37 super- family of possible templates. In general, the most useful method
was the simplest, a FASTA search against the latest sequences from all the pdb files. (2) Choose a template
PDB file. This was done by aligning all members of the scop superfamily that contained the putative template
match. This multiple sequence alignment was done using Gotoh's PRRP method (Gotoh, 1996). We used the
Blosum50 matrix but otherwise all parameters were the default values. (3) Add the observed secondary
structure for the structured sequences and the predicted secondary structure for the query to the multiple
alignment. Use Eric Sonnhammer's Belvu program (Sonnhammer 1998) to view the alignment. Delete
unwanted alignments. Choose a final template sequence and the alignment of the query to it. In a few cases
this alignment was hand-edited to ensure that deletion occured across loops (4) Use a Monte Carlo
perturbation algorithm to generate approximately 1000 different alignments. Use SegMod (Levitt, 1992) and
Encad (Levitt et al. 1996) to build all atom models for each of these alignment. In a few cases, models were
built from different templates. (5) Rank these models using the Samudrala & Moult (1998) scoring function.
The submitted entries included models built from the initial un- perturbed alignment as well as four models
from perturbed alignments with the most favorable scores. In all case, models built from the perturbed
alignments had better scores than the models built from the initial alignment. Gotoh O. Significant
Improvement In Accuracy Of Multiple Protein Sequence Alignments By Iterative Refinement As Assessed
By Reference To Structural Alignments. J Mol Biol. 264:823-838 (1996). Levitt, M. Accurate Modelling of
Protein Conformation by Automatic Segment Matching. J. Mol. Biol. 226, 507-533 (1992). Levitt, M., M.
Hirshberg, R. Sharon and V. Daggett. Potential Energy Function and Parameters for Simulations of the
Molecular Dynamics of Proteins and Nucleic Acids in Solution. Computer Physics Communications, 91,
215-231 (1995). Samudrala, R, and J. Moult. An all-atom distance-dependent conditional probability
discriminatory function for protein structure prediction. J. Mol. Biol. 275, 893-914 (1998). Erik
Sonnhammer. Belvu. http://www.sanger.ac.uk/Software/Pfam/help/belvu_setup.shtml (1998).

Prediction of secondary protein structure and fold recognition using nearest-neighbor
approach

Victor Solovyev and Asaf Salamov

To predict secondary structure of the presented targets we have used our new nearest-neighbor approach
(SSPAL) shortly described in (Salamov,Solovyev,1997). This approach is different from the NNSSP method
(Salamov,Solovyev,1995), which was among the top four methods of secondary structure prediction on the
previous Asilomar meeting (Lesk,1998). To select neighbors the new approach uses local alignments instead
of fixed length segments. For scoring an aligned position of the query sequence with the position of database
sequence the hybrid scoring system was used. It combines the local environment score (Bovie et al,1991;
Salamov, Solovyev,1995) with the score provided by sequence similarity matrix of Gonnet and colleagues
(1992). We compute 50 best non-intersecting local alignments of the query sequence with each sequence
from a set of proteins with known 3D structures. Each position of the query sequence is aligned with the
database amino acids in a-helical, b-strand or coil states. The prediction type of secondary structure is
selected as the type of aligned position with the maximal total score. Additionally the Blastp (Altschul et
al.,1997) search in OWL nonredundant protein sequence database (Bleasby and Wootton, 1990) was applied
to get multiple alignment of proteins similar with the target sequence. The multiple sequence alignment has
been used as input of the method for secondary structure prediction. Prediction of secondary structure by the
SSPAL method is available via Baylor College of Medicine and The Sanger Centre Computational Genomic



Group Web servers (http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.html or
http://genomic.sanger.ac.uk/). Using combination of three potentials including local environment score,
similaruty of secondary structure predicted by SSPAL and the secondary structure of database protein and
mutation matrix score we predict fold selecting the protein with the best combined alignment score from the
database of about 1000 known folds. We have presented to CASP3 secondary structure prediction for all
given targets as well as fold prediction for all target except the last seven (according the expiration date).
References: Altschul S. F. et al.(1997) Nucl. Acids Res., 25: 3389 - 3402. Bowie, J.U., Luthy, R., Eisenberg,
D. (1991) Science 253:164- 170. Bleasby, A.J. and Wootton, J.C. (1990) Prot. Engng. 3(3):153-9. Gonnet,
G.H., Cohen, M.A., Benner, S.A. (1992) Science 256: 1433-1445. Lesk A. (1987) Proteins, Suppl.1, 151-166.
Salamov A., Solovyev V.(1997) J.Mol. Biol., 268, n 1, 1997, 31-36. Salamov A., Solovyev V.(1995) J.Mol.
Biol., 247, n 1, 1997, 11-15.

CASP4: CACASP or CAFASP?

daniel fischer

CASP4: CACASP or CAFASP? As a complement to the enormous value of this event, here I propose to
discuss the differences between the Critical Assessment of COMPUTER AIDED Structure Prediction
(CACASP) and the Critical Assessment of FULLY AUTOMATED Structure Prediction (CAFASP). In the
current recipee of CASP, predictors submit their predictions using whatever techniques they choose; some
report the exact results of fully automated methods without any changes; some "edit" the results from the
programs and create a "computer aided" + human prediction; and some use mostly their brains with little aid
from computers. Thus, the current recipee is assessing the performance of humans and does not allow for the
strict assessment of the methods themselves. The latter is what ultimately non-expert users are interested in.
Predictions in which human intervention has played a role can not always be objectively assessed, and in
most cases, they are hard, if not impossible to reproduce by others. The value of the current critical
assessment is thus not fully exploited. What I propose is to take advantage of the invaluable framework
provided by CASP4 and run in parallel a CAFASP evaluation. To this end, for each target in the fold
recognition track, results of fully automated programs and servers need to be compiled and made available
thru the web to all, and when the structures are released, an assessment of the methods used will be carried
out and published in the web. This would make the "cacasp" section more interesting, because the automatic
results will be available to all, and individuals using this information coupled with their newer, not yet
available methods will be able to demonstrate their judgement beyond what can be obtained with current
automatic methods. A similar "cafasp" section has already been done in casp3 for secondary structure
prediction. In addition to the value of assessing fully automated methods, cafasp may encourage the
developers of fold recognition methods to automate them and made them available to the community, which
ultimately is the goal of science. Programs and servers willing to participate in cafasp4 are invited to help the
planning.




Are predicted structures good enough to preserve functional sites?

Liping Wei, Enoch S. Huang, & Russ B. Altman

The quality of predicted structures are currently gauged primarily with numerical metrics that judge the
quality of alignments and root-mean-squared deviation (RMSD) relative to the native structure. However, a
principal goal of structure prediction is the elucidation of function. We have studied the ability of computed
models to preserve the microenvironments of functional sites. In particular, we analyzed 653 model
structures (generated using an ab initio folding protocol) of a calcium binding protein, and assessed the
degree to which calcium binding sites were recognizable. We found that, while some model structures
preserve the calcium binding microenvironments, many others, including some with low RMSD, do not.
There is very weak correlation between the overall RMSD of a structure and the preservation of calcium
binding sites. Only when the quality of the model structure is high (local RMSD less than 2 Angstroms) does
the modeling of the binding sites become reliable. We conclude that protein structure prediction methods
need to be assessed in terms of their preservation of functional sites. For detailed analysis such as the precise
localization of functional sites, which is important in protein design, high-resolution structures at the
accuracy of 1-2 ?are required. The correct modeling of loop regions and side chain atoms is critical.

Protein modeling by homology augmented by ab initio and energy-based methods

G. Raghunathan, M.D. Shenderovich, M. Prabhakaran, M.J. Dudek, C.L. Fisher, J. Zheng, J. Kottalam,
B. Vessal and K. Ramnarayan

We have used a combination of both heuristic methods that rely on our knowledge of protein structure and
folding, as well as objective and automated criteria in order to build and evaluate structures. We predicted
structures for 6 entries in CASP3. Experimental results for one of the structures has been withheld by
organizers. RMS deviations between predicted and experimental backbone coordinates for 4 out of 5
predicted structures are 1.4, 1.5, 1.9 and 2.6 A. Sequence alignment and secondary structure prediction are
used to select protein family and fold to which the given sequence might belong. Functionally important
residues are aligned using multiple sequence alignment methods. Models consistent with alignment are
constructed. A suite of quality control methods are used to check for, among other things, packing, solvent
accessibility, local strain in structures and alternate placement of loops using a loop-building procedure.
Stereochemical permissibility of structures is evaluated using the PROCHECK program, and energy-based
methods are used to improve their quality. A comparison of the experimental and predicted structures is
discussed along with specific modeling, refinement and quality control aspects that we use in protein
modeling.




Selecting sequence to structure alignment by model building

Ceslovas Venclovas, Krzysztof Ginalski and Krzysztof Fidelis

Molecular models for four target proteins (T0047, T0048, T0055 and T0070) were built using related
structures as templates. These targets and their closest by sequence structural relatives had sequence identity
of 62%, 27%, 24% and 19% respectively. The modeling method was based on the idea that the correctness of
sequence to structure alignment is critical to the quality of the model while other steps such as loop building
and/or energy minimization can at present contribute little if anything. Multiple sequence alignments were
used to identify regions where alternative alignment choices were possible. Variants suggested by aligning
multiple sequences with a number of different gap opening/extension penalties were used to build test
models. For apparently structurally conserved regions where no reliable automatic alignment could be
generated, a combination of secondary structure prediction and manual alignment was used. The final
sequence to structure alignment was selected after testing all relevant alignments by building 3D models and
evaluating their consistency with the parent structure. Models were built using Homology module of InsightII
(MSI Inc.). For structurally conserved regions backbone conformation was preserved and only the side
chains were substituted. Modeling of loops was skipped for most models built to test a particular alignment.
Loop conformations for the final models were selected from database of protein structures. After the
coordinates were assigned to the target sequence, rotamers were rebuilt using backbone dependent rotamer
library [1]. To preserve conserved contacts some rotamers were set back manually. Besides visual inspection,
structural consistency of the models was evaluated both for general fitness as well as for structural details
using mainly Prosall [2] and Whatcheck [3]. Final models were subjected to 100 or less steps of steepest
descent minimization using InsightII Discover to remove remaining steric clashes. References: 1. Bower
M.J., Cohen F.E., Dunbrack R.L. Jr. Prediction of protein side-chain rotamers from a backbone-dependent
rotamer library: a new homology modeling tool. J.M.B., 1997, 267(5):1268-1282. 2. Sippl M.J. Recognition
of errors in 3-dimensional structures of proteins. PROTEINS, 1993, 17(4):355-362. 3. Hooft R.W., Vriend
G., Sander C; Abola E.E. Errors in protein structures. Nature, 1996, 381(6580):272.

Protein Structure Prediction using a Combination of Sequence and Structure Similarity
Search Techniques

Kristin K Koretke, Richard Copley, Robert Russell, and Andrei N Lupas

Each prediction was started with a PSI-BLAST search against the nonredundant database to identify
homologous sequences. The default parameters, including the BLOSSUMG62 similarity matrix with gap
penalties of 11 to open a gap and 1 to extend and an E-value threshold of 0.001 for inclusion in successive
iterations, were used for every run. Sequences with an E value of 1.0e-03 or less were imported into
MACAW A multiple sequence alignment was constructed within MACAW using pairwise segment overlap
and Gibbs sampling with the BLOSSUMS62 similarity matrix. This alignment was used to create an HMM
profile, and HMMer was used to search the PDB database for distant homologs. The multiple sequence
alignment was also used to obtain a secondary structure prediction. In instances where our alignments
differed from the default alignment found on the JPRED server, a JPRED prediction was performed,



otherwise we simply used that provided Once we had both a multiple sequence alignment and a secondary
structure prediction, we examined the data for any notable sequence or structural motifs. We then explored
the output from our PSI-BLAST and HMMer searches to identify any significant hit having a crystal
structure. For the cases in which the PSI-BLAST and/or HMMer searches did not generate a possible fold
within the significant hits, we probed the trailing ends of the PSI-BLAST output (E-values between 0.1 and
10.0) for sequences with very distant homology but conservation of important motifs. If a sequence looked
promising, it was used as a query sequence for a PSI-BLAST search against the non-redundant database. A
similar protocol of generating a multiple sequence alignment, HMM, and secondary structure prediction was
applied to the results of this search. If we could not find any promising leads within the trailing ends of our
PSI-BLAST searches, we examined the multiple sequence alignments for significant patterns. Any promising
patterns were used as input to the GCG Findpatterns program. If this search method did not yield a hit to a
sequence with a known function, we submitted the secondary structure prediction from JPRED as input to the
MAP program. If we could not resolve an answer from the MAP output, we conducted visual inspections of
the SCOP database looking for folds that would fit the secondary structure prediction. If these searches
yielded nothing, we predicted 'novel fold'. We used biochemical information identified through MEDLINE
searches where available. The target proteins predicted using sequence search methods were aligned to the
template with MACAW (and thus aided by the multiple sequence alignments that had been generated
previously) or HMMer. The target proteins predicted using MAP were aligned to the template initially either
according to an alignment from HMMer, or by using the default alignment from MAP. The proteins predicted
by visual inspection of the SCOP database were aligned to the template by overlaying of conserved
hydrophobic residues. All alignments were adjusted manually around the gap regions based on their location
within the scaffold, and additionally if automated alignments appeared to be incorrect.
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