3D-JIGSAW (serv) - 65 models for 64 3D targets
In Silico protein recombination

M.N. Offman, S. Wanka, B. Contreras-Moreira*, P.W. Fitzjohn

and P.A. Bates
Cancer Research UK London Research Institute
paul.bates@cancer.org.uk

Our overall strategy is to enhance protein modelling by considering ensembles
of initial models generated from a number of different templates, alignments,
scoring functions and algorithms. Our central program module for achieving
this is called ‘In Silico Protein Recombination’ and is based upon a genetic
algorithm.

Our methodology is similar for the prediction categories, Comparative
Modelling (CM) and Fold Recognition (FR). We have not specifically
developed a method for the New Fold (NF) category. Models were collected
for most targets from our two fully automatic servers, 3D-JIGSAW-server and
3D-JIGSAW-recomb.  Models for all targets for which some human
intervention was used were also submitted.

Most methods for one of our servers, 3D-JIGSAW-server, have been described
previously'. However, the FR module has not been described and can only be
briefly outlined here, see below. Methods for our second server, 3D-JIGSAW-
recomb, have also been described? but there has been some development since
CASP5?, see below.

For all target sequences, and for all methods, the first step is to generate a
Position Specific Scoring Matrix (PSSM) and Predicted Secondary Structure
(PSS) file. The PSSMs are calculated by PSI-BLAST®, with five iterations
against the nr sequence database (http://www.ncbi.nlm.nih.gov). Each PSS was
calculated with PSI-PRED® by using the appropriate PSSM described above.
These files are then used to score and rank alignments against a library of
template PSSM and PSS files for all structural homologues, in the case of
potential CM targets, and against a library based on nonredundant PSSM and
PSS files (< 30% sequence identity) for potential FR/NF targets. All alignments
are generated using the dynamic programming algorithm.

For our FR module seven different functions were used to populate each
dynamic programming matrix, these are based upon different PSSM/PSS log-
odd mixing ratios — each alignment generated therefore depends upon both
target and template PSSM/PSS weighting. For our automatic server, 3D-
JIGSAW-server, only the best-ranked alignment is considered further.

For the automatic server, 3D-JIGSAW-recomb, and for all manual submissions,
models are constructed with our core 3D-JIGSAW programs using a number of
potential templates, plus, alternative alignments to those templates. These are
subsequently fed into our genetic recombination algorithm. The steps for this
are:
create initial population of models

(1) grow population: r recombination + (1-r) mutation

(2) select best proportion according to fitness

(3) converged? stop: otherwise back to (1)

There are some differences in the algorithm compared to that used in CASP5 -
new side-chains in every mutation event (1-r) are generated with program
SCWRL® and recombination events, r, are allowed outside predicted secondary
structure elements.

Sometimes, for models involving manual intervention, full three-dimensional
models were taken from the CAFASP4 web site and used in the recombination
process along with our own models. However, an identical model, to that
downloaded from a different server to our own, was never submitted.
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* Did not take part in protein structure prediction for CASP6

Accelrys - 27 models for 16 3D / 1 FN targets

Homology modeling using a suite of algorithms in Discovery
Studio Modeling and Insight II
T. Yeh, J. Fisher-Shaulsky, J. Nauss, Y. Chen,
D. Singh, and D. Haley-Vicente

Accelrys Inc., 9685 Scranton Rd., San Diego, CA 92121
dhv@accelrys.com

A plethora of methodologies have been utilized for CASP6 homology model
predictions.  For ~20 targets within T0196 through T0282, we determined
protein models based on a combination of template searching, alignment
adjustment, homology modeling, and model refinement and evaluation
algorithms available in Discovery Studio® (DS) Modeling and Insight II®
modeling and simulations packages (Accelrys, Inc)*2.

As part of DS Modeling, an automated, high-throughput functional annotation
pipeline program called DS GeneAtlas® was used to predict the majority of
templates and provide initial alignments and models for each target. The DS
GeneAtlas pipeline incorporates sequence similarity detection (e.g. PSI-
BLAST), domain analysis (e.g. PFAM), homology modeling (e.g. MODELER),
model evaluation (e.g. Profiles-3D), fold recognition (e.g. SeqFold), and 3D
active site annotation (e.g. CSC* 3D-motif searching) methods. DS GeneAtlas
uses a Psi-Blast protocol that combines both direct and reverse search in the
profiles space, thus capable of enhancing the homology detection between the
query and the template sequences. Using the initial information from DS
GeneAtlas, these CASP6 target models were further optimized and evaluated.
For a few of the targets, template searching was performed using BLAST, PSI-
BLAST and SeqFold. After the template was identified, alignments were
adjusted manually or regenerated using Align123 or Align2D (in MODELER).
Next, alignments were used for homology modeling using MODELER. These
models were then refined (loops and side-chains) using MODELER
(Refine_Loop) and Discover. Finally, the models were evaluated using

Profiles-3D, MODELER  (probably  density  function  values),
Prostat/Struct_Check, and Decipher.

Using the CASP6 targets as query sequences, we demonstrate that DS
GeneAtlas detects additional relationships, via its high-throughput modeling
component, in comparison with the sequence searching method PSI-BLAST
only. Furthermore, functionally related proteins with sequence identity below
the twilight zone can be recognized correctly. By using a combination of
alignment, refinement and evaluation techniques, the best results were achieved
for the models.

1. Discovery Studio Modeling
(http://www.accelrys.com/dstudio/ds_modeling/) Accelrys Inc.

2. Insight II (http://www.accelrys.com/insight/) Accelrys Inc.

3. Kitson et al. (2002) Functional annotation of proteomic sequences based on
consensus of sequence and structural analysis. Briefings in Bioinformatics
3, 1-13.

4. Milik, et al. (2003) Common Structural Cliques: a tool for protein structure
and function analysis. Protein Engineering 16, 1-10.

Advanced-Onizuka - 275 models for 64 3D targets
Fold selection and the SA (GA)-based structure optimization

Kentaro Onizuka
Advanced Technology Research Laboratories,
Matsushita Electric Industrial Co. Ltd.
onizuka.kentaro@jp.panasonic.com

The method developed to meet CASP6 consists of two units.

1) Fold recognition unit

This unit selects hundreds of template conformations that have relatively good
compatibility to the target protein sequence among approximately three
thousand non-redundant protein structure set collected from PDB. The selected
conformations are aligned to the target protein sequence. The compatibility of a
conformation to the target sequence is evaluated as the sum of multi-
dimensional mean-force potentials between all possible pairs of residues in that
conformation (1, 2), now that having the target sequence aligned.
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2) Structure optimization unit

This unit builds a protein conformation by concatenating the structure segments
cut out of those template conformations selected by the fold recognition unit.
The templates selected are aligned to the target protein sequence. Here the
concatenation of conformations is done as follows; 1) select two (i-th and j-th
respectively) conformations each aligned to the target protein sequence, 2)
choose a residue position M in the sequence as the crossover point 3) the new
conformation is generated by concatenating the segment from N-term (of the
target sequence) to M-th residue of i-th conformation and the segment from M-
th residue to C-term (of the target sequence) of j-th conformation. Since M-th
residue is shared by both segments, the relative orientation between the
concatenated two segments is fixed. When the generated child conformation
has better compatibility to the sequence than both of its parents, the child is
selected and the parent having worth compatibility is discarded and is replaced
by the child conformation. When the child conformation is slightly worse in
compatibility than the parent of better compatibility, there is still a chance for
the child to survive. The survival rule follows the Simulated Annealing like
criteria with respect to the temperature parameter ; when the temperature is
high, the child has big chance to survive, while low temperature, the chance is
small. The compatibility to the sequence is the same as that in the Fold
recognition unit.

The GA (SA)-based improvements of the conformation are repeated until the
conformation converges. The insertion or deletion generated in the alignment
process by the Fold recognition unit are, in most cases, automatically swept
away during the optimization because those gaps are calculated to have bad
score in the compatibility evaluation process..

The performance of the minimization algorithm proposed is intense, although
the algorithm logically does not assure to generate the optimal solution.

1. Sipp,M.J. (1990) Calculation of Conformational Ensembles from
Potentials of Mean Force: An Approach to the Knowledge-based Prediction
of Local Structure in Globular Proteins. J. Mol. Biol., 213,859-883.

2. Onizuka,K., Noguchi,T., Akiyama,Y. Matsuda,H. (2002) Using Data
Compression for Multidimensional Distribution Analysis. Intelligent
Systems May/June 2002, 48-54.

AGAPE-0.3 (serv) - 317 models for 64 3D targets
AGAPE - fold recognition without template structures

D. Przybylski*® and B. Rost"*

' .CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia
University, New York, USA, ?- Columbia University Center for Computational
Biology and Bioinformatics (C2B2), New York, USA,

3 - Depertment of Physics, Columbia University, New York, USA.
dsp23@columbia.edu

AGAPE' is a novel automatic alignment method that uses predicted one-
dimensional (1D) structural information (secondary structure and solvent
accessibility) for target and template proteins. It is based on an observation that
mistakes in the predictions of 1D structure tend to correlate among structurally
related proteins. AGAPE uses generalized position specific scoring matrices
(sequence + 1D structure) for target and template proteins and a novel 'bi-
directional' scoring approach. AGAPE-0.3 is the experimental server under
development.

1. Przybylski,D. & Rost,B. (2004). Improving fold recognition without folds.
J Mol Biol 341, 255-69.

Agata - 57 models for 52 3D targets
Modeling of CASP6 target proteins

Agata Chmurzynska
Agricultural University of Poznan,
Department of Animal Genetics and Breeding, Poland
agata@jay.au.poznan.pl

First step of the procedure was identification of the proteins with known
structures related to the targets. Searches with PSI-BLAST ' were performed
against the non-redundant protein database. After inspection with the SWISS
PDB Viewer, models were built using SWISS-MODEL program 2.

For more difficult targets, the full protein sequences or their fragments only
were submitted to the MetaSever °. Selection of the templates was based on the
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3D-Jury results “, and additionally, in some cases alignments were manually
modified. Then models were built with the MODELLER program °.

In order to identify poorly-folded fragments, all the preliminary models were
evaluated by Verify 3D °. When more than one template was used to create a
final model, the initial 3D structures were superimposed and the well-folded
fragments were merged. In the final step, missing parts was added using one of
the models generated ab initio by ROBETTA. This protocol resulted in building
several models for almost every target. The final models, submitted to CASP6,
were selected after their detailed evaluation with Verify 3D.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.,
Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25 (17), 3389-3402.

2. Guex,N., Peitsch,M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer:
an environment for comparative protein modeling. Electrophoresis 18(15),
2714-2723.

3. Bujnicki,J.M., Elofsson,A., Fischer,D., Rychlewski,L.. (2001) Structure
prediction meta server. Bioinformatics, 17(8),750-751

4. Ginalski,K., Elofsson,A., Fischer,D., Rychlewski,L. (2003) 3D-jury: a
simple approach to improve protein structure predictions. Bioinformatics
31, 3291-3292.

5. Sali,A., Blundell, T.L. (1993) Comparative protein modeling by satisfaction
of spatial restraints. J. Mol. Biol. 234, 779-815.

6. Luthy,R., Bowie,J.U., Eisenberg,D. (1999) VERIFY3D: assessment of
protein models with three-dimensional profiles. Nature 356, 83-85.

ARBY (serv) - 57 models for 57 3D targets

The Arby automated structure prediction server

Ingolf Sommer', Niklas von Ohsen?
! _ Max-Planck-Institute for Informatics,
2 FraunhoferInstitute forScientific Computing and Algorithms
sommer@mpi-sb.mpg.de

Our fully automated protein structure prediction server Arby’ combines the
results of several fold recognition methods to find suitable templates in a
database of structural representatives of protein domains.

The method starts by constructing a set of subsequences from the query
sequence, each subsequence representing a hypothesis for a possible protein
domain. This is done by scanning against the InterPro database and using hits
as domain hypotheses'. Additional hypotheses are constructed using a
secondary structure prediction from PSIPRED? Segments of predicted loops
are used as potential domain boundaries. Finally, the set of subsequences is
reduced to a reasonable size by removing subsequences that are highly similar
or short.

For each subsequence a multiple alignment is constructed by searching the NR
database, clustered to 90% sequence identity, using PSI-BLAST?. A frequency
profile is calculated from this multiple alignment using a slightly modified
version of the Henikoff-Henikoff sequence-weighting algorithm®.

Each of the potential domains is then subjected to four different fold
recognition methods. Each method searches for an optimal structure in our
template database. The template database is a representative subset of the SCOP
domains with pairwise sequence identity lower than 40% > °. For each of these
template domains, a frequency profile was constructed as described above for
the targets. The first fold recognition method is PSI-BLAST, which is used to
search through our set of template domains (augmented by the NR sequence
database). The second one is the 123D threading program. It uses frequency
profiles on the target side and 3D structural information on the template side” 2.
The third one is the log-average profile-profile alignment method recently
developed in our group® '°. It compares frequency profiles on the target side
with profiles on the template side using the log average scoring approach. The
fourth method is again the log-average profile-profile alignment program, but
in this version it makes use of additional secondary structure information on the
target and template side.

The quality of each of these search results is assessed using confidence
measures. For PSI-BLAST, these are readily available®, for the other methods,
we use empirical confidence measures®.

The target sequence is then annotated with all the produced quadruplets
(subsequence, fold recognition method, search result, confidence wvalue).
Finally, we select a set of non-overlapping annotations along the sequence, by
performing greedy optimization on the confidence values. For each of these
selected annotations, a separate protein domain is predicted. The structure of
this domain prediction is computed by aligning the subsequence against the
template structure using log-average profile-profile alignment.
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The underlying machinery is a Java based data flow engine, designed for
stability. Since it is general and independent of the specific pipeline (as the one
described above), it can be used as infrastructure for other projects as well: we
developed a component framework in which all algorithms and programs are
encapsulated in small Java classes. Each of these components specifies an
algorithm to be executed along with its input parameters, the output that it
produces, and possible error conditions. The accompanying engine provides a
number of features for the components: First of all, the input/output
dependencies of components are resolved. If all inputs for a specific algorithm
have been determined, the algorithm itself is being scheduled for execution.
The components are executed in parallel on any number of CPUs, in our case
64 CPUs of a SunFire 15000 server. A frequent problem in fully automated
systems is reliable error handling. We solve this problem by catching potential
error conditions and adaptively pruning the data-flow tree.

In a nutshell, the structure prediction server is based on the use of profile-
profile algorithms for fold recognition, the quality assessment using confidence
measures, and the stable and powerful Java data flow engine
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Atid - 17 models for 17 3D targets
Structure prediction through direct folding simulation

J. Rosenzweig' and I. Rosenzweig’
! — Cambridge Proteomics Ltd, >~ Addenbrooke’s Hospital
j.-rosenzweig@camprot.com

Protein structures are predicted via direct simulation of protein folding
pathways.

Starting from extended initial configurations, proteins were followed through
their folding pathways to compact, folded free energy minima at temperatures
slightly exceeding 300K.

Force fields used were CHARMM17 (united atom) and AMBER99 (all atom),
and the solvation energies were computed using GBSA-type models.

All simulations were performed using the novel in-house ATID protocol, on
two dual Linux workstations running at 2x2.1 GHz and 2x2.8 GHz,
respectively.

Each folding simulation was run twice, and only the results in which both
structures agreed to within 1A rmsd were submitted in order to eliminate the
possibility of chaperone-assisted folding.
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B213-207 - 320 models for 64 3D / 1 FN targets

Optimization of predicted spatial restraints on a coarse-
grained protein model

O. Venezuela'!, Y.H. Tan' and D. Kihara*'
! — Dept. of Computer Science, >— Dept. of Biological Sciences, Purdue
University, West Lafayette, IN, USA
dkihara@purdue.edu

It has been shown that in many cases the recent generation of fold recognition
methods can capture at least structural fragment information even when the
global structure can not be reliably predicted'. Assembling structure fragments
detected by a fold recognition method is one of the common ways for ab
initio/de novo protein structure prediction'”. In the CASP5, it was reported that
several consensus methods or meta-server approaches*® showed high
performance®. Based on these two observations, our approach developed for
CASP6 is an optimization of predicted spatial restraints calculated by various
servers, including servers participating in CAFASP4 using a coarse-grained
protein model.

A protein is represented by a simplified model which explicitly specifies
positions of alpha carbons in the main chain’. A conformation of this Cot model
is defined by a set of rotational and hinge angles between adjacent alpha
carbons. Information of predicted structures of a target protein by various
methods is used in the following way: (1) The predicted structures are clustered
globally and locally. (2) The distribution of inter-residue distances and angles
are calculated and subsequently used as soft restraints® in the next refinement
step. Starting from several initial structures, the conformation of the model is
refined so that is satisfies these soft restraints by a Monte Carlo optimization
with the Metropolis criteria. Consensus prediction of the secondary structures is
also used. Usually a conformation converges relatively quickly since the
method uses a large number of restraints.

During the course of the development, we phased in statistics of the structure
preference of known structures in PDB as penalty terms of spatial restraints to
avoid “non-protein-like” conformations’. These terms include minimum
distance between Co - Ca, peptide bond - peptide bond, and Ca - peptide bond
distances as well as hinge angle restraints.

Suggestions from our function prediction team were often a great help in the
final model selection. Our three teams, the structure, function (B213-207Func),
and domain prediction (B213-207Dom) teams worked in a coordinated manner.
Although this method is still in an early stage of the development, the
performance will surely improve as additional scoring terms are incorporated.

1. Kihara,D., Lu,H., Kolinski,A. & Skolnick,J. (2001) TOUCHSTONE: an ab
initio protein structure prediction method that uses threading-based tertiary
restraints. Proc Natl Acad Sci U S A 98, 10125-30.

2. Jones,D.T. (2001) Predicting novel protein folds by using FRAGFOLD.
Proteins Suppl 5, 127-132.

3. Bonneay,R. et al. (2002) De Novo Prediction of Three-dimensional
Structures for Major Protein Families. J Mol Biol 322, 65.

4. Fischer,D. (2003) 3D-SHOTGUN: A novel, cooperative, fold-recognition
meta-predictor. Proteins 51, 434-441.

5. Ginalski,K. & Rychlewski,L. (2003) Detection of reliable and unexpected
protein fold predictions using 3D-Jury. Nucleic Acids Res. 31, 3291-3292.

6. Kinch,L.N. et al. (2003) CASP5 assessment of fold recognition target
predictions. Proteins 53 Suppl 6, 395-409.

7. Kolinski,A. (2004) Protein modeling and structure prediction with a
reduced representation. Acta Biochim. Pol. 51, 349-371.

8. Sali,A. & Blundell, T.L. (1993) Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol 234, 779-815.

B213-207Func - 68 models for 64 FN targets
A structured approach to computational function prediction

T. Hawkins' and D. Kihara"?
! _ Dept. of Biological Sciences, Purdue University, >— Dept. of Computer
Science, Purdue University, West Lafayette, IN, USA
dkihara@purdue.edu

For function prediction in CASP6, we used a multi-layered, multi-dimensional
approach. The process of defining functions for uncharacterized protein targets
involved three steps: (1) searching the primary target sequence against
functional databases, (2) manually building and refining data from primary
searches, and (3) assigning GO numbered definitions to predicted functions.
This method was used to gather predictions for the GO Molecular Function,
GO Biological Process, and GO Cellular Component categories. BLAST and
PSI-BLAST' were used for sequence similarity; PROSITE?, PRINTS? and
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Blocks* were used for functional motif searching; Pfam and Pfam-FS® were
used to for family alignments; PSORT® was used for subcellular localization;
and STRING’ was used for additional functional associations in primary
searches. Information in the KEGG Pathway database® and thorough literature
searches were used refine and build on the data gathered from primary searches
in the cases where that data was not sufficient to make a reasonable prediction
of GO categories. GoFigure® and AmiGO'" were used to find GO definitions for
predicted functions.

To predict binding sites, multiple sequence alignments were made using
ClustalW of BLAST and PSI-BLAST hits below an e-value of 0.01 (limited to
20). Conserved regions were determined manually and localized on predicted
structures; regions containing clusters of conserved residues were predicted to
be binding sites. If the predicted function of the protein indicated binding of a
specific partner, that molecule/macromolecule was predicted to interact with the
predicted binding region. If a conserved region consisted of 5 or more
consecutive residues, we considered it to be a functional motif. All of these
motifs for a single target sequence were searched individually against the NR
protein database in the cases where other data was not sufficient to make a
reasonable prediction.

Using this method, reasonable predictions were made for each of the 76 valid
protein targets in CASP6. Automation of this method, including substitution of
rule-based algorithms for manual interpretation steps, is underway in
preparation for function prediction in CASP7.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
[http://www.ncbi.nih.gov/BLAST/].

2. Sigrist,C.J.A., Cerutti,L., Hulo,N., Gattiker,A., Falquet,L., Pagni,M.,
Bairoch,A. & Bucher,P. (2002). PROSITE: a documented database using
patterns and profiles as motif descriptors. Brief Bioinform. 3, 265-274.
[http://www.expasy.org/prosite/].

3. Attwood,T.K., Bradley,P., Flower,D.R., Gaulton,A., Maudling,N.,
Mitchell,A.L., Moulton,G., Nordle,A., Paine,K., Taylor,P.,, Uddin,A. &
Zygouri,C. (2003). PRINTS and its automatic supplement, prePRINTS.
Nucleic Acids Res. 31, 400-402.
[http://bioinf.man.ac.uk/dbbrowser/PRINTS/].

4. Henikoff,S., Henikoff,J.G. & Pietrokovski,S. (1999). Blocks+: A non-
redundant database of protein alignment blocks derived from multiple
compilations. Bioinformatics. 15, 471-479. [http://blocks.fhcrc.org/].

5. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V., Griffiths-Jones,S.,
Khanna,A., Marshall,M., Moxon,S., Sonnhammer,E.L.L., Studholme,D.J.,
Yeats,C. & Eddy,S.R. (2004). The Pfam Protein Families Database.
Nucleic Acids Res. 32, D138-D141.
[http://www.sanger.ac.uk/Software/Pfam/].

6. Nakai,K. & Kanehisa,M. (1991). Expert system for predicting protein
localization sites in Gram-negative bacteria. PROTEINS: Structure,
Function, and Genetics. 11, 95-110. [http://psort.nibb.ac.jp/].

7. von Mering,C., Huynen,M., Jaeggi,D., Schmidt,S., Bork,P. & Snel,B.
(2003). STRING: a database of predicted functional associations between
proteins. Nucleic Acids Res. 31, 258-261. [http://string.embl.de/].

8. Kanehisa,M. & Goto,S. (2000). KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res. 28, 27-30.
[http://www.genome.jp/kegg/pathway.html].

9. Khan,S., Situ,G., Decker,K. & Schmidt,C.J. (2003). GoFigure: automated
Gene Ontology annotation. Bioinformatics. 19, 2484-2485.
[http://udgenome.ags.udel.edu/gofigure/].

10. AmiGO. [http://www.godatabase.org/].

BAKER - 433 models for 64 3D / 63 RR / 58 FN targets

Novel approaches to protein structure prediction at CASP6

P. Bradley, G. Cheng, D. Chivian, D. Kim, L.. Malmstrom, J. Meiler,
K. Misura, Bin Qian, J. Schonbrun, A. Zanghellini, D. Baker*
University of Washington
dabaker@u.washington.edu

Domain Parsing (DK). Targets were parsed into putative domains based on the
results obtained from GINzZU and ROSETTADOM. For more difficult targets,
alternative domain boundaries were considered and final models were chosen
through manual human inspection.

Targets with 3D JURY' A1 score of 50 or larger, or with PDB homology hits of
e-value lower than 0.001 as defined by PSIBLAST? are considered as fold
recognition or comparative modeling targets, respectively. All remaining targets
are modeled de novo.

De novo prediction (PB, LM & KM). The protocol for de novo prediction

focused on generating diverse populations of structural models. Diversity was
achieved by folding large numbers of sequence homologs; by generating
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decoys in multiple rounds using modified parameters (mainly secondary
structure predictions) for later generations; and by post-filtering of large decoy
ensembles to explore under-sampled topologies. As in previous CASP's, decoys
were generated using the ROSETTA® fragment assembly algorithm.

In addition, we tested a new protocol for generating models with long-range
beta-sheet pairings: given a set of target pairings, models are constructed in
which the paired residues are
maintained in a constant relative
orientation corresponding to
ideal [P-sheet geometry. A
number of chain breaks equal to
the number of long-range
constraints are introduced to
ensure that a unique structure
can be constructed from the
torsion angles, and structures
are generated and scored by Figure 0: Target structure and de novo
fragment assembly as in models for T198 (left) and T212
standard  ROSETTA.  Target (right). The model for T212 was built
pairings can be chosen to using the novel approach for non-local
sample a range of non-local p-sheet contacts.

topologies, or by analysis of frequently sampled pairings in the fold-recognition
server results (Error: Reference source not found).

Final model selection was generally based on clustering of the decoys. All-atom
models were built for some of the smaller targets and ROSETTA's high-
resolution refinement protocol and scoring function were used to select
submissions.

Comparative Modeling and Fold Recognition (BQ & DC). Parent detection is

performed by the ROBETTAO4 protocol (see accompanying abstract), where
BLAST/PSIBLAST, FFASO3, or 3D JURY scores are used to select the parents with
highest confidence. When there are multiple parents with similar confidence
scores, all distinct parents are used in the subsequent modeling process.

We use target-parent alignments from several different sources: 1) ROBETTAO4
server alignments, which are selected by physical energies of structure models
that were built based on an alignment ensemble. 2), 3D JURY server alignments,
which are selected using the consensus alignments from different alignment
methods. 3), Manual alignments based on PSIBLAST sequence profiles, aided by
functional information from literature search. These alignments are compared
and the representatives are used to model the aligned regions of the targets.

The structural core regions of the targets that have hits in PDB with PSIBLAST
e-values of 0.001 or lower are allowed to be flexible and refined using a
physical energy based refinement protocol. In this protocol, the principle
components of the variation observed in structural homologs are used to define
the preferred backbone conformational space. A grid sampling in this preferred
conformational space generates a structural model ensemble, which is subject
to Rosetta full-atom energy evaluation. The models with the lowest physical
energies are selected for further modeling of the loop regions.

Loop Modeling (JS). We employed a novel atomic resolution procedure to
model unaligned segments in homology models. For loops under 17 residues
we searched through the Protein Databank to find a large population (~2000) of
segments with good profile-profile matches to the target in the loop region, and
where the distance between then Co atoms at each end of the loop were close to
the distance in the parent structure. For longer loops we used the standard
ROSETTA de novo fragment insertion method to generate an initial population of
loops. All loops were then closed using the analytic Cyclic Coordinate Decent
method®. Finally, side-chains were added, and all loop regions were refined
using our atomic resolution potential. The five loops with the lowest energies
were selected for CASP6. This method was used for the unaligned regions of
BLAST and PSIBLAST” detectable homologs.

Domain Assembly (AZ). For multi-domain targets, a specific mode of ROSETTA
is used to assemble the individual models generated either from fold
recognition, homology modeling or de novo folding. Once the linker region is
defined, fragments are inserted exclusively into the linker region using a
MONTE CARLO procedure analogous to the one used in de novo. After each
insertion the total energy is computed. Subsequently the side-chain centroid
decoys are clustered. The cluster centers and the 100 lowest scoring structure
undergo a refinement with the atomic resolution potential using a sequence of
small moves in the linker region. After each move the structure is repacked and
its score is evaluated.

Consensus Contact Prediction (JM). Based on the protein structure predictions
of 24 servers that participated in the LIVEBENCH 7 and LIVEBENCH 8
experiments® (357 targets in total) an artificial neural network was trained to
perform a consensus contact prediction.

The network is setup to predict a potential contact between two amino acids. By
sweeping over all pairs of amino acids the whole contact map can be predicted.
All amino acid pairs having their Co atoms closer than 11A were considered as
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being in contact if they are separated by more than at least 8 more amino acids
in sequence in order to focus on non-local contacts.

Input to the neural network are position of the amino acids in sequence, JUFO
secondary structure prediction (www.jens-meiler.de/jufo.html), as well as
position specific scoring matrices from PSIBLAST? for two windows of 5 amino
acids around the amino acids of interest. In addition the contacts predicted in
the top five models of the 24 servers are used together with the respective
scores as input. The output range is [0,1] with 0 being no contact and 1 being
contact.

The results are summarized in Table 1. At an output level of 0.7 the network
predicts approximately half the contacts correctly by mis-predicting only 3% of
the non-contacts as contacts.

Table 1: ANN results if output levels above 0.5, 0.7, or 0.9 are counted as
predicted contact.

output level: | 0.5 | 0.7 | 0.9
ANN prediction Target contacts (left) and non-contacts (right)
contacts: 70% 13% 49% 3% | 19% 0%
non-contacts: 30% 87% 51% 97% | 81%  100%

Function Prediction (GC). For de novo targets, we used a motif based algorithm
to search decoy ensembles to identify the potential function of the target. For
other targets GO annotations from fold matches was utilized. Predictions for
functional or binding sites on the BLAST/PSIBLAST level rely on homology
based binding site mapping. Ligands from the template PDB were mapped onto
corresponding regions of the model. For FR level targets, the model and
template are chosen based on functional site conservation. For de novo targets,
the function site is mainly predicted by sequence conservation.

1. Ginalski,K., Elofsson,A., Fischer,D. & Rychelewski,L. (2003). 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
19, 1015-1018.

2. Altschul,S.F., Madden, T.L., Schéffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

3. Simons,K.T., Kooperberg,C., Huang,E. & Baker,D. (1997). Assembly of
Protein Tertiary Structures from Fragments with Similar Local Sequences
using Simulated Annealing and Bayesian Scoring Functions. J. Mol. Biol.
268, 209-225.

4. Canutescu,A. A. & Dunbrack,R.L. (2003). Cyclic coordinate descent: A
robotics algorithm forprotein loop closure. Protein Sci 12, 963-972.

5. Bujnicki,J.M., Elofsson,A., Fischer,D. & Rychlewski,L. (2001).
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BAKER-ROBETTA (serv) - 320 models for 64 3D targets
BAKER-ROBETTA_04 - 320 models for 64 3D targets

The Robetta and Robetta_04 protocols

Dylan Chivian', David E. Kim', Lars Malmstrom',

Jack Schonbrun!, Carol A. Rohl* & David Baker""
1- University of Washington, Seattle, WA
2- University of California, Santa Cruz, CA
dabaker@u.washington.edu

The Rosetta' homology modeling and de novo protocols for protein domain
prediction have been incorporated with the Ginzu homolog identification and
domain parsing protocol into an automated protocol called Robetta** to allow
for tertiary structure prediction for the full length of a protein chain. We have
modified the Robetta homology modeling protocol from that used in CASP-5 to
include energetic selection from a model ensemble. Additionally, in the
Robetta_04 homology modeling protocol, we investigate the effectiveness of
modeling based on multiple parents, loop optimization, and global optimization
for fold recognition targets. The Robetta_04 de novo protocol investigates the
effect of re-ranking models based on a confidence score. Robetta, which
participated in CASP as a server, is fully automated, and currently offered as a
server to the public at http://robetta.bakerlab.org/. Robetta_04, due to the lack
of complete automation participated in CASP as a non-server group, is
nonetheless mostly automated. The remainder of the protocol is followed
closely and without application of human intuition with the intent of future
inclusion of successful ideas into the fully automated server, as well as to serve
as a control to compare with our human group's results.

Robetta homology modeling protocol
Robetta uses the highest confidence detection (or the longest detection if

similar in confidence) from BLAST/PSI-BLAST*, FFAS03®, or 3DJury-A1° to
select the parent for homology modeling. Important to note is that Robetta does
not use the alignment from the detection method except to determine the
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domain(s) of the parent to model against. Rather it parametrically generates its
own alignment ensemble using the K*Sync alignment method? by varying the
sequence profile comparison method, the source of the secondary structure
prediction, the stringency of the sequence profile, the stringency of the StrAD-
Stack multiple structural alignment used to define obligate elements, and the
weights on the terms in the dynamic programming scoring function. The
alignment ensemble is turned into a decoy ensemble by placing the sequence of
the query onto the backbone of the parent based on the alignment. Unaligned
loop regions are assembled from fragments and optimized to fit the aligned
template structure’. Side-chains are added using a backbone-dependent rotamer
library® with a Monte Carlo conformational search procedure®. The template
region is kept fixed, and models are selected from the ensemble using variants
of the Rosetta energy function.

Robetta de novo protocol
Robetta de novo modeling generates 10000 query decoys and 5000 decoys for

up to 2 homologous sequences using the Rosetta fragment-assembly
methodology™®. Those decoys are filtered down to 2000 for the query and 1000
for each homolog in order to down-weight Rosetta pathologies, such as low
contact-order structures. The filtered ensemble is structurally clustered, and the
top 5 cluster centers by population are returned in order as the predictions.

Robetta 04 homology modeling protocol
Robetta_04, like Robetta, examines ensembles of alignments produced

parametrically with the K*Sync alignment method, but includes up to 5 parents.
Loops are optimized for closure™ and energy with the template. PSI-BLAST
level targets have frozen templates plus loops modeled by fragments, with
models selected from the ensemble by the Rosetta full-atom energy function.
Targets in the fold recognition category, those detected by FFAS03 and 3DJury,
are allowed backbone flexibility along the entire chain, including template
regions, during optimization of Rosetta's side-chain centroid energy function
with fragment-insertion. Final predictions are selected from the optimized
ensemble by the Rosetta side-chain centroid energy function.

Robetta 04 de novo protocol

The only difference in the Robetta_04 de novo protocol from the Robetta de
novo protocol is in the approach for selecting the final predictions. Rather than
return cluster centers in order by population, the cluster centers are scanned
against known PDB structures with MAMMOTH". A confidence function,
similar to one used previously', incorporating the significance of any
MAMMOTH hit, the length of the MAMMOTH match, the contact order of the
decoy, and the clustering convergence, is used to re-rank the cluster centers to
determine the top models.

10.

11.

12.
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BAKER-ROBETTA-GINZU (serv) 64 models for 64 DP targets

The Ginzu homologue identification and domain parsing
protocol

Dylan Chivian, David E. Kim, Lars Malmstrom, & David Baker"
University of Washington, Seattle, WA
dabaker@u.washington.edu

Protein chains often contain more than one domain. In order to predict the
domain organization of a protein, we have developed the Ginzu homolog
identification and domain parsing method and applied it in the Robetta server'?
to allow for domain-based tertiary structure prediction of the full length of
protein chains. The method is available to the public as part of the Robetta
server (http://robetta.bakerlab.org/).

Ginzu attempts to determine the locations of putative domains in the query
sequence and the identification of any likely homologs with experimentally
characterized structures. These steps are not decoupled, since the ability to
assign a region of the target to a known protein structure greatly increases the
likelihood that it is at least one protein domain. The approach consists of
scanning the target sequence with successively less confident methods to assign
regions that are likely to be domains. Once those regions are identified, cut
points in the putative linkers are determined, and if possible a single
homologous PDB chain is associated with each putative domain. The initial
scan attempts to identify the closest relatives with experimental structures to
regions of the query sequence. A straightforward BLAST? search against the
PDB sequence database detects such relatives. All PDB ids that are detected at
this stage are stored. A PSI-BLAST? search is then used to detect more distant
relatives of the query, as well as provide more complete coverage since such
alignments tend to be longer. Non-overlapping regions that possess the best
combination of detection confidence and length of coverage are assigned as
domains. The associated PDB id and region of the chain matched is retained.

One may then employ more remote fold-recognition methods to detect
homologous PDB structures. We used FFAS03* in this step for the parsing of
the CASP-6 targets. Again, as with the PSI-BLAST detections, the associated
PDB and region of the target chain covered is retained. Following the FFAS03
step, we scan remaining regions with 3D-Jury-A1° in the same fashion.
Detected fold relatives with structures are stored.

Any remaining long regions of the query that do not have structural homologs
identified may require further division into putative domains. After all regions
of the query that are likely a contiguous domain (or domains) based on
homology to a PDB structure have been assigned, one may continue to
determine regions that have increased likelihood of being a single domain by
applying a HMMER search of Pfam®. Subsequent steps of Ginzu utilize the
program "msa2domains", which examines the PSI-BLAST multiple sequence
alignment (MSA) to find clusters of sequences in the PSI-BLAST multiple
sequence alignment (MSA) and assigns these as regions of increased domain
confidence for any stretches of the target that have not yet been found to have a
domain. This is done in an order based on the number of unique observations
in the cluster (essentially a non-redundant depth), with overlaps not permitted.
Lastly, msa2domains determines where to place the exact cut points in the
linker regions, or any remaining long unassigned regions, via a heuristic that
again considers clusters of sequences in the PSI-BLAST MSA, the least
occupied positions in the MSA, strongly predicted loop regions by PSIPRED’,
and distance from the nearest region of increased domain confidence. A fourth
term boosts the likelihood of a domain boundary in regions of the MSA where
the sequences frequently begin or end.

The final step consists of parsing regions that have been assigned structural
homologs based on the model generated by that assignment. We have
developed a consensus variant of Taylor’s structure-based domain parsing
method® that is applied to the target model as well as PSI-BLAST detectable
structural homologs to complete the domain parsing.
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BAKER-ROSETTADOM (serv) - 64 models for 64 DP targets
The RosettaDOM domain parsing protocol

D.E. Kim, D. Chivian, L. Malmstrom and D. Baker

University of Washington
dabaker@u.washington.edu

Predicting protein domain boundaries accurately is a difficult yet important step
in protein structure prediction. Here, we describe a protocol to identify protein
domain boundaries using a sequence homology based procedure called Ginzu®
2, and an ab initio method that uses the Rosetta®* structure prediction software
suite for proteins lacking significant homology to experimentally determined
structures.

RosettaDOM first uses Ginzu to identify domains that are homologous to
known structures in the PDB. See accompanying Ginzu abstract for details. If
Ginzu assigns a domain based on homology to a known structure in the PDB
using either BLAST®, PSI-BLAST®, or FFAS03’, RosettaDOM simply returns
the domain boundary predictions provided by Ginzu. For query sequences
lacking such homology, an ab initio domain prediction method similar to
SnapDRAGON? is used. The ab initio method consists of generating 400 three-
dimensional models using Rosetta, and then selecting 200 models based on
score and whether they pass filters that eliminate structures with too many local
contacts or unlikely strand topologies. Domain boundaries are then assigned
for each of the 200 models using a structure based domain identification
algorithm®.  Final domain boundary predictions are made based on
consistencies found in the domain assignments of these models. Domain
boundaries are chosen under the assumption that although Rosetta is unlikely to
produce accurate atomic-resolution models, it may accurately produce coarse
structural features such as domains. An example of this was shown for T148 in
CASP5',
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Prediction of protein structural features and tertiary
structures from SCRATCH using recursive neural networks,
evolutionary information, fragment libraries, and energy
functions
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Our CASP predictions of protein domains, disordered regions, contact maps,
and 3D structures are based on the latest version of our SCRATCH suite of
predictors. The suite combines machine learning methods, evolutionary
information in the form of profiles, fragment libraries extracted from the PDB",
and energy functions to predict protein structural features and complete
structures. The suite includes the following main modules:

e SSpro* secondary structure

e ACCpro® relative solvent accessibility

e  MUpro: effect of single AA mutation on stability
e DISpro: disordered regions

e  DOMpro: domains

e DIpro: disulphide bridges

e CMAPpro*: contact maps at 6, 8, 10, and 12 A
e CCMAPpro : coarse contact maps

e  3Dpro: 3D structure

All predictors are periodically trained in a supervised fashion and cross-
validated using curated, non-redundant, datasets extracted from the PDB.
Structural feature predictors (SSpro, ACCpro, MUpro, DISpro, and DOMpro)
use ensembles of 1D-RNN (one dimensional- recursive neural network)
architectures®. Contact map (CMAPpro and CCMAPpro) and disulphide bridge
(DIpro) predictors use ensembles of 2D-RNN architectures*® ([DIpro also uses
kernel methods]. These architectures are based on probabilistic graphical
models (Bayesian networks) meshed with a neural network parameterization to
accelerate belief propagation and learning. These architectures systematically
combine standard information contained in a local input window with more
distant contextual information extracted by translation-invariant recursive
neural networks that are convolved along the entire length of the protein (1D)
or of the contact maps (2D) from all possible directions.

All predictors, except 3Dpro, directly leverage homology information in the
form of input profiles derived using PSI-BLAST® to include remote
homologs™. In addition, very high-levels of local homology to known
structures are used either directly or in combination with the output of the
corresponding predictors. For instance, the secondary structure and solvent
accessibility of homologous fragments are combined with the outputs of SSpro
and ACCpro to improve their prediction accuracy for target sequences.
Whenever possible and useful, predictors leverage the output of the other
predictors and use them as part of their inputs. For instance, the outputs from
SSpro (secondary structure) and ACCpro (solvent accessibility) are fed into

DOMpro for domain boundary prediction and into 3Dpro for tertiary structure
prediction.

Taking sequence profile, predicted secondary structure, and solvent
accessibility as inputs, DISpro predicts the disordered/ordered state for each
residue in the sequence using ensembles of 1D-RNNs. DOMpro produces
domain prediction in three steps. First, using the same inputs as DISpro and the
same recursive neural network architectures, DOMpro predicts whether a
residue belongs to a domain boundary region or not. Residues within 20 amino
acids from the actual domain boundary as annotated in the CATH** database
are considered to be part of the domain boundary region. Second, a statistical
approach is used to infer the domain boundaries from the predicted states
(boundary/non-boundary) of the individual residues. Finally, the sequence
segments separated by domain boundaries are assigned to domain numbers. To
handle discontinuous domains comprising two ore more disjoint segments, the
predicted contact map from CMAPpro is used to decide whether non-adjacent
segments have a sufficient number of residue-residue contacts to be considered
a single domain.

In addition to the standard 2D-RNN architectures*® for the one-step prediction
of entire contact maps, a variant architecture is used to predict contacts from
low sequence separation (bands close to the main diagonal) to high sequence
separation (bands far from the main diagonal) step by step. The predicted
contact maps at lower sequence separation are used as inputs for the prediction
of contact maps at higher sequence separation. The raw output of CMAPpro is
a matrix of contact probabilities for all residue pairs. Several different methods
for selecting contact predictions from the matrix of contact probabilities were
developed and tested. Two basic methods are used in CASP 6. The first method
uses a fixed threshold determined by maximizing the F-measure (harmonic
mean of Precision and Recall) on a test set. The second method uses a variable,
band-dependent, threshold determined by estimating the total number of
contacts in a band from the sum of all the predicted contact probabilities in that
band.

Our approach to tertiary structure prediction (3Dpro) combines the predicted
structural features®®, a fragment library", and energy terms derived from PDB
statistics. The structural features used are secondary structure, relative solvent
accessibility, and a residue level contact map at a distance cut-off of 12 A.
These features are used in the energy function. A database of 9-residue
fragments is constructed from the structures in the PDB. Fragments are selected
from the fragment database based both on sequence similarity and similarity of
the predicted secondary structure to the secondary structure of the fragment™.
Two terms in the energy function are based directly on statistics from the PDB,
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one for residue environments**? and another for bond angles. To encourage the

agglomeration of beta-strands into sheets we use a simple, single vector,
representation of each entire strand and penalize unpaired strand vectors. We
include a contact-map energy term', as well as a term to encourage, but not
force, the secondary structure of the models to match the predicted secondary
structure.

The conformational space is searched using a variant of simulated annealing,
where the moves we use to modify our models are crankshaft moves*® on one or
more residues and several forms of fragment replacement**2. These moves are
applied to sequence locations in the model that are selected randomly. During
each search, the model with the lowest energy is kept and all the other models
are discarded. One thousand different models are produced using a different
random seed for each search. We retain the five models with the lowest energy
scores across all runs. Since our models are described in terms of the carbon
alpha trace, we first add the other backbone atoms to the models, and finally
use SCWRL" to position the side chains.
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Bilab - 306 models for 61 3D / 64 DR targets

Tertiary structure prediction of proteins using assembly of
flexible-length fragments and order/disorder prediction using
local amino acid sequence and global alignments

S. Nakamura!, T. Ishida’, K. Shirakura!, S. Mori', T. Terada and K.
Shimizu'
I - Department of Biotechnology, the University of Tokyo
shugo@bi.a.u-tokyo.ac.jp

We have participated in tertiary structure prediction and order-disorder regions
prediction categories in CASP6.

Disordered regions were predicted by our disorder prediction tool named
“disSABLE”. Our disorder prediction consisted of two steps, the prediction from
local amino acid sequence and the prediction from global alignments. First, the
prediction was performed by using Support Vector Machine (SVM) with
position specific score matrices (PSSM) generated by PSI-BLAST, as input.
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The SVM was trained with non-redundant training set generated using PISCES
server!, whose resolution cutoff was 1.6 angstrom and percentage identity
cutoff was 25%, including 493 chains, 105208 residues. The predictions were
performed with each three different window sizes (9, 15, and 33). The weighted
average of the decision values of these predictions was calculated, and
disordered regions and their reliabilities were determined by these values.
Second, we searched structural templates for the target sequence by using PSI-
BLAST and FFASO03 server against Protein Data Bank. If the templates
included missing residues in the aligned regions, the target residues aligned to
the template missing residues were judged disordered and the decision values
of the residues were modified. Finally, the decision values of the prediction
were denoised by low-pass filter and modified using some simple rules.

Tertiary structure prediction models for NF targets were produced by de novo
protein structure modeling tool named "ABLE"? developed in our laboratory.
For CM and FR targets, we used MODELLER to build up prediction models
based on the alignments of the target and the templates obtained from fold
recognition server such as 3D-PSSM, and if the target had the region without
alignment we modeled the tertiary structure of such regions using by ABLE.

Modeling with ABLE was based on the general fragment assembly method and
we used probability maps for mainchain torsion angles (phi-psi) at each
position of the target sequence, and flexible-length fragments obtained using
the match of secondary structures in addition to fixed-length (usually nine-
residue) fragments. To obtain flexible-length fragments, we first search a N-
residue fragment with similarity scores larger than a threshold. Next, we
extended this fragment to N+1 residues and re-calculated similarity score. This
process was continued until the score became lower than the threshold. The
similarity score was defined by sequence identity and the match of the
secondary structure. For searching flexible-length fragments, we increased the
weight of the secondary structure matching to obtain longer fragments.
Secondary structure prediction was performed by using PSIPRED. Typically,
we could obtain fragments with more than 20 residues including multiple
secondary structure elements for each NF targets. The probability maps of
mainchain phi-psi torsion angles were obtained from phi-psi values of amino
acids at the center of all nine-residue fragments with similarity scores larger
than a threshold. For this procedure, the effects of the fragments with higher
similarity scores were enhanced. Smoothing with Gaussian was applied to these
maps.

After building fragment libraries and probability maps for each amino acid,
1,000-100,000 tertiary structure models of the target were produced to
minimize potential energy by simulated annealing using these maps and

fragments. For each simulated annealing step, the structure transition type and
position were selected at random. The structural clustering was applied to
produced structures and up to five structures which were the nearest from the
centers of large clusters were selected. If the cluster with enough quality was
not obtained, the final prediction models were selected using by some
evaluation programs such as ProSa and VERIFY3D. Finally, sidechain
modeling was performed for these structures by using SCWRL version 3.0.

1. Wang,G. and Dunbrack,R.L. Jr. (2003) PISCES: a protein sequence culling
server. Bioinformatics 19, 1589-1591.

2. Ishida,T. et al. (2003) Development of an ab initio protein structure
prediction system ABLE. Genome Inform Ser Workshop Genome Inform.
2003; 14, 228-237.

BioDec - 67 models for 61 3D targets

Blind-testing the entropy-filtered profile-profile alignment for
fold recognition

I. Rossi'?, A. Zauli', E. Capriotti?, P. Fariselli?, and R. Casadio?

1 - BioDec srl, Bologna, Italy,
2. Dept. of Biology/CIRB, University of Bologna, Italy
ivan@biodec.com

Here at CASP6 we blind-test the performance of the Entropy-filtered'
Profile-Profile alignment method for fold recognition. This abstract summarizes
the protocol used to generate the submissions for the CASP6 experiment.

Assuming that A and B are two strings of symbols, P and Pp are the

rectangular matrices representing the position-specific frequency of the
alphabet symbols composing the strings (superscript T indicates a matrix
transpose operation), S is a (symmetric) substitution matrix, it can be derived
that the matrix D, defined as D= P?5 S Pj represents the “dot” matrix for the
profile comparison of the two strings. This can be efficiently computed by
means of standard linear algebra routines.

For each target/template comparison, we compute the dot matrix D using the
composition profiles generated by multiple alignment of the sequences reported
from a five-iteration PSI-BLAST? search on the Non-Redundant database,
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using an inclusion threshold of E=10 . The scoring matrix S used S is the
BLOSUMBG62? substitution matrix.

Our template set comprises the structures included in the ASTRAL SCOP*
database, release 1.65, whose sequence homology is less than 95%.

The dot matrix D is then searched for the top scoring alignment using the local
Smith-Waterman dynamic programming algorithm®. Next, the alignments
generated are subject to Shannon-entropy filtering, as described in ref.', using a
Shannon entropy threshold of 0.5, and the remaining ones are ranked according
to their Z-score. An alignment is taken into account only when its Z-score is
larger than 4.

Finally, the best-ranking non-overlapping alignments are used to generate a
composite CASP6 TS submission. However, if the target sequence coverage is
less than 30%, the template is flagged as a putative “new fold” and a “PARENT
NONE” submission is generated.

1. Capriotti,E., Fariselli,P, Rossi,l., Casadio,R. (2004) A Shannon
Entropy-based filter detects high-quality profile-profile alignments in
searches for remote homologues. Proteins 54, 351-360.

2. Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25
(17), 3389-3402

3. Henikoff,S. et al. (1998). Superior performance in protein homology
detection with the BLOCKS database server. Nucleic Acids Res. 26, 309-
312.

4. Smith,T.S. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol. 147, 147

5. Chandonia,J.M., Hon,G., Walker,N.S., Lo Conte,L., KoehLP., Levitt,M.,
Brenner,S.E. (2004) The ASTRAL compendium in 2004. Nucleic Acids
Res. 32, D189-D192

Biolnfo_Kuba - 70 models for 49 3D / 21 FN targets
Multimethod protein structure prediction

J. Pas
BiolnfoBank Institute
kuba@bioinfo.pl

To determine whether the structure of a target protein can be predicted using
homology modeling PSI-BLAST! search was carried out against the sequences
of proteins in the non-redundant protein sequence. PSI-BLAST iterations were
performed using manual inclusion/exclusion procedure.

After that multiple sequence alignment was built using clustalw? program using
selected proteins from PSI-BLAST profile. All alignments were manually
inspected.

Selection of template was confirmed wusing structure prediction
METASERVER?®, METASERVER was also used to choose template when no
significant hits were found using PSI-BLAST searches.

In addition other available information was used in an attempt to link the target
with a protein with known structure. It was mainly literature search, known
metabolic pathways, gene expression data, position on the chromosome,
distribution of folds in the organism and secondary structure prediction.

Selected target—template structural alignments were visually inspected in
SWISS PDB Viewer and if necessary modified. Molecular 3D models were
then built 3D using both SWISS-MODEL* and MODELLER® programs. Initial
models were subjected to detailed evaluation, mainly by addition visual
inspection of structural consistency and using Verify 3D program®. The same
evaluation procedure was performed for final models.

More than one template protein was used if possible after superimposition of
their molecular structures using 3d-hit program’. During the modeling
procedure superimposition of initial models were used to find best possible
backbone conformation

The overall quality of each modeled structure was evaluated in detail with the
Verify 3D program.
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Biopred - 64 models for 62 FN targets

Annotate CASP6 targets using sequence and structural
information

G. Chengl, D. Bakerl, and Ram Samudrala?
1 -Department of Biochemistry, University of Washington,

2 -Department of Microbiology, University of Washington
ram@compbio.washington.edu, {gcheng,dabaker}@u.washington.edu

We functionally annotate CASP targets using a combination of automated
annotations derived from the Bioverse database and webserver
(http://bioverse.compbio.washington.edu) as well as manual ones based on all
the information we could collect including sequence, structure and literature.

The Bioverse automated framework for annotation is described elsewhere'. For
the manual approach, we first perform a psi-blast search®. If this yields well-
annotated sequences, the GO function annotations of the homologues are
simply inherited. The GO process and GO component annotation are based on
literature related to the sequence. If psi-blast doesn't give enough information,
then the Sanger center pfam annotation web server® is used to annotate the
target sequence. If pfam hit is a DUF (Domain of Unknown Function), the 3D

Jury template from bioinfo.pl® is used to judge the function of the sequence.
Because the 3D Jury score represents the structural similarity between the target
and template best, we still check whether each template sequence profile has
functional motif residues that are aligned well with the target sequence profile
to ensure the function is not changed during evolution. If both template and
target have similar conservation pattern and the 3D Jury score is high, we
assign the function of target based on the best aligned 3D Jury template. For ab
initio targets, we have developed a motif based search algorithm to search the
decoy ensemble based on the motif to identify the potential function of the
target®.

The function site, binding site predictions are also based on the characteristics
of the target sequence. For psi-blast level targets, we do homology based
binding site mapping. The algorithm will superimpose® the ligand from the
template PDB on the homology model”® and map the functional residue based
on parent. For FR level targets, the same algorithm is used to map the function
site, but the FR model and the FR template are chosen based on function site
conservation. During the function site mapping, we can often discover
alignment problem at FR level targets. This process also helps us build better
FR level models. For ab initio targets, the function site is mainly predicted by
sequence conservation, since there are only very few such targets. Those
conserved polar residues clusters are identified manually. For some targets,
metal binding sites could be visually identified from the sequence alignment
based on residue type and sequence conservation.

1. McDermott,J., Samudrala R. (2003). BIOVERSE: Functional, structural,
and contextual annotation of proteins and proteomes. Nucleic Acids Res.
31, 3736-3737.
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Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402,
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Pfam protein families database. Nucleic Acids Res. 30, 276-280.
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Biovertis - 52 models for 49 3D targets
Protein structure prediction pipeline for industrial research

Walter A. Koppensteiner
Biovertis — Information driven drug design AG, Campus Vienna Biocenter
6, A-1030, Vienna, Austria
Walter.Koppensteiner@biovertis.com

Biovertis deploys, among other bioinformatics techniques, protein structure
prediction for the identification and validation of novel anti-microbial drug
targets. Structure prediction serves mainly two purposes: (1) inferring the
function of uncharacterized proteins and (2) building structure models to
accelerate subsequent NMR structure determination. All atom predictions are
modeled when required for certain applications like docking.

We have established a pool of prediction techniques to reduce the dependency
on the strengths and weaknesses of a particular method. Thus our pipeline
integrates both sequence profile and threading methods complemented by a set
pre-processing and post-processing techniques. Subsequently, our prediction
pipeline will be presented, where the actual structure prediction is separated
from pre- and post-prediction steps.

Pre-prediction steps
For each target protein, we predict the secondary structure’, transmembrane

helices?, signal peptides®, low complexity regions® and coiled coils®.
Additionally, we use InterProScan® to identify InterPro’ signatures in the target
sequence. The predicted features support the subsequent steps but also allow
making a statement about function and putative domain borders. Moreover, we
have observed that hydrophobic regions may confuse threading algorithms and
we remove such stretches from the sequence.

Structure prediction
The initial method deployed is an iterative sequence search using PSI-Blast®.

The first PSI-Blast run searches NCBI’s non-redundant (nr) sequence database.
The second run reloads the checkpoint file and searches a sequence database of

known structures, either a domain database derived from SCOP? or sequences
from the proteins in PDB'". Both sequence databases are clustered with a
threshold of 95% sequence identity to remove redundancy.

If PSI-Blast does not allow us to make a satisfactory prediction we switch to the
structure based methods FUGUE" and ProFit" which are applied
simultaneously. The latter uses the same fold libraries as PSI-Blast, FUGUE
uses the HOMSTRAD" database.

All structure prediction results undergo visual inspection of both alignments
and 3D models. Here we also incorporate the features predicted prior to
structure prediction. We regard this step as essential and avoid automated
assignments because we can eliminate false positive hits, can identify domain
boundaries and can recognize gross alignment errors.

In many cases, structure prediction is not completed in one cycle. Instead,
multi-domain proteins may undergo several repetitions where each domain is
predicted independently using the sequence of the putative domain as input. It
is thus not unusual, that different domains of a protein have been predicted with
different methods.

Post-prediction steps
Once a structural template has been found for a domain by one of the methods

described above, we have some post-processing methods to our disposal. If the
decision for the best template is ambiguous or the alignment quality appears
unsatisfactory, we deploy Prosa to base the optimization on the z-scores and
the energy profiles of the 3D models. Variations of the alignment can be
generated through the adjustment of ProFit parameters or by hand. If an all-
atom model is desired and the alignment quality allows the construction of a
sufficiently accurate model, we deploy third party software to construct such a
model. For CASP6 we have restricted our efforts to the prediction of the best
template for cases where sequence similarity was marginal.

Environment and packages
For good reasons, we have not implemented a “one-script-does-everything”

approach. Instead, we have built an environment where we can use the methods
in a flexible manner and which allows human intervention. For structure
prediction we have licensed the packages ProHit from ProCeryon Biosciences
GmbH, which integrates PSI-Blast and ProFit, and Tripos’ Sybyl which
contains FUGUE and HOMSTRAD. For routine applications, parameters are
set to their default values. If this does not give a satisfactory result, we change
parameters to increase sensitivity.
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Summary of results

For CASP6 we have submitted predictions for 60 targets, of which 34 have
been predicted with PSI-Blast. The remaining predictions were based on ProFit
and FUGUE results, often in a consensus manner. We aimed to make an
unambiguous prediction for every target. For three targets, however, we made
use of the option to submit more than one model per target. For another three
targets, we submitted a model containing two domains. All other models were
single domain predictions.
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Bishop - 150 models for 30 3D targets
A simple approach for ab-initio protein structure prediction
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ngan@compbio.washington.edu

Introduction

Our approach for ab-initio structure prediction for CASP-6 consists of three
steps: (i) exploring the conformational space based on simulated annealing and
appropriate energy functions, in order to generate a set of decoys (10000-20000
conformations) for a protein sequence of interest, (ii) filtering the decoys using
various energy functions, with the goal of enriching the overall quality of the
remaining decoys (300-600 conformations), and (iii) visually inspecting the
distribution of those remaining decoys through multi-dimensional scaling, in
order to look for clusters, and to pick five final conformations from those
cluster centers. The overall framework of the approach is simple. Novelties lie
in the choice, construction, and combination of the energy functions, and in the
formation of the hierarchical filters.

Step 1. Conformational Space Exploration
Residues predicted with high confidence to be part of a helix or sheet are first

set to the idealized helix and sheet phi-psi values. The rest of the residues in the
protein chain are set to extended conformation. Then, a standard Monte Carlo
scheme with simulated annealing is used to modify the conformation of the
“non-high-confidence” residues, by perturbing consecutive triplets of residues
at random positions. The perturbation of the triplet conformation is based on the
standard fragment replacement scheme'. The overall energy function used in
simulated annealing is a combination of six energy functions: (1) hydrophobic
compactness, (2) bad-contacts penalty, (3) an all-atom distance-dependent pair
potential®, (4) a residue-based distance-dependent triplet potential, (5) a phi-psi
potential, and (6) a potential based on the radial distance of a residue from the
center of the conformation. (The relative weights for these energy functions
were predetermined by applying an iterative training procedure on a set of test
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proteins.) Around 1000 to 2000 seeds are used to generate 10000-20000
decoys.

Step 2. Filtering
Our goal is to filter the 10000-20000 decoys down to a smaller set of decoys

with better quality. To achieve this, various linear combinations of a set of
energy functions are applied on the decoy set in a hierarchical manner. (The
weights used in the linear combinations were derived based on performing
logistic regression hierarchically on various subsets of the test proteins. A total
of 13 hierarchical filters were constructed.) This set of energy functions
includes the six mentioned in the previous section, plus three physical functions
(electrostatics, Van der Waals, and solvation), and several probabilistic
functions (virtual torsion angle, solvation state, a residue pair potential taking
into account the degree of conservation of the residues, a potential based on the
probability of a residue being within a prescribed cutoff distance from other
hydrophobic, hydrophillic and neutral residues, etc.). 300-600 decoys are
retained at the end of this step.

Step 3. Selection
Multi-dimensional scaling is used to produce a reduced-dimensional plot,

which enables us to visually observe the distribution of the remaining 300-600
decoys. In this plot, a particular decoy can be represented by more than one
point if it was picked up by more than one hierarchical filter in Step 2. (The
goal is to preserve possible consensus information available among the filters.)
We look for clusters of decoys and select five final conformations from the
centers of these clusters. This final step of visually picking five conformations,
a non-automated process, can be replaced by an automated scheme such as
statistical clustering in the future.

1. Simons,K.T., Kooperberg,C., Huang,E., Baker,D. (1997) Assembly of
protein tertiary structures from fragments with similar local sequences
using simulated annealing and bayesian scoring functions. J. Mol. Biol.
268, 209-225.

2. Samudrala,R., Moult,J. (1998) An all-atom distance-dependent conditional
probability discriminatory functions for protein structure prediction. J.
Mol. Biol. 275, 893-914.

BMERC (serv) - 133 models for 44 3D targets

PSDM: a tool for protein structural domain prediction using
bayesian fold recognition

Praveen F. Cherukuri', Gregory D. McAllister’, Temple F. Smith’

and Jadwiga R. Bienkowska **
! Bioinformatics Program, Boston University, MA
2Serono Reproductive Biology Institute, One Technology Place, Rockland, MA
3 BMERC, Boston University, MA
Jadwiga.Bienkowska@serono.com

Our structure prediction method employs Bayesian Fold Recognition (BFR)
and sequence-profile alignment software PIMAII. See Figure 1 for an overview
of how the method works. The server requires: (a) primary protein sequence in
FASTA format and (b) an e-mail address where the results are to be sent. The
current implementation of the BFR assumes that the query sequence represents
one structural domain. It is recommended that prior to submission to the
structure prediction server, the sequence of a multi-domain protein is analysed
by available tools such as CDART" and the sequence of putative single domains
are submitted to PSDM separately. This structure prediction service is available
as a publicly accessible web-based tool at http://bmerc-www.bu.edu/cgi-
bin/pcheruku/ServerScripts/PSDM.cgi.

The first step in our approach uses BFR to select a set of fold models most
compatible with a query sequence. Currently BFR uses a library of over 20,000
automatically built DSMs**. This DSM library was constructed from all
protein domains classified in the SCOP database®, release 1.61, which have less
than 95% sequence identity® and an additional set of protein structures that are
not yet classified in SCOP and have less than 40 % identity among themselves.

The BFR uses a filtering algorithm”® to calculate the probability of the
sequence given a DSM model of a structural domain. Typically several domain
models represent each distinct fold. Thus fold model is equivalent to the set of
models of domains that are classified under the same fold. The BFR assigns a
posterior probability to each fold. For each fold one structural domain is
selected as the best fold representative for the query sequence. Different query
sequences may have different SCOP domains selected as the best fold
representative even though the fold prediction is the same.

The query sequence is first threaded through the DSM library and the
probability of observing a sequence given the model, P(seq | model), is
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calculated by the Filtering algorithm developed by White!” . Each fold is
represented by several DSMs and the prior probability of observing a sequence
given a fold model is:

P(seq| fold;) =max{P(seq | model, ), model, € fold;)} (1)

The posterior model probability given the query sequence calculated according
to the Bayesian formula® is :

P(seq| fold;) -P(fold,)

P(fold, | seq) =—
Z P(seq| fold ;) -P(fold ;) ()

j=

where P(fold;) is the prior probability assigned uniformly to fold; over k folds.
Alternative methods for priors assignment have been investigated and it has
been established that they lead to insignificant improvements in the fold
recognition performance® over the method implemented here. Thus for a query
sequence the BFR selects the best representative SCOP domain for each fold
and assigns the posterior probability associated with each fold.

We recommend a use of a binary decision rule and the top ranking fold is
considered as an acceptable prediction if its posterior probability is greater than
0.5. Nevertheless, up to top 5 models with posterior probability greater than
0.01 are selected for further analysis by PIMAII.

The second step involves PIMAII and assesses the similarity of the query
sequence with the primary sequence of the selected SCOP domains. PIMAII
aligns profile- defining sequences for the selected SCOP functional domains
and the query sequence. Each profile is defined by a set of homologous domain
sequences. PIMAII is an iterative local dynamic programming alignment
algorithm described previously in'®" which begins with the two most similar
sequences and identifies a locally optimal alignment using the scoring scheme
described in". The resulting profile of these two most similar sequences is then
aligned to the next most similar sequence; the procedure is continued until all
the sequences have been aligned and a single alignment matrix is obtained. A
sequence may be skipped in any step of the alignment process if the
information content of the generated profile drops below a predetermined
value. We have tested different values of parameters used by PIMAII to
optimize this approach for the alignment of sequences with low similarity and
have selected a value of 5.0 for the information-content-cutoff

In order to align a query sequence to a SCOP domain sequence we use a set of
SCOP domain homologs. Homologs of a domain are selected through an
automated procedure described previously in*. Homologous sequences are
pooled together with the query sequence and PIMAII is used to generate a
common profile and alignment. If for any of the selected top 5 folds the
alignment can be generated, the server reports results. If the profile alignment
fails for all 5 top folds a pairwise sequence alignment is generated between the
query and the sequence of the top fold domain.

1. Geer,L.Y. et al. (2002). CDART: protein homology by domain
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boniaki_pred - 272 models for 56 3D targets

Protein structure prediction using intermediate resolution off-
lattice protein model (Refiner) and public accessible
threading and comparative modeling tools

M.J. Boniecki'?, A. Kolinski? J.M. Bujnicki'

! — International Institute of Molecular and Cell Biology, Laboratory of
Bioinformatics and Protein Engineering, °— Warsaw University, Faculty of
Chemistry, Laboratory of Theory of Biopolymers
mboni@genesilico.pl

At first each protein sequence was submitted to the Genesilico meta-server'.
The meta-server sends sequence to several servers which generate sequence
alignments. The Genesilico meta-server receives alignments, names of
templates and scores from servers. The meta-server additionally scores
alignments using Pcons® and generates a set of rudimentary models numerated
according to the target.

Further path of prediction depended on scores, consistence of alignments and
consistence of rudimentary models. Models were compared and consensus
distance restraints were calculated. For each pair of residues, depending on
distance consensus and distance between these two residues, energy weight,
and distance range without penalty, were calculated.

In cases of high scores and good consistence of restraints and alignments,
comparative modeling approach were performed. Initial model was generated
using standard comparative modeling tools, in the most cases Modeller?, in the
remaining cases Swiss-Model®. In cases of especially good scores, assigned to
only one template, high sequence similarity, these fragments, sometimes almost
entire protein, were fixed. Remaining fragments were refined or reconstructed
using Refiner. The reconstruction usually involved restraints obtained from
crude models. In cases, in which there was several good hits, all of them were
used to calculated restraints and entire molecule was refined by Refiner®.

In cases of not very good but reasonable scores and models that seemed to be
consistent, consensus distance restraints were calculated. When restraints
showed some consistence they were used in refining (refolding) simulation,
performed by Refiner. Starting structure was obtained using comparative
modeling tools, from best scored (or continuous) alignment. In some cases
simulation started from extended structure and it was fold using restraints.

In cases of bad scores and crude models that don’t show sufficient consistence,
an ab initio folding procedure was applied. In such cases Refiner was started
from extended structure without any restrains. When sequence was too long to
be treated by Refiner, protein seemed to be multidomain an attempt to get some
additional information was made. Usually Baker-Robetta® or public accessible
CAFASP models were used to achieve some restraints.

Refiner is an off-lattice intermediate resolution protein model. It represents
protein as a chain of Ca atoms connected to each other using virtual bonds of
constant distance 3.8A. Side chains are represented by one or two united atoms,
depending of size of the side group. Refiner is a program based on energy
minimization. It employs complex statistical forcefield calculated from
database of native structures. Refiner’s conformational searching scheme is
based on Monte Carlo methods. It employs asymmetrical Metropolis scheme
embedded in Replica Exchange Monte Carlo scheme.

Simulations were calculated on computer clusters in Interdisciplinary Center
for Mathematical and Computational Modeling (Warsaw University) and
Laboratory of Bioinformatics and Protein Engineering (International Institute of
Molecular and Cell Biology — in Warsaw).
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Brooks-Zheng - 170 models for 38 3D targets

Generate models for new folds by rewiring helices and strands
from known protein structures

Wenjun Zheng and Bernard Brooks
National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD 20892
zhengwj@helix.nih.gov

We propose a highly efficient way of generating structural models for
potentially ‘new fold’ targets from known protein structures as follows: based
on the secondary structure prediction, the target sequence of a single domain is
partitioned into segments of helices and strands; each segment is aligned onto a
given template structure based on compatibility of local hydrophobicity and
secondary structures; then all the aligned segments are ‘rewired’ by loops
connecting between neighboring helices or strands.

There are several major advantages: first, by allowing a ‘rewiring’ procedure
that does not follow the template’s sequential order (plus a swapping of C-
terminal and N-terminal of each segment) new folds with novel topologies can
be generated easily; secondly, by directly copying coordinates of helices and
strands from known structures, ‘native like’ features are kept in the generated
models (for example: well-formed beta sheets, native-like super-secondary
structural contacts etc); thirdly, by focusing on the packing of helices and
strands while postponing the loop-modeling to a latter stage, we can reduce the
search space significantly; fourthly, by extracting non-ideal helices/strands from
the existing PDB database we may be able to model twisting and bending
features of realistic secondary structures.

We conducted a preliminary study on the feasibility of generating a new fold by
rewiring the helices and strands from another old fold (fold definitions based on
Dali 1). Indeed, depending on classes of secondary structural content, 40%-75%
of them can be modeled with cRMSD=5A by this method.

This method in principle generalizes the standard threading-based fold
recognition algorithms by adding new flexibilities to model generation with
minimal increase of computational cost. By applying a set of selected score
functions and then clustering procedure to the generated models, we expect to
select a close-to-native model for the packing of helices and strands. Further
modeling of the loops will be pursued in the future.

1. Holm, L. & Sander C (1998). Touring protein fold space with Dali/FSSP.
Nucl. Acids. Res. 26, 316-319

BUKKA - 82 models for 18 3D targets
Ab initio potein sructure prediction

D. Katagiri, H. Ode, H. Ishikawa, T. Hattori,
Y. Syoji and T. Hoshino

Graduate School of Pharmaceutical Science, Chiba University
k-dai@graduate.chiba-u.jp

A theoretical method such as ab initio quantum chemical calculation and
molecular dynamics (MD) simulation is widely used for the analysis on
functional and structural properties of biomolecules, and the biomolecular
functions can be qualitatively evaluated'. As for the local structures of proteins,
it was suggested from quantum chemical techniques why secondary structures
like helix and B-sheet were dominantly stabilized.” * However, it is difficult to
predict the whole protein structures and further to quantitatively evaluate the
binding capacity through the theoretical method. In present, the theoretical
method has two problems. First, a large calculation time is needed for quantum
calculation even by the latest computational equipment. Second, the currently
available force field is incomplete to express the protein structures consisting of
amino acids in spite of considerable accumulation of force fields, those have
been derived from the post ab initio calculations or experimental data for
several small molecules. It seems that a new force field which is based on ab
initio calculation for all kind of amino acid residues is needed to MD
simulation. This new force field would lead us to catch the global minimum
structure of proteins, reasonably.

Our protein structure predictions were carried out for 24 targets that have 130
or less residues and including two canceled targets. All structure predictions
were started from a straight form of the polypeptide chain as the initial
configuration. Then, a temperature ramp was used to suddenly raise the
temperature of the whole system up to 500K for 80 ps. After this heating
procedure, cooling simulation was performed. A temperature ramp was used to
gradually decrease the temperature of the whole system down to 288 K for 7 ns.
All molecular dynamics simulations were performed with a 1.0 fs time step, a
no cut off for Lennard-Jones interactions, and the use of SHAKE* for restricting
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motion of all covalent bonds involving hydrogen, using modified version of the
AMBER 7° suite of programs.

As for a force field, originally developed force field was employed, where each
of the 20 amino acids has the respective parameters set. The parameters for the
20 amino acids were generated by the force field parameterizing technique
developed by us, in which quantum chemical calculation is essentially required.
Accordingly, the structures of amino acids were optimized by Gaussian 98°
program using density functional method” ( B3LYP ) with 6-31G** basis set,
before generating the respective force field parameters.

Solvent effects were incorporated using the Generalized Born model?, as
implemented in AMBER 7.

The structures of 5 models, T0196°, T0205', T0207", T0212' and T0254",
have been registered on the Protein Data Bank'* (PDB) in 13-Oct-2004. The
backbone rmsd between PDB structures and the prediction structures were
T0196 - 15.16 A, T0205 Chain A - 11.45 A, T0205 Chain B — 15.83, T0207-
11.63 A, T0212-19.36 A, T0254 Chain A — 16.65 A and T0259 Chain B - 16.66
A, respectively. In the T0196 molecule whose local structure corresponding to
the 90 residues is cleared in PDB, 28 residues of the predicted structure
matched with PDB from the view point of the secondary structure. The
secondary structure was defined by classifying the residues into helix, B-sheet
and other structure using dssp*® program. In the T0205 Chain A, T0205 Chain
B, T0207, T0212, T0254 Chain A and T0254 Chain B molecule, the number of
19 out of 69, 16 out of 103, 31 out of 75, 22 out of 126, 42 out of 107 and 42
out of 107 residues were compatible with PDB, respectively. Calculated
potential energies of the predicted structures were stable than those of PDB
structures in all case.

Our prediction accuracy was high for the helix region, however, low for the B-
sheet region. 3-sheet region tended to be predicted as amorphous structure, and
turn region between B-sheet and -sheet structure, as helix structure. Moreover,
the prediction accuracy was low in the region including a lot of polarity amino
acid side chains such as Arg, Asp, Glu and Lys. It is quite likely that these low
accuracies depend on the computational condition of making the original force
field in vacuo. As a matter fact, structural difference between in water and in
vacuo was observed'®. Therefore, making the original force field in water
solvent will be needed to achieve a higher accuracy prediction.
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Bystroff - 36 models for 30 RR targets
Contact map prediction using HMMSTR

X. Yuan', Y. Hou?, Y.-M. Huang', Y. Shao' and C. Bystroff
' - Dept of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180,
2- Dept of Computer Science, National University of Singapore, Kent Ridge,
Singapore 119260
bystrc@rpi.edu

Predictions were made in the residue-residue contact (RR) format for CASP6.
Sequences that were determined not to have a close homolog among the known
structures were predicted using HMMSTR, a hidden Markov model for local
structure motifs?, and associated algorithms.

A PSI-BLAST' amino acid profile for the target was used to calculate the
position-specific Markov state probabilities, gamma. The gamma matrix was
classified into one of 58 SCOP superfamilies using a support vector machine,
SVM-HMMSTR, that was trained for fold recognition using HMMSTR state
composition and local dynamic programming alignments®. The gamma matrix
was used to calculate pairwise contact potentials, Eij, using a method described
previously*.

To predict contact maps from contact potentials, one of the following three
approaches was used: (1) Alignments were made between the target Eij matrix
and template Eij matrices of SVM-HMMSTR hits, using a fragment assembly
approach. Or, (2) conserved features were recognized by eye in the colorized
Eij image and template images or SVM-HMMSTR hits, and alignments were
drawn by hand. Or, (3) no templates were used and contacts were predicted
directly from the target Eij image using pathways.

Possible folding pathways were designed by assigning contacts first to local
supersecondary structures with good Eij scores, then to protein-like contact
map features that were physically possible given the already-defined contacts.
Simple rules and drawings were used to predict which contacts were physically
possible. Combinations of template-based and ab initio predictions were
sometimes made. Each target had a different story, and the strategy evolved
over the course of the CASP6 season. More on this method can be found from
the following URL: http://www.bioinfo.rpi.edu/~bystrc/pub/casp6abstract.pdf.
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CAFASP-Consensus - 64 models for 64 3D targets
CAFASP-CONSENSUS

H.K. Saini and D. Fischer
Center of Excellence in Bioinformatics, University at Buffalo
901 Washington St., Suite 300, Buffalo, NY 14203
hkaur@bioinformatics.buffalo.edu

The idea of CAFASP-CONSENSUS was to submit predictions that
corresponded to publicly available information published upon the release of
each target at CAFASP web site
(http://www.cs.bgu.ac.il/~dfischer/CAFASP4/targets.html). ~ The  published
information corresponded to the selection of 3djury, which produces a
consensus prediction using the models reported by all the CAFASP servers. In
many cases, the selection consisted of only C% gappy models. In order to
generate full-atom refined models, the 3djury selection was refined using the
Nest package. The CAFASP-CONSENSUS predictions to CASP thus entail a
baseline level of performance to which human CASP predictors could be
compared to.

Casplta - 348 models for 64 3D / 63 DP / 63 DR / 64 FN targets

An integrated approach to the prediction of protein structure
and function

S.C.E. Tosatto', O. Bortolami', A. Cestaro', G. Cozza’, M. Lexa’,

S. Toppo?, G. Valle', and S. Moro?
! — Dept. of Biology and CRIBI Biotech Centre, °— Dept. of Pharmaceutical
Sciences,®>— Dept. of Biological Chemistry, University of Padova
silvio@cribi.unipd.it

We describe a method integrating the major aspects of protein structure and
function prediction. The process starts with simple 1D predictions which are
used to simplify the following steps leading towards full 3D prediction. In some
cases results gathered further down the prediction pipeline are used to improve
the initial decisions.

The first step for each target consisted in predicting stretches of protein
disorder. This was done using an experimental SVM (support vector machine)
method trained to discriminate disordered regions according to their sequence
composition. A sliding window of 11 residues is used to calculate the reative
abundance for each of the 20 amino acids. This SVM was trained on two sets of
ordered, resp. disordered, sequences. Since the SVM has a tendency to
overpredict disordered regions, the predicted secondary structure and, in the
case of homology modeling targets, presence of a structural template were used
to remove false positives.

The domain structure of each target was then predicted based on a combination
of several methods. First, the CDD database’ is scanned to determine obvious
domain boundaries. Longer sequence fragments predicted to be disordered are
also excluded from further analysis. PEPTIMEX, an amino acid extension of
the PRIMEX method® for sequence pattern matching, is then used as an
experimental ab initio method for domain identification. The program uses
correlated sequence patterns at a given distance to establish the likelihood of
two fragments belonging to the same domain. In some fold recognition cases
the domain structure was also inferred from the presence of particular folds
covering part (or all) of the target sequence.

The function of each target domain was assessed in terms of known sequence-
based information on the target itself and clearly homologous sequences. This
was done using InterProScan®. The collected data was cross-referenced and
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checked with the QuickGO* browser for the lowest compatible node in the GO
tree. On some occasions, the knowledge of a structural template (identified via
fold recognition) was used to infer possible molecular functions. The cellular
component was also guessed with the aid of signal peptide predictions.

The tertiary structure prediction was based on results generated by our FOX
server (see abstract by S. Toppo et al.). In homology modeling cases, the top
scoring template was selected. For more difficult fold recognition targets, the
results of the CAFASP meta server were cross-referenced with the FOX results.
In particular, we took advantage of the extensive sequence space and back-
validation data collected by FOX. Since the server stores the results for a large
number of PSI-BLAST® searches in the sequence space, it is possible to
highlight cases were solutions had been overlooked. In the most difficult cases,
i.e. when PSI-BLAST found no other sequences, the choice was primarily
based on secondary structure compatibility. For some difficult targets two or
three different templates were selected for alignment and model generation.

The final choice for target-to-template alignment was based on the construction
of raw 3D models and their evaluation with the Victor/FRST scoring function
(see poster abstract by S.C.E. Tosatto for details). For both the target and
template sequence a PSI-BLAST search (4 rounds) was started on the NR
database clustered at 90% sequence identity to generate sequence profiles.
Secondary structure was predicted for both sequences using PSIPRED®. This
data was input into the profile/profile alignment program developed for the
Arby server’. Rather than choosing a single alignment, four parameters
(sequence and secondary structure weight, gap open and gap extension) were
systematically modified to generate a total of 625 alignments. These were used
to construct raw 3D models evaluated with Victor/FRST. The highest scoring
alignment was chosen as the final alignment, with manual inspection of
insertions and deletions limited to shifting gaps into loop regions, where
appropriate. This alignment was submitted to the Homer server®. Conserved
residue coordinates are copied, while indels are modeled using the fast divide &
conquer method® and sidechains placed using SCWRL™.

In cases where the homology to a known structure was evident, a more complex
modeling strategy was used after alignment selection in order to increase local
conformational sampling. The MOE modeling suite (Chemical Computing
Group Inc.) is used to generate an ensemble of models for the target structure.
The software generates independent models using a Boltzmann weighted
randomized modeling procedure combined with a database search of fragments
in the PDB" that cover insertions and deletions. Sidechains are modelled from
a high-resolution rotamer library. The procedure ensures the construction of
numerous variants of the model, which are evaluated with a residue packing

quality function. The best models are selected for further automated refinement.
The final model is chosen after visual inspection and evaluated with the
Victor/FRST function from an ensemble of two to five locally minimized
intermediate models.

In addition, another model (number 5) was submitted as the top scoring
prediction for the Victor/FRST function for model quality estimation. This
program had been entered for the MQAP (Model Quality Assessment Program)
category in the CAFASP-4 experiment. Evaluation in this category yielded
energy values for all models submitted to CAFASP by automated servers. It is
therefore possible to evaluate how well this function performed in CASP-6 in
assessing the quality of submitted server models.
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Casplta-FOX (serv) - 315 models for 63 3D targets

FOX (FOId eXtractor): a protein fold recognition method
using iterative PSI-BLAST searches and structural alignments

P. Fontana', S.C.E. Tosatto?, R. Velasco' G. Valle® and S. Toppo®
! Istituto Agrario di San Michele all'Adige
2 Dip. di Biologia & CRIBI Biotech Centre, Universita' di Padova
3 Dip. di Chimica Biologica, Universita' di Padova
stefano.toppo@unipd.it

We present a fold recognition method based on the combination of detailed
sequence searches and structural information. Presently the protocol
implements two different approaches to assign the most likely fold to the target
protein sequence: the first is based on database secondary structure search and
the second is based on iterative database sequence search.

In the first phase a secondary structure prediction of the target is performed
based on the ConSSPred' protocol. This prediction is used to search for hits
against a database of known secondary structures extracted from PDB (using
DSSP). The search is based on a two-step strategy: the first step is based on a
Smith-Waterman local secondary structure similarity search with a specific
substitution matrix optimized for secondary structure alignment?. The second is
based on a global alignment based on SSEA® (Secondary Structure Element
Alignment), as implemented in our program MANIFOLD?, to refine the score
and the alignment itself in the region extracted from the first step. At the end of
the first phase a list of hits that share a similar secondary structure topology
with the target sequence is extracted.

The second phase is based on a modified protocol for scanning the sequence
database called SENSER?®. In the beginning of the second phase, BLASTP® is
used to scan the target sequence against the NR database. These initial hits are
clustered to reduce sequence bias and a seed alignment with 20 or fewer
sequences generated. This step ensures that PSI-BLAST’ can be jump-started
with a more sensitive initial profile, increasing its sequence diversity. PSI-
BLAST is run for four iterations (e-value inclusion threshold 10e-3) on the
NR60 database of known sequences. NR60 is produced by applying the CD-
HIT® algorithm to cluster the NR database at 60% sequence identity. Sequences
producing NR60 hits with the query are assigned either to the significant
sequence space (e-value <= 10e-3) or the trailing end (e-value <= 10) for
further use. The profile is used to search the PDBAA database of sequences
with known structure. If a significant PDBAA hit (e-value <= 10) is found, the

protocol proceeds to the back-validation step (see below). If no significant hit is
found, or the hit does not back-validate, a new PSI-BLAST search, using the
above "4+1" protocol on NR and PDBAA, is started for the highest ranking
sequence (i.e. lowest e-value) in the significant sequence space. Sequences
from NR60 matching the query are also assigned to either the significant
sequence space or the trailing end. Significant PDBAA hits are again submitted
to back-validation. If no significant PDBAA hit is recorded and the significant
sequence space has been exhausted, then the protocol uses the trailing end
sequences as additional starting points for PSI-BLAST searches. In contrast to
previous sequences, which were assumed to be similar enough to the target to
imply homology, these sequences are submitted to back-validation before
proceeding to the "4+1" PSI-BLAST protocol. The back-validation step
consists in using PSI-BLAST to find the target starting from a different query
sequence, found as described above. L.e. due to the asymmetric nature of PSI-
BLAST, if sequence A finds sequence B it is not always the case that B also
finds A. Sequences that back-validate are more likely to be correct hits. Once a
sequence from PDBAA back-validates and its secondary structure is compatible
with the one of the target sequence as found in the first phase, the protocol
builds a target to template alignment and stops.

The procedure described so far serves to identify a template structure for the
target sequence. In order to produce an accurate alignment, a profile-profile
alignment approach has been used. The method is based on a program
developed for the Arby server’ which uses information from secondary
structure predictions and sequence profiles. Alignments are automatically
generated by systematically testing 625 different parameter combinations
involving the weigths given to sequence profile and secondary structure of both
target and template. Five values of each parameter are tested and chosen from a
reasonable range. Each target-template alignment is used to build a raw model
whose quality is evaluated on the basis of its estimated quality (see abstract of
S.C.E. Tosatto). The best scoring target-template alignment is chosen to build
and refine the final model.

The final model is generated using the package HOMER
(http://protein.cribi.unipd.it/Homer). This involves the following steps. First a
raw model of the conserved parts is constructed from the template. The
conserved backbone 3D coordinates are copied and missing side chains placed
with SCWRL'". Insertions and deletions are reconstructed using an enhanced
version of the fast divide & conquer loop modeling method". An experimental
version of the FOX server is available at the following website address
http://protein.cribi.unipd.it/fox.
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CBRC-3D - 319 models for 64 3D / 22 FN targets

Comparative modeling and fold recognition using FORTE
series

K. Tomii, T. Hirokawa, and C. Motono
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-43 Aomi, Koto-ku, Tokyo, Japan
k-tomii@aist.go.jp

For fold recognition, profile-profile comparison is a powerful method to
identify the structural similarity of two proteins that are compared. The method
is also highly effective in improving sequence-structure alignments, even in
comparative modeling. Recently, Wang and Dunbrack Jr.' performed a large
series of benchmark tests using several profile-profile comparison methods.
They suggested the effectiveness of deriving sequence-structure alignments
from different protocols. We developed several descendants of our profile-
profile comparison method” to make use of known structural information for
protein structure prediction. Our prediction strategy in CASP6 is simple. For
every target of CASP6, we have derived target-template alignments from
several different protocols of profile-profile comparisons. We then constructed
and exhaustively evaluated 3D models based on those alignments. Then we
selected proper model(s) among them. We have specifically addressed the
validation of our simple approach for protein structure prediction through
CASP6. Our team was able to improve the selection of good models according
to the fold recognition result in CASP5°. Consequently, we applied a more
stringent method for 3D-model evaluation this time.

We devised three automated servers for fold recognition to investigate the
possibilities of different profile-profile comparison protocols: FORTE1?,
FORTE2, and FORTEILT. The first, FORTEI, is the simple profile-profile
comparison technique that is also used in CASP5. FORTE?2 performs the same
protocol as FORTEL for profile-profile comparison using enhanced profiles.
FORTEIT is a somewhat novel procedure of profile-profile comparison. All
three of their servers were involved independently in CASP6. Aside from those
three servers, we have developed and employed two systems that are also based
on a profile-profile comparison method. One is a system, FORTE-H, that has
hybrid profiles which contain sequence and secondary structure information.
This system was inspired by a paper of Tang et al.,” but the generation and
formulation of profiles differ slightly from their reported method. The other
system, FORTE-SS, was developed for local profile-profile alignments. This
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system was used mainly for exploring local structural templates when we failed
to find global structural similarity of targets to known protein structures.

Modeling of a target protein based on the target-template alignments from four
or five FORTE servers consists of two modeling process: (1) preliminary 3D
model generation for master template selection, and (2) refinement of target-
template alignments and reconstruction of accurate 3D models. We have
controlled the variety or closeness of sequences that are included in profiles to
be compared. Thereby, we have refined the alignments. Both processes, mainly
used a molecular modeling program, MODELLER?, for generating the 10 full-
atom models for a target-template alignment. All of the generated models were
evaluated based on a structural quality score (g-score) calculated using
Verify3D® and Prosa2003” programs. This combination scheme for structural
evaluation is more stringent than using a single evaluation method in our model
selection.

Exhaustive modeling was performed in the preliminary 3D-model generation
process. It used available templates (maximum 100 templates each for FORTE
servers). The number of applied templates was reduced only for CM and easy
FR targets that had promising templates with extremely high FORTE Z-scores.
Acceptable 3D models from all candidates for the master templates in the next
stage were estimated using their g-scores. The refinement process reconstructed
3D models of targets using a multi-template modeling approach with a master
template and its structural neighbors, which were collected from a VAST®
server after refinement of the target-template alignment if the neighbors were
available. Secondary structure prediction and expected residue-residue contact
information was included in the MODELLER restraint parameters to refine the
local structures. We selected final models by their g-scores and human
intervention when related knowledge was available from literature or other
bioinformatics analysis results.

In addition to the procedures stated above, the use of information of S-S bonds
provided additional evidence to choose templates for some cases. For possible
FR/NF targets, some local structures or segments were constructed and
validated using a library® of sequence-structure relationships derived from a
known structure database. Some CM models were refined using their MD
simulations. Functional predictions of targets were produced by observing
motif conservation, employing knowledge from literature, using evolutionary
trace method, and using human intervention of sequence conservation.
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CBRC-DR - 184 models for / 64 DP / 64 DR targets

Prediction of disordered coil regions in proteins by threading
and secondary structure prediction

T. Noguchi', S. Hirose?, K. Shimizu ** and K. Tomii'

! — Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, Japan *—Pharma Design, Inc., Japan
3~ Graduate School of Science & Engineering, Waseda University, Japan
noguchi-tamotsu@aist.go.jp

We predicted structurally disordered coils in protein sequences using a protocol
based on the following three steps: 1) We identified putative coil regions using
threading methods (FORTE1', Superfamily? and SAM-T99%) combined and/or
complemented with secondary structure predictions (PSIPRED*, PHD?, Jpred®,
Sspro’, Prof® and SAM-T99); 2) We calculated the disorder propensity of the
putative loop regions identified above. 3) Finally, we checked that the above
predicted disordered regions were not inter-domain regions using domain linker
prediction programs (DLP° and DomCut'’). The predictions were performed at
the META-PP meta-server", except for FORTE1, DLP and DomCut.
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In step 1, loop regions were determined using homology modeling with
FORTE1 only when the target’s scores were larger than 10. In this case,
homology modeling was reliable and coil regions of a query sequence were
assigned by aligning the target protein to the template protein sequence of
FORTEL. For targets whose fold identified with scores between 5 and 10
(5<=FORTE1<10), the secondary structures were not reliably determined by
single threading method (FORTE1). Thus, we identified the coil regions of a
target sequence by a consensus alignment on the template structure by three
threading methods. Furthermore, when the template structures differed among
the 3 threading methods, the alignment on the template with the highest
FORTE]1 score was used. Consensus secondary structure predictions were used
to identify coils in regions, which were not assigned by threading. We
prioritized predictions of PSIPRED, when no consensus secondary structure
prediction was obtained. For sequences defined as new fold with FORTE1
(score<5.0), coil regions of the target sequence were assigned by the consensus
secondary structure predictions.

In step 2, the disorder propensity for amino acid type was calculated using a
non-redundant (sequence identity less than 30% and sequence length of a
disorder region more than 5) PDB chain set compiled by PDB-REPRDB". For
the 700 representative chains the disordered regions were identified in the same
manner as for DISOPRED"?, namely by comparing the SEQRES and the ATOM
records in the PDB file and identifying the residues for which alpha carbon
atoms coordinates are missing. Three sets of propensity scores were calculated
for each sequence by dividing the sequence into an N-terminal, C-terminal and
a central region.

We predicted disordered loop regions in proteins using the propensity and the
loop regions as defined above, and according to the following criteria. All coil
regions with three or more consecutive amino acids with high propensity and
with an average propensity greater than 1.2 were predicted to be structurally
disordered.

In the last step, we used two domain linker prediction methods to verify that
the predicted disordered regions do not belong to inter-domain regions. We
prioritized predictions of DLP, when no consensus domain linker prediction
was obtained.
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CBRC-DR-SVM - 108 models for 55 DR targets
Predicting protein disordered regions using SVMs

K. Shimizu "?, S. Hirose® and T. Noguchi'

! — Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, Japan ; ?— Pharma Design, Inc., Japan;
3 — Graduate School of Science & Engineering, Waseda University, Japan
kana@muraoka.info.waseda.ac.jp

We predicted protein disordered regions using a machine learning approach.
This method has three steps. In the first step, protein-secondary-structures are
predicted via PSI-PREPD". In the next step, inputted sequences are divided into
sliding-windows of size m (If the window is on terminal areas, m =7. If not,
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m=15.). Finally, sequence features are extracted from the windows, and then
each window is classified as an order or a disorder using Support Vector
Machine (SVM)s, which is a powerful classification algorithm.

We prepared 834 attributes as input feature vectors for SVMs. These attributes
included (A) 20 amino-acid compositions, (B) flexibility, (C) 10 compositions
based on the physico-chemical characteristics of amino acids, (D) 400
compositions of adjacent amino acids, (E) 400 compositions of two amino acids
with one residue between the two, and (F) results from protein-secondary-
structure predictions which have possibility scores of 3 attributes, Helix, Beta-
sheet, and Coil. Flexibility was calculated based on the score of normalized
flexibility parameters?, and all the physico-chemical characteristics of amino
acids are listed in Table 1.

Since predictions depend on the positions of the windows, we learned and
classified data separately according to the areas as follows. Basically, sequences
are divided into an N-terminal area, a Central area and a C-terminal area.
However, there is no concrete definition for “N-terminal area” or “C-terminal
area”, and windows on the boundaries include both central features and
terminal features. Thus, we also learned and classified samples on the
boundary areas, then integrated the results. We defined the N-terminal area as 0
to 10, the Central region as 10 to N-10, the C-terminal area as N-10 to N, and
both boundary areas as 5 to 15 and N-15 to N-5. (The sequence length is N;
where i means i" position from the N-terminal.)

Both the 693 mnon-redundant Tape 1: Charactaristics of amino acids
(sequence identity is less than

30% and the sequence length of Hydrophilic Aromatic a
disorder region is more than 5) Hvdrophobic Aliphatic
PDB chains compiled by PDB- C}}iar gg d Tinp
REPRDB? and the 135 chains y
. . . Plus Small
that were listed in previous Minus Polar

research?, were used for learning
process.

Basically, the method described above was used for all predictions, but different
kernels for SVMs and different attributes were chosen depending on the
situation. In model 1, the RBF kernel and 434 of the attributes (A+B+C+D+F)
were used for all the predictions. In the N-terminal area of model 2, the
polynomial kernel and 34 of the attributes (A+B+C+F) were used. In the
Central area of model 2, the polynomial kernel and all of the 834 attributes
were used. In the C-terminal area of model 2, the polynomial kernel and 434 of
the attributes (A+B+C+D+F) were used.
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CBSU - 145 models for 64 3D targets

Generation of protein structure models from fold-recognition
and remote structural neighbors of templates

D. R. Ripoll and J. Pillardy
Computational Biology Service Unit, Cornell Theory Center - Cornell
University; Rhodes Hall Ithaca NY 14853-3801
cbsu@tc.cornell.edu

We developed a protein structure prediction approach that was systematically
applied to all the CASP6 targets. The principal source of structural information
for each target was collected from the BIOINFO (3D-Jury)!, LOOPP? and
ROBETTA? servers. The templates used in the structure generation of our
models were selected using the following conditions: (i) predictions from the
three servers that consistently pointed to a structure (or domain of a structure)
from PDB* (ii) if the servers provided predictions with low-level of confidence,
only templates for which the secondary structure was highly consistent with
that one predicted for the target sequence were further analyzed; (iii) whenever
it was possible, structural alignments of the template structure with proteins
sharing the fold but baring low sequence identity were constructed to identify
the essential secondary structure elements and to determine the regions of high
sequence variability. The Combinatorial Extension method® was used to obtain
the corresponding structural neighbors having low sequence similarity (less
than 30%) and relatively low (less than 5A) C“ rms deviations with the
template; (iv) for each template, attempts were made to improve the predicted
sequence alignments provided by the servers by generating all-atoms 3D
models where all essential elements associated with the template fold were
present using the program MODELLER®. A set of rules were systematically
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applied, e.g., (a) putative fragment deletion in the target sequence cannot
eliminate a central strand of a PB-sheet; (b) if an insertion falls inside an o
helical region, either the a-helical fragment is extended or the insertion is
shifted toward the nearest loop region in the template fold. Otherwise, if the
insertion falls in the middle of a B-strand, it is shifted toward the nearest loop
region. In addition, a graphic program (DS-Modeling) was used to attempt to
optimize further the alignment by using the hydrophilic/hydrophobic character
of the residues.
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CHEN-WENDY - 51 models for 23 3D targets
Methods and algorithms in comparative protein modeling

J.L. Pellequer’, G. Imbert', O.Pible’, I. Vergely' and
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Our comparative modeling approach is based on semi-automated prediction
schemes with permanent user interventions. Putative template molecules were
identified indulging in the CAFASP4 web server. We took advantage of the 3D
Jury selection. Protein sequences of identified putative templates plus other
homologous sequences were re-aligned using CLUSTALW/T-COFFEE'. The
resulting multiple alignment was then manually refined with an in-house
interactive tool to take into account the secondary structure of templates. Indel
locations were refined by computational-graphics analysis of the three-
dimensional structures of selected templates. In modelling CASP6 targets, a
single template was used to build the target. We submitted multiple models
corresponding to alternative template structures.

Side chain replacements and optimization were performed using our automatic
program?. Replaced side chains were clustered and optimised in two steps: first,
side-chain rotamers® were optimised at a cluster level, and second, the chi
dihedral angles of each side chain were minimized at a residue level. Indels
modeling were performed by optimizing backbone dihedral angles to close the
loop gap. The coordinates of loop residues in deletions were taken from the
template structure whereas residues in insertions were from our library. Side-
chain conformations of loop residues were optimized according to the recipe of
our side-chain positioning program. Additional minor refinements were
performed by XPLOR energy-minimization in the CHARMM-22 force field*.
To avoid over-minimization, the convergence criterion was set to between 1 and
4kcal/mol/A while the Coulombic interaction was turned off for minimizing
side-chain atoms. Each model was visually scrutinized to identify potential
conflicts in side-chain conformations and to maximize side-chain-to-main-
chain hydrogen bonds. Ranking models was performed by comparing the
results of PROCHECK?®, PROSAII®, VERIFY3D’, ERRAT2.0%, and hydrogen
bonding (Pellequer & Chen, unpublished). When result is ambiguous, emphases
were put on PROSAIL
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CHIMERA - 65 models for 64 3D targets

A versatile web user interface system for highly accurate
protein structure prediction: SKE (Sophia-kai-Ergon)
CHIMERA

M. Takeda-Shitaka, G. Terashi, D. Takaya, K. Kanou,

M. Iwadate and H. Umeyama
Kitasato University
shitakam@pharm.kitasato-u.ac.jp

Methods

Our laboratory registered group CHIMERA in CASP6 and groups FAMS and
FAMD in CAFASP4. CHIMERA is a partially automatic modeling system that
enables human intervention at necessary stages. Procedures of groups FAMS
and FAMD, fully automated modeling servers, are very important and essential
for large-scale genome modeling. In many cases, however, the procedures using
human intervention are more accurate than fully automated modeling
procedures. In previous CASP5, the results demonstrated that group CHIMERA
constructed more accurate models than FAMS and FAMD did. In CASP6, we
developed SKE CHIMERA, a web user interface system for highly accurate
protein structure prediction based on the CHIMERA modeling system. This
system enables human intervention at necessary stages easily.

The modeling procedure is 1) selection of reference proteins, 2) alignments,
and 3) construction of model structures. Accuracy of the models depends on
selection of reference proteins and on generating alignments. If reference
proteins and alignments are wrong, model structures become wrong even

though the modeling software is reliable. Therefore, we laid emphasis on these
steps. These steps are based on the results of eight kinds of methods, BLAST,
PSI-BLAST, PSF-BLAST, RPS-BLAST, IMPALA, FASTA, Pfam and PRED-
FASTA (see abstracts of groups FAMS and FAMD). In high homology cases,
we selected reference proteins from these results according to the secondary
structure predictions. In low homology cases, we considered the reference
proteins shown by automatic fold recognition servers in addition to the
reference proteins shown by eight programs.

We generate alignments taking biologically important region, secondary
structure predictions, homology, hydrophobic core etc. into consideration.
Multiple templates are used when possible.

Based on the alignments, we constructed model structures using CHIMERA
modeling system or FAMS modeling system. This step was automatic in most
targets.

Results and Discussion

At present, the X-ray structures of 23 target domains have been released. Then
we compared our models of groups CHIMERA, FAMS and FAMD with the
corresponding X-ray structures, and calculated GST_TSs. As a result, 18
models of group CHIMERA were more accurate than those of FAMS and
FAMD. 5 models are almost equal. These results demonstrated that our
procedure that enables human intervention at necessary stages improves the
model quality. In the post-genomic era, our highly accurate protein structure
prediction system is essential for investigation of protein function, structure
based drug design etc.

1. Takeda-Shitaka,M., Takaya,D., Chiba,C., Tanaka,H. and Umeyama,H.
(2004) Protein structure prediction in structure based drug design. Curr.
Med. Chem. 11, 551-558.

2. Yoneda,T., Komooka,H. and Umeyama,H. (1997) A computer modeling
study of the interaction between tissue factor pathway inhibitor and blood
coagulation factor Xa. J. Protein Chem. 16, 597-605.

3. Ogata,K. and Umeyama,H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing. J. Mol.
Graphics Mod. 18, 258-272.
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Cinzia - 48 models for 48 FN targets
The melting pot of tools for function prediction

R. Calabrese!, P. Fariselli', I. Rossi** and R. Casadio!
' — Departement of Biology University of Bologna ,Via Irnerio 42 40126
Bologna (It), - BioDec s.r.l, Via Fanin 48 40127 Bologna (It)
casadio@alma.unibo.it

Our procedure for target function prediction is essentially based on the
application of an ensemble of web tools, including ours, specifically suited for
database mining, sequence alignment, sequence comparison, post translational
modification, and protein structure prediction.

In our procedure, the first step consists in retrieving and collecting all
information of interest for function prediction from a number of databases such
as: Pfam!, InterPro? Pir’, Prosite* , SwissProt® , PDB® and others.

Then, when necessary, in order to confirm or add new features to the annotation
of the target we proceeded as follows: first the target was aligned with
PsiBlast” towards the june/04 nr release to retrieve a multiple sequence
alignment; the formatted output was then routinely visualized with Jalview® to
find well conserved region. Blocks of aligned sequences were selected for
further refinement and by means of the PRATT?® program a consensus pattern
therefrom derived was used to scan the Prosite database for annotated
sequences similar to our target.

Along with the above procedure we also used the PSIBlast derived profile
(PSSM) to search the PDB for homologues of known structure and function

For annotating post translational modifications, and phosphorylation, we have
merged outputs deriving from two servers available online (
http://www.cbs.dtu.dk/servicesProtFun;http://www.scansite.mit.edu/motifscan
seq.phtml). In this case only the prediction with the maximal score by both
servers were retained.

For predicting the presence of disulfide bridges, we have used a neural network
based tool developed by our research group, called CYSPRED that predicts the
cysteine bonding state (http://www.biocomp.unibo.it)

1. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V., Griffiths-Jones,S.,
Khanna,A., Marshall, M., Moxon,S., Sonnhammer,E.L.L., Studholme,D.J.,

10.
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CLB3Group - 268 models for 54 3D targets

Predictor@home: a multiscale,distributed approach for
protein structure prediction

C. An, M. Taufer and C.L. Brooks III
The Scripps Research Institute,
10550 North Torrey Pines Road, La Jolla, CA 92037, USA
brooks@scripps.edu

Motivation

In the previous CASP exercises we focused our efforts on addressing basic
algorithmic and/or scientific questions related to the scoring of predicted
protein structures and their refinement via all atom models. Retrospective
analysis of our approaches and methods from these experiences suggested that
when native-like protein conformations were sampled they could be identified
with all atom physics-based force fields including implicit solvation’. During
CASP6, we focused more directly on the question of conformational sampling,
and whether, by augmentation of our earlier methods and algorithms by orders
of magnitude more computational power, we could significantly improve our
ability to predict protein structure. To achieve this objective we assembled a
"structure prediction supercomputer” based on volunteered resources and a
distributed computing platform using the world-wide-web in a project called
Predictor@home.

Protocol for Protein Structure Prediction

Predictor@home approaches structure prediction through a multi-step pipeline
that is similar to protocols that have led to successful prediction in the past'. In
the first step of this pipeline, homology modeling and fold recognition
templates are identified as significant hits from the BLAST and SAM-T02
servers. In addition, secondary structure is predicted by the PSIPRED server.
The results from template recognition are used to generate restraints for aligned
residues during lattice-based MFold simulations; untemplated regions are
sampled by a Monte Carlo conformational search with the MONSSTER? force
field using any available secondary structure information from PSIPRED.
Secondary structure is the only information used to guide folding “new fold”
prediction targets by MFold. In order to sample viable folded conformations, 5-
10 thousand simulated annealing MFold tasks were distributed for each target,
thereby increasing our sampling by 1-2.5 orders of magnitude over our past
studies® In the refinement step, each sampled structure is subjected to all-atom
simulated annealing between 1000K and 300K using the molecular simulation
package CHARMM and an intermediate accuracy all-atom force field. The

lattice-based predictions provide inter-residue restraints implemented as NOE-
like restraints based on side chain - side chain centers of mass contacts.
Minimization is performed in the presence of the GBMV? solvent model to
produce the final structure and energy value to be used in scoring. Scoring and
ranking proceed via hierarchical clustering of the all-atom results based on the
side chain contact-map.

The Architecture of Predictor@home

Predictor@home is built on top of the Berkeley Open Infrastructure for
Network Computing (BOINC)*. BOINC is a well-known desktop grid
framework that provides built-in support for distributed computing on
heterogeneous PCs connected to Internet or Intranet networks. It currently
supports a wide range of PC platforms (i.e., Linux, Windows, Mac, and
Solaris). Protein structure prediction was achieved through two computationally
intensive phases accomplished by two different codes:

1.MFold for protein structure assembly based on a low-resolution

modeling method that uses a lattice representation;

2. CHARMM for protein refinement with an all-atom modeling method.
Predictor@home is a client-server based parallel computation paradigm. For
each target, the server continuously generates MFold and CHARMM workunits
(independent computations on a given target). The results from MFold are
redirected by the server to CHARMM. Clients apply for computation and
receive several workunits at a time. Client failures may occur and the returned
results may be affected by hardware malfunctions or malicious attacks.
Predictor@home addresses the integrity of the returned result using replicated
computing and homogeneous redundancy (redundant instances of a
computation are dispatched to numerically identical computers).

Over the course of the CASP6 season, we sampled over 430 thousand protein
structures for 65 targets, each validated as the result of at least three replicas. In
total nearly 7 thousand users registered for Predictor@home, with over 14
thousand machines.

1. Feig, M. & Brooks III, C. L. (2002). Evaluating CASP4 Predictions With
Physical Energy Functions. Proteins 49, 232-245.

2. Skolnick, J., Kolinski, A. & Ortiz, A. R. (1997). MONSSTER: A Method
for Folding Globular Proteins with a Small Number of Distance Restraints.
J. Mol. Biol 265, 217-241.

3. LeeM.S., Feig,M., Salsbury,F.R.Jr. & Brooks,C.L.,III. (2003). New
analytic approximation to the standard molecular volume definition and its
application to generalized Born calculations. J. Comput. Chem. 24, 1348-
1356.
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CMMICITINIH - 82 models for 42 3D targets

Integrative refinement of homology models using colony
energy approach with physical chemistry principles

Zhexin Xiang, Peter J. Steinbach
Center for Molecular Modeling, Center for Information Technology, National
Institutes of Health, Bethesda, Maryland 20892-5624
xiangz@mail.nih.gov

Overview. Our participation in CASP6 tested the integration of knowledge-
based and physics-based methods for protein structure refinement and the use
of the so-called colony energy' to rank structures. We sought to automate the
process of structure prediction, from template identification and alignment
tuning to model refinement and verification, and subject the methodology to
critical assessment. We did not try to identify the “best hit” if there was no clear
agreement among servers. Instead, many template structures were considered
for a given query sequence, the alignment for each template was refined using a
genetic algorithm, and the submitted model was chosen based on its colony
energy. We participated in the comparative modeling and fold recognition
sections of the experiment, primarily using in-house software and methods,
such as the JACKAL package (http://cmm.cit.nih.gov/~xiang/). JACKAL
includes NEST (a new homology modeling program that is based on an
artificial evolution method)?, SCAP? and LOOPY' (a side-chain and loop
prediction program), AUTOALIGN (a program to automatically tune a
sequence alignment obtained from the CAFASP server), a physical-chemical
based energy function to evaluate individual conformations, and the colony
energy method to account for the clustering of conformations and energy space
from fragment database and ab-initio sampling.

A three-step strategy was applied to fold recognition and to homology
modeling: A) identify all possible templates, B) for each template, perform
sequence-template alignment, C) for each model, refine any structurally
variable (unconserved) regions and identify the best model.

(A) Template identification

CAFASP servers were used to identify as many prospective templates as
possible. In the absence of a unanimous template identified by all servers, all

possible hits were considered. For example, if multiple templates are identified
but all servers point to the same structural family, all structures in the PDB from
that family were used as possible templates. A family member unidentified by
the servers was aligned with the query based on its structural alignment with its
closest neighbor in the hit list. However, if more than 70% of servers agreed on
one hit, and that hit also had the highest sequence similarity to the query among
members of its structural family, then that particular hit was used as the sole
template.

(B) Sequence Alignment

For each template identified in step (A), the alignments were ranked according
to three factors: 1) sequence similarity to the query, 2) agreement with other
servers, and 3) the physical-based energy of the model that corresponds to the
alignment. We employed a “genetic-algorithm” approach to tune the alignment,
and the best alignment was chosen from all the “offspring”. Specifically, for
each alignment obtained from a server, we produce large sets of candidate
alignments by shuffling some of its alignment blocks with other alignments
(either of the same template or of another template belonging to the structural
family) reported by servers.

(C) Model building and Refinement

Because model building can be done rapidly using NEST, the ensemble of
sequence alignments was readily converted to an ensemble of three-
dimensional model structures. The models were clustered according to main-
chain root mean-square deviation. The colony energy concept, developed
initially for loop prediction, was then applied to energetically reward models
that belong to large structural clusters in an attempt to approximately account
for entropic effects. When used in loop modeling, the colony energy resulted in
a smoothed energy surface [1].

All the alignments were converted to 3-dimentional models using the NEST
program. This program builds and refines homology models using an artificial
evolution method based on a single, composite or multiple templates. Given an
alignment between a query sequence and a template, the alignment can be
considered as a list of operations such as residue mutation, insertion or deletion.
The algorithm always starts from the operation involving the smallest increase
in an estimated physical-chemical energy. Each operation is followed be
modest energy minimization to remove steric clashes. The final structure is
then subjected to more thorough refinement. The structure-refinement module
in NEST can refine the models in four levels: energy minimization of clashing
atoms, refinement of insertion and deletion regions, refinement in all loop
regions and refinement in all o/p regions. Refinement of helix or sheet regions
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is done by a procedure similar to the loop refinement, but restraints are used to
preserve main-chain hydrogen bonding.

For each model, unaligned regions corresponding to gaps in the sequence
alignment were modeled using the LOOPY program. Two thousand initial
conformations were randomly sampled and filtered against the consensus
secondary-structure predictions from the CAFASP server. The 2000
conformations were then energy-minimized using our fast direct tweak method,
and the 300 conformations of lowest energy were kept. An additional 300 were
obtained from a fragment database using sequence similarity, secondary
structure, and end-point geometry. The 600 conformations were subjected to
additional energy minimization, and the conformation of lowest colony energy
was selected. Structurally variable regions identified from multiple structure
superimpositions were modeled similarly but the candidate conformations were
restricted to those within 2 angstrom of the corresponding region in at least one
of the PDB structures known for the structural family. Non-conserved side
chains corresponding to mutations in the sequence alignment were modeled
with the SCAP program. The conformation of a conserved side chains was
unaltered unless its interactions with neighbors are strained (van der Waals
energy >5 kcal/mol). A genetic algorithm was used to shuffle variable regions
with other models; in variable (unconserved) regions, each refined model was
married with other models to produce a large ensemble of offspring. The
resultant candidates were then clustered and ranked using the colony energy.
The model of lowest colony energy was inspected visually, and if satisfactory,
submitted as our final prediction.

1. Xiang,Z., Soto,C. and Honig,B. (2002) Evaluating Conformational Free
Energies: The Colony Energy and its Application to the Problem of Loop
Prediction. Proc. Natl. Acad. Sci. USA 99, 7432-7437.

2. Petrey,D., Xiang,X., Tang,C.L., Xie,L., Gimpelev,M., Mitors,T., Soto,C.S.,
Goldsmith-Fischman,S., Kernytsky,A.,  Schlessinger,A., Koh,l.Y.Y,,
Alexov,E. and Honig,B. Using Multiple Structure Alignments, Fast Model
Building, and Energetic Analysis in Fold Recognition and Homology
Modeling. Proteins 53, 430-435.

3. Xiang,Z. and Honig,B. (2001) Extending the Accuracy Limits of Prediction
for Side Chain Conformations. J. Mol. Biol. 311, 421-430.

CoRind - 18 models for 18 RR targets

Quantitative measurement of covariation on an evolutionary
tree with application to contact prediction

William J. Bruno and Aaron L. Halpern
T-10, Los Alamos National Laboratory
billb@lanl.gov

CoRind is a program that estimates the expected number of samples of the joint
probability distribution for pairs of amino acids in two columns of a multiple
alignment, given an evolutionary tree. It is entirely analogous to the Rind
program which estimates independent samples for a single column'. Rind is
unusual among evolutionary models in that it allows each column to have
different amino acid frequencies. = The implementation makes use of
Felsenstein's? “pulley principle”(which is a form of dynamic programming) to
propagate probabilities through the tree. A modified EM algorithm is used to
converge to the maximum likelihood site-specific frequencies.

CoRind does not attempt to estimate frequencies for pairs of residues; rather it
is designed to ask whether the evolution of a pair of sites can be adequately
described by a model where the two sites evolve independently, with
frequencies taken to be the products of the single site estimates. This is in
contrast to the two-state likelihood ratio approach of Pollock et al.® (which
offers a good review of other approaches to this problem).We note that although
the CoRind model assumes the two sites evolve independently, the formula for
the ancestral probabilities (used by the pulley principle) does not factor into
separate expressions for the two sites. For example, if one sequence has the
pair AA and another sequence has the pair CC, then the probability that their
ancestor contributed the pair AC (viewed as a single letter in a 400 letter pair
alphabet) to either sequence is zero (because neither has an AC) and this result
cannot be obtained by treating both sites separately and combining the results.
A previous prototype of Corind called Rind2 attempted to approximate the joint
ancestral probabilities based the single site ancestral reconstructions, and the
quality of the results seemed to vary greatly from one protein to the next.

Our “expected samples”are the same quantities that would be used to estimate
the joint frequencies in the first iteration of the EM algorithm. We round off the
expected number of samples to the nearest integer, and view the result as a
contingency table to which Fisher's exact test* (FET) of independence may be
applied. If all amino acids were to be used at both sites, the table would be
20x20, and the total number of counts would be at most the number of
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sequences in the alignment (although usually substantially less due to
evolutionary correlations). This is too large for exhaustive evaluation of FET,
but it can be sampled numerically using a permutation test®.

We apply a Bonferroni® correction for the number of pairs of sites that have
enough variation (measured by calculating the autocovariation) to potentially
covary at the required level of statistical significance. This correction is
therefore expected to grow as the square of the sequence length. The number of
samples required for one permutation test is proportional to this number, and
since the number of tests to be done is also proportional to the square of
sequence length, the total number of permutations needed scales as length to
the fourth power. We improve on this in practice by automatically terminating
permutation tests that we can be confident are not headed for a significant
result.

The result of the permutation test followed by the Bonferroni multiple test
correction is essentially an E-value for the observed covariation to have
occurred by chance, assuming that the pair samples are independent
(technically, that they obey the hypergeometric distribution, which fixes the
marginal distributions for each site). For CASP a confidence value was
computed by taking one minus the chance probability. A small pseudocount
was applied to the raw permutation results so that a permutation test finding
zero more strongly covarying (compared to the actual data) permutations out of
one million yields a raw p-value of order 10°° rather than zero.

Evolutionary trees were constructed by Weighbor’ using the Rind' model.
Weighbor was designed to be more robust than other fast tree reconstruction
methods such as neighbor joining.

No where is any information used about scoring matrices or the evolutionary
code. Each amino acid is treated as a unique letter in the alphabet. Gaps and
X's are treated as unknown. The result is purely a test of covariation, without
any prior assumptions about what the form of that covariation should be. This
allows us to potentially find new patterns of protein evolution, but is bound to
be a disadvantage from the point of view of pure 3D contact prediction.

Alignments were constructed using PSI-Blast® with default parameters and
without any hand alignment editing. The only human intervention at this stage
was determining how many iterations of PSI-Blast to allow. Alignments were
not allowed to have more than 250 sequences, so PSI-Blast was stopped
whenever this target was reached.

For 30 targets, no covariation was detected at the p<.5 level after Bonferroni
correction, and no prediction was submitted. Proteins for which covariation
was detected always had over 100 sequences in their multiple alignment;
however, for three proteins with the largest allowed alignments of 250
sequences, no covariation was detected at this level of significance. Another 22
of the 76 targets expired before the software was implemented, or before it
could complete its prediction (run time is usually only a few hours, but can be
longer for long sequences with many pairs showing significant covariation).
The remaining 24 targets were found to have significant covariation. For seven
of these, the number of covarying pairs was suspiciously high, with some
residues covarying with more than 10 other residues.

Our working hypothesis for the cause of such widespread covariation is that the
functional pressure on the protein is different in different parts of the tree. This
could be caused by an evolutionary change in function, such as a new substrate,
or adaptation to some new condition, such as extreme temperature. In these
cases human intervention was used to try to filter out sites that seem to correlate
with any external evolutionary factor, as evidenced by strong covariation with
an artificial (often binary) site representing which branch of the tree the
sequence is from. For four of these cases, the result of the intervention was that
after excluding sites that covary with the artificial site, and then excluding sites
that covary with those, no covariation remained and no prediction was
submitted. Homology models were consulted as a guide to this process.
Specific information on how individual targets were handled was logged during
the experiment at www.t10.lanl.gov/billb/corind.

1. Bruno,W.J. (1996) Modeling residue usage in aligned protein sequences
via maximum likelihood. Mol. Biol. Evol. 13, 1368-1374.

2. Felsenstein,J. (1981) Evolutionary trees from DNA sequences: a
maximum likelihood approach. J. Mol. Evol. 17, 368-376.

3. Pollock,D.D., Taylor,W.R. and Goldman,N., (1999) Coevolving protein
residues: maximum likelihood identification and relationship to structure. J
Mol. Biol. 287, 187-98.

4. Freeman,G.H., and Halton,J.H. (1951). Note on an exact treatment of
contingency, goodness-of-fit, and other problems of significance.
Biometrika 38, 141-149.

5. Good.P. (2000) Permutation tests: a practical guide to resampling
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CORNET (serv) - 57 models for 57 RR targets

CORNET: a server for the prediction of residue contacts in
proteins

P. Fariselli!, A. Valencia®, and R. Casadio’
1 - Iept. of Biology, University of Bologna via Irnerio 42 Bologna, Italy,

2 - Protein Design Group, CNB-CSIC Cantoblanco Madrid 28049, Spain
piero@biocomp.unibo.it

We set up a web server (CORNET) for the prediction of contact maps of
proteins using a neural network-based methods. Neural networks use an input
encoding based on evolutionary information as derived by running PSI-
BLAST" on a non redundant database of protein sequences.

CORNET uses the previously developed neural networks called NET?. NET has
a single output neuron that codes for contact (output value close to 1) and non
contact (output value close to 0). The hidden layer has 8 hidden neurons and the
input consists of 1050 nodes representing the two possible pairing of two
segments having a three-residue long window.

To be more detailed each residue pair in the protein sequence is coded as an
input vector containing 210 elements (20x (20+1)/2), representing all the
possible ordered pairs of residues (considering that each residue couple and its
symmetric are coded in the same way). This is done in order to reduce the
number of weight junctions. When single sequence is used, the input neuron
coding for the ordered pair of amino acidic residues at positions i and j is set to
1, while the remaining 209 are set to 0. In order to take into account the
sequence neighbours we use a 3-residue long input window, considering both
parallel and anti-parallel pairing of the two segments centred at positions i and
j, respectively. This leads to the coding of the couples formed by the residues in
positions {i-1, j-1},{i, j},{i+1,j+1} (parallel pairing) and {i-1,j+1},{i,j},{i+1,j-
1} (anti-parallel pairing) ending up with 5 possible combinations ({i-1,j-1},
{i,j}, {i+1,j+1},{i-1,j+1},{i+1,j-1}) of the ordered couples. This is why this
procedure requires 1050 (210x5) input neurons. Since we use multiple
sequence information this binary input code is changed in a frequency-based
one. This is done by considering the alignment from the corresponding PSI-
BLAST! outputs and taking all the possible pairs generated by residues in
positions i and j of the different aligned sequences. After normalization to the
number of sequences, the frequencies of occurrence in the alignment of each
couples is used in the corresponding position of the 210 element input vector
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representing all the possible ordered pairs. By this, the 210 element vector may
have more than one components activated.

To avoid contact overprediction, the predicted pairs are filtered taking into
account the amount of contacts that each residue type can make (similarly to
the procedure performed by Olmea and Valencia®). The filtering procedure is
based on the occupancy data (or residue-coordination numbers) of each residue
depending on its predicted secondary structure (we use a neural-network
method whose overall 3-state accuracy reaches 0.74%). This value is derived
from the set of protein structures of the data base and takes into account the
secondary structure type. By this, the number of predicted contacts of a residue
becomes a function of its structural environment. The occupancy can be
therefore considered an estimate of the maximal number of contacts that each
residue can make and is used to limit the number of contacts predicted for each
residue.

On our dataset’ we expect that NET accuracy (number of correct contact/
number of predicted contact) ranges from 0.23 to 0.07 depending on the protein
lengths with an average of 0.16%

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Fariselli,P., Olmea,O., Valencia,A., Casadio,R. (2001) Prediction of contact
maps with neural networks and correlated mutations. Prot. Engng. 14 835-
843.

3. Olmea,0., Valencia,A. (1997). Improving contact predictions by the
combination of correlated mutations and other sources of sequence
information. Fold Des. 2,S25-S32.

4. Jacoboni,l., Martelli,P.L., Fariselli,P., Compiani,M., Casadio,R. (2000).
Predictions of protein segments with the same amino acid sequence and
different secondary structure: a benchmark for predictive methods-
Proteins 41, 535-544.

Cracow.pl - 140 models for 22 3D / 62 DR / 22 RR targets
Early-stage folding in proteins — in silico model

M. Brylinski'?, L. Konieczny® and I. Roterman®
! - Faculty of Chemistry, Jagiellonian University, Cracow, Poland,

2. Department of Bioinformatics and Telemedicine, Collegium Medicum,
Jagiellonian University, Crakow, Poland; ? - Institute of Biochemistry,
Collegium Medicum — Jagiellonian University, Cracow, Poland
brylinsk@chemia.uj.edu.pl, mbkoniec@cyf-kr.edu.pl, myroterm@cyf-kr.edu.pl

Verification of a model oriented on prediction of early-stage folding structures
is the main goal of participation in CASP6. The model is based on:

1.The commonly accepted opinion that the early step of polypeptide chain
folding is determined by the optimal conformation of the polypeptide
backbone in the absence side chain-side chain interaction'.

2.The ellipse-shaped conformational sub-space distinguishing on the
Ramachandran map, optimal for the polypeptide chain backbone, linking
all structurally important forms (helical and beta) %>.

3.The specific characteristics of the early-stage conformational sub-space
expressing the balance between the amount of information stored in the
amino acid sequence and the amount of information necessary to predict
the conformation of early-stage folding*.

4.The library we created expressing the relation between the sequence and
early-stage folding conformation based on the known frequencies of @e, Yo

angles, which denote the ¢,  angles occurring in proteins after their
transformation to the distinguished ellipse-shaped conformational sub-
space.

The model oriented on early-stage folding prediction represents a universal
approach which can be applied to any amino acid sequence independently on
the length of the polypeptide chain. The model is believed to deliver the
optimal starting structure for any procedures in an ab initio treatment.

A positive result is thus expected for secondary prediction, contact maps and
assessing the degree of difficulty of structure prediction (although a high RMS-
D value is possible). This is why the group is taking part in the following
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categories: Order-Disorder Regions prediction and Residue-Residue separation
distance prediction. Moreover, for targets less than 150 amino acid long, 3D
atomic coordinates were predicted using procedure verified previously for
BPTT®, lysozyme®, o chain of human hemoglobin’ and ribonuclease®.

1. Dobson,C.M. (2001) The structural basis of protein folding and its links
with human disease. Philos Trans R Soc Lond B Biol Sci. 356, 133-145.

2. Roterman,l. (1995) Modelling the optimal simulation path in the peptide
chain folding--studies based on geometry of alanine heptapeptide. J Theor
Biol. 177, 283-288.

3. Alonso,D.O. & Daggett,V. (1998) Molecular dynamics simulations of
hydrophobic collapse of ubiquitin. Protein Sci. 7, 860-874.

4. Jurkowski,W., Brylinski,M., Konieczny,L., Wisniowski,Z. & Roterman,]I.
(2004) Conformational subspace in simulation of early-stage protein
folding. Proteins 55, 115-127.

5. Brylinski,M., Jurkowski,W., Konieczny,L.. & Roterman,l. (2004) Limited
conformational space for early-stage protein folding simulation.
Bioinformatics 20, 199-205.

6. Jurkowski,W., Brylinski,M., Konieczny,L. & Roterman,I. (2004)
Lysozyme folded in silico according to the limited conformational sub-
space. J Biomol Struct Dyn. 22, 149-158.

7. Brylinski,M., Jurkowski,W., Konieczny,L. & Roterman,I. (2004)
Limitation of conformational space for proteins — early stage folding
simulation of human o and J hemoglobin chain. TASK Quarterly 8, 413-
422.

cubic-chopper (serv) - 40 models for 40 DP targets

Automated domain boundary prediction using combination of
sequence homology and neural network

J. Liul.2 and B. Rost!+2

1_ Dept. of Biochemistry & Molecular Biophysics, Columbia Univ.,

2_ Center for Computational Biology and Bioinformatics, Columbia Univ.
liu@cubic.bioc.columbia.edu

In the CASP 6 experiment, we tested an automated protein domain prediction
server using combination of two previously published methods: CHOP'?, a
method based on sequence similarity to known protein domains, and
CHOPnet®, a de novo domain prediction method using neural network.

The basic idea of CHOP was to identifies potential domain boundaries through
hierarchical database searches beginning from very reliable experimental
information (PDB*), proceeding to expert annotations of domain-like regions
(Pfam-A®), and completing through cuts based on termini of known proteins
(SWISS-PROT®). We have shown that CHOP can dissect over two thirds of all
proteins from 62 proteomes, and the length distribution of fragments generated
by CHOP resembles that of real protein domains.

CHOPnet was a method that predicts domain boundaries through a neural
network using evolutionary information, predicted 1D structure (secondary
structure, solvent accessibility), amino acid flexibility, and amino acid
composition. The final predictions of domain boundaries resulted from post-
processing the raw network output by removing noisy peaks. Cross-validation
on proteins of known structure showed that CHOPnet correctly predicted the
number of domains in 69% of all proteins. For 50% of the two-domain proteins,
the centers of the predicted boundaries were within 20 residues of the true
boundaries assigned from 3D structures.

Although CHOP can identify a considerable fraction of the structural domains
reliably, it fails in the absence of sequence similarity to known protein domains.
On the other hand, CHOPnet does not require the information from sequence
homology, however, its accuracy dropped dramatically for proteins with more
than two structural domains. In this context, we tested an automated method
that combines the strength of CHOP and CHOPnet. The input sequence is first
dissected with CHOP to identify domains that are similar to known structural
domains from PDB or Pfam-A. Any remaining parts of the protein longer than
100aa are further processed by CHOPnet, in the hope that by pre-processing the
sequence with CHOP, the number of unknown domain boundaries has been
reduced, and CHOPnet can predict the remaining boundaries more accurately.

The method is available on-line at:
http://cubic.bioc.columbia.edu/services/CHOP/submit_casp.html

1. LiuJ. & Rost,B. (2004). CHOP: parsing proteins into structural domains.
Nucl. Acids Res. 32, W569-571.

2. Liu,J. & Rost,B. (2004). CHOP proteins into structural domain-like
fragments. Proteins 55, 678-688.

3. LiuJ. & Rost,B. (2004). Sequence-based prediction of protein domains.
Nucl. Acids Res. 32, 3522-3530.

4. Berman,H.M., Westbrook,J., Feng,Z., Gillliland,G., Bhat,T.N., Weissig,H.,
Shindyalov,I.N. & Bourne,P.E. (2000). The Protein Data Bank. Nucl. Acids
Res. 28, 235-242.
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DELCLAB - 297 models for 62 3D targets

Folding pattern recognition in proteins using spectral
analysis methods

Carlos A. Del Carpio"* & Jaime E. Barreda®
New Industry Creation Hatchery Center, Tohoku University, Aoba-ku, Sendai
980-8579, Japan; ? - Facultad de Farmacia y Bioquimica, Programa
Profesional de Ingenieria Biotecnologica, Universidad Catolica de Santa
Maria, Umacollo s/n, Arequipa, Peru
cadcm@universia.edu.pe, jaimebarreda@universia.edu.pe

Divergence in sequence through evolution precludes sequence alignment based
homology methodologies for protein folding prediction from detecting
structural and folding similarities for distantly related protein. Homology
coverage of actual data bases is also a factor playing a critical role in the
performance of those methodologies, the factor being conspicuously apparent
in what is called the twilight zone of sequence homology in which proteins of
high degree of similarity in both biological function and structure are found but
for which the amino acid sequence homology ranges from about 20% to less
than 30%. In contrast to these methodologies a strategy is proposed here based
on a different concept of sequence homology. This concept is derived from a
periodicity analysis of the physicochemical properties of the residues
constituting proteins primary structures. The analysis is performed using a
front-end processing technique in automatic speech recognition by means of
which the cepstrum (measure of the periodic wiggliness of a frequency
response) is computed that leads to a spectral envelope that depicts the subtle
periodicity in physicochemical characteristics of the sequence. Homology in
sequences is then derived by alignment of spectral envelopes. Proteins sharing
common folding patterns and biological function but low sequence homology
can then be detected by the similarity in spectral dimension. The methodology
applied to protein folding recognition underscores in many cases other
methodologies in the twilight zone.

1. Del Carpio,C.A. Protein folding pattern recognition using signal processing
theory. Submitted for publication.

2. Del Carpio,C.A. and Yoshimori,A. (2002) Fully automated protein tertiary
structure prediction using Fourier transform spectral methods. Protein
structure prediction: Bioinformatic approach, International University Line
Publishers (IUL), 171-200.

3. Del Carpio C.A. and Carbajal J.C. (2002) Folding Pattern Recognition in
Proteins Using Spectral Analysis Methods. Genome Informatics 13, 163-
172.

Distill - 128 models for 64 3D / 64 RR targets

Distill: fast, automated predictions of protein residue contacts
and backbone coordinates by machine learning

G. Pollastri
Computer Science Department, University College Dublin,
Belfield, Dublin 4, Ireland
gianluca.pollastri@ucd.ie

Distill is a fully automated system for ab initio prediction of draft protein
structures. Distill has two main components: a set of predictors of protein
features (secondary structure, relative solvent accessibility, residue contact
maps, contact maps between secondary structure elements) based on machine
learning techniques; an optimisation algorithm that searches the space of
protein backbones under the guidance of a potential based on these protein
features.

Protein secondary structure is predicted by Porter?, an in-house system based on
an ensemble of 45 bidirectional recurrent neural networks® with shortcut
connections, accurate coding of input profiles obtained from multiple sequence
alignments, second stage filtering and incorporation of long range information
by a further layer of recurrent neural networks. Porter, tested by rigorous 5-fold
cross-validation on a set of 2171 proteins, exceeds 79% correct classification on
the “hard” CASP 3-class assignment, up to 81% on more lenient ones, making
it one of the most accurate secondary structure predictors currently available.

Protein relative solvent accessibility, residue contact maps and maps of contacts
between secondary structure elements are predicted by ensembles of recursive
neural networks. These systems are recently trained, improved versions of the
state-of-the-art ACCpro®, CMAPpro* and CCMAPpro®. Residue contact maps
submitted to CASP are further refined as follows: 10 backbones are
reconstructed (see below) with a very short search (1,000 instead of 20,000
steps used in the full reconstruction); the contact maps of the 10 backbones
obtained are averaged. This procedure is roughly as quick the initial contact
map prediction (tens of second on a state-of-the art CPU) and cleans up the
initial map of spurious, geometrically unrealisable contacts.
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In the next stage, Distill reconstructs sets of backbone coordinates. The
optimisation is carried out by minimising a simple potential function containing
terms derived from the predicted features and terms representing geometrical
constraints of the structure. Terms are present that penalise the violation of
predicted residue contacts/non-contacts, predicted contacts/non-contacts
between secondary structure elements, predicted strand locations, hard-core
repulsion between amino acids, and virtual Co-Co bond lengths.

The actual minimisation is performed in 3 stages: 1) a set of initial structures is
generated; 2) a search is performed from each initial guess, giving rise to a
number of refined structures; 3) the final structures are ranked. In the initial
guesses, helices and strands predicted by Porter are modelled, consecutive Co
atoms are set at a realistic distance (3.8+0.2A), and virtual Cco angles are
restricted to the 90°-180° interval. Each chain is grown from the N terminus to
the C terminus by randomly selecting the next Ca with uniform distribution in
the allowed space. A stochastic search from these initial guesses is performed
by introducing perturbations in the structure similar to “crankshaft” moves®,
except that helices are treated as rigid “rods” and their core Cas are never
moved on their own. The search is carried out by simulated annealing with a
linear schedule for the temperature. 20,000 moves of every non-helical Ca and
helical termini are attempted for each search. 10 searches are run for each
protein structure.

Finally, the 10 structures obtained are ranked. All mutual LCS at 1A, 24, 4A
and 8A are computed and each backbone is assigned a score equal to the sum of
its LCS with the other backbones. The backbone with the highest score is
selected and submitted to CASP. The rationale behind this ranking scheme is
selecting the backbone containing most features common to most
reconstructions.

Distill’s modelling scheme is fast. On a cluster of 10 state-of-the-art PCs it can
solve protein backbone coordinates on a genomic scale in the order of days.

1. Pollastri,G., McLysaght,A.. (2004) Porter: a new, accurate server for
protein secondary structure prediction. submitted.

2. Baldi,P., Brunak, S., Frasconi, P., Soda.,G., and Pollastri, G. (1999)
Exploiting the Past and the Future in Protein Secondary Structure
Prediction. Bioinformatics 15, 937-946.

3. Pollastri,G., Baldi,P.,, Fariselli,P., Casadio,R. (2002) Prediction of
Coordination Number and Relative Solvent Accessibility in Proteins.
Proteins 47, 142-153.

4. Pollastri,G., Baldi,P. (2002) Prediction of Contact Maps by Recurrent
Neural Network Architectures and Hidden Context Propagation from All
Four Cardinal Corners. Bioinformatics 18, S62-S70.

5. Baldi,P, Pollastri,G. (2003) The Principled Design of Large-Scale
Recursive Neural Network Architectures -- DAG-RNNs and the Protein
Structure Prediction Problem. Journal of Machine Learning Research
4(Sep), 575-602.

6. Vendruscolo,M., KusselLE., Domany, E. (1997) Recovery of protein
structure from contact maps. Folding and Design 2, 295-306.

DomPRED (serv) - 64 models for 64 DP targets
DOmSSEA (serv) - 64 models for 64 DP targets

Protein domain prediction using the DomPred server

K. Bryson', L.J. McGuffin', R.L. Marsden” and D.T. Jones'
! — Bioinformatics Unit, Department of Computer Science
2— Department of Biochemistry
University College London, Gower Street, London WCI1E 6BT
dtj@cs.ucl.ac.uk

The DomPred Server' contains our previously published method for domain
prediction, DomSSEA?, combined with a newly developed method called
Domains Predicted from Sequence (DPS).

DomSSEA uses a fold recognition approach, based on aligning the PSIPRED?
predicted secondary structure for the query sequence against the DSSP*
assigned secondary structures of a fold library. It then transfers the SCOP®
assigned domain structure from the best fold match to the query sequence.

DPS carries out a PSI-BLAST® search of the query sequence against a database
consisting of NRDB90’ augmented with sequences from Pfam-A®. Significant
local alignment fragments are examined, and the total numbers of C- and N-
terminals for the fragments are recorded for each residue position in the query
sequence. These distributions are smoothed. They are then combined giving
additional weight to positions which have high values for both the C- and N-
terminals, since this provides more evidence for a domain boundary in which
one conserved sequence region ends and another starts. The combined values
are then turned into Z-scores by dividing throughout by the standard deviation
over the entire query protein. A threshold is then applied to these z-score values
in order to predict domain boundaries.
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The DomSSEA method is most effective when the fold library contains a
complete structural match to the query. Hence this approach bears some
resemblance to remote homology detection or fold recognition. The DPS
method makes no such use of complete structural matches, since the alignment
would just have its N- and C-terminal positions lying close to the N- and C-
terminals of the query sequence. Large scores close to the N- and C-terminal of
the query sequence are simply excluded as end-effects when predicting domain
boundaries, for obvious reasons. DPS relies more on the database containing
sequences which have fragments that in combination reveal the domain
structure of the protein, rather than a complete sequence with a structural
match. Thus it can be seen that these two methods are based on largely
orthogonal information, and hence they are particularly effective in
combination.

Currently the results from the two methods are combined by the user. There are
plans to form a consensus method, combining both of these approaches. Also
we wish to have the server carry out an initial screening stage in which it
detects obvious homologues to PDB structures and just reports back their
domain structure. This will lead to a robust server which can deal with both
easy and difficult cases.

1. http:/bioinf.cs.ucl.ac.uk/dompred/

2. Marsden,R.L., McGuffin,L..J. & Jones,D.T. (2002) Rapid protein domain
assignment from amino acid sequence using predicted secondary structure.
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3. Jones,D.T. (1999) Protein secondary structure prediction based on position-
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4. Kabsch,W. & Sander,C. (1983) Dictionary of protein secondary structure:
Pattern recognition of hydrogen-bonded and geometrical features,
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Murzin,A.G. (2004) SCOP database in 2004: refinements integrate
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6. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

7. Holm,L. & Sander,C. (1998) Removing near-neighbour redundancy from
large protein sequence collections. Bioinformatics 14, 423-429.

8. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V., Griffiths-Jones,S.,
Khanna,A., MarshallLlM., Moxon,S.,, Sonnhammer,E.L., Studholme,D.J.,
Yeats,C. & Eddy,S.R. (2004) The Pfam protein families database. Nucleic
Acids Res. 32, D138-D141.

Dopro (serv) - 62 models for 62 DP targets

Dopro: automatic protein domain structure prediction using a
stochastic model for analyzing homology search results

N. von Ohsen!, J. Apostolakis?, R. Zimmer2
! - Fraunhofer Institute for Scientific Computing and Algorithms (SCAI), Sankt
Augustin *~Institute for Informatics, Ludwig-Maximilians-Universitdt Miinchen
niklas.von-oehsen@scai.fraunhofer.de

The aim of the Dopro server is to combine the results from multiple runs of a
homology search method with different subsequences of the target sequence
into a model of the protein's domain structure. The prediction is calculated as
the maximum likelihood estimate of the domain structure with respect to a
probabilistic model that describes the probability of the set of homology search
results given a specific domain structure. The method is restricted to predicting
domains as intervals, i.e. no disrupted domains can be modeled.

The method starts by constructing a set of subsequences from the query
sequence. A number of standard subsequences like first and second half and
also the thirds are added to the set. Additionally, first guesses of correct
domains are included. These are gathered by a PSI-Blast' search against the
ProDom’ database and by analysis of the predicted secondary structure: A
secondary structure is predicted using PSIPRED® and segments of predicted
loops are used as potential domain boundaries. Finally, the set of all
subsequences is reduced to a reasonable size by removing subsequences that
are highly similar or short.

For each subsequence, a multiple alignment is constructed by searching the NR
database using PSI-Blast. A frequency profile is calculated from this multiple
alignment using a slightly modified version of the Henikoff-Henikoff sequence-
weighting algorithm®. This frequency profile is used for searching against a
protein domain template database based on a 40% ASTRAL set containing
frequency profiles for all domains®. The method used for the search is our
profile-profile alignment method using the log average score®”. The
performance of the method has recently been independently assessed®®.

The top hits of the search are annotated with confidence measures developed
for quantification of the reliability of the search results'’. Also, the start and end
points of the hits and the SCOP* classification of the template are recorded.
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This data set of different subsequences with corresponding fold recognition
results and start and end points of the target-template alignments is then further
processed using the probabilistic model.

The probabilistic model describes how a protein domain structure (consisting of
a list of intervals on the target sequence, each annotated with SCOP fold)
produces the above determined set of fold recognition results. For such a
domain structure model and for a subsequence of the target sequence, a set of
probabilistic equations describes the probability of observing a top hit with a
certain template fold, confidence value, and start/end point. Several steps are
represented by these equations: First, one of the multiple domains is selected as
source of the hit. A possible error in the fold recognition is also modeled
depending on the above confidence measure. Finally, the distribution of start
and end points is determined by allowing small variation around the
intersection of query subsequence and selected domain.

In order to allow a rapid determination of the maximum likelihood estimate of
the domain structure, the size of the model space is considerably reduced by
allowing only the previously determined set of top hits as predicted domains.
Thus, only all non-intersecting combinations of these have to be evaluated, for
which an exhaustive search is feasible.

The infrastructure of the Dopro server is based on the same engine as the Arby
protein structure prediction server'?, which is a Java based implementation of a
data flow engine. The implementation features a fully parallel execution of the
computationally involving tasks and was executed on a 12 CPU Sun system.

The Dopro server uses a combination of profile-profile homology detection
methods and a stochastic description of their outcome to produce a prediction
for the protein domain structure. Future developments might implement more
sophisticated techniques like MCMC to extract the maximum likelihood
estimate from an unrestricted search space.

Acknowledgements. The Dopro team wishes to thank E. Schriifer, T. Mevissen
and M. Hofmann from the Fraunhofer Institute SCAI and 1. Sommer from the
Max-Planck-Institute for Informatics for their support during the prediction
season. This work was supported by the BMBF project "Development of
Microbalance Array/Mass Spectrometry as a Tool for Functional Proteomics"
(0312708).
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DRIP-PRED (serv) - 64 models for 64 DR targets
Order/disorder prediction with self organising maps

R.M. MacCallum

Stockholm Bioinformatics Center, Stockholm University, Sweden.
maccallr@sbc.su.se

We recently developed methods for sequence profile visualisation and contact
map prediction' based on Kohonen's self organising map (SOM). The key issue
in that work was the huge reduction in the dimensionality of sequence profile
windows, which can typically contain over 300 values per sequence position, to
a smaller more manageable 3D “colour space”. The resulting clusters/colours
raised interesting questions about sequence-structure relationships in proteins,
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particularly in strands and helices. It was also interesting to see how less
frequent sequence patterns were treated by the SOM. Occasionally, unusual
residue colouring would be seen in an unusual structure context, for example a
buried helix, or certain loops. The SOMs for contact prediction were trained on
sequences of known structure, but we were also compelled to train them on “all
proteins” and see how local sequence window space looks when flattened into a
SOM. One obvious question is: what it the overlap between “universal
sequence window space” and “solved structure sequence window space”? One
product of this research was the order/disorder predictor “DRIP-PRED”.

Sequences from UniProt version 43 were made nonredundant using a crude
single-pass Perl hashing approach; a sequence is discarded if it contains an
exact 9 residue match with a previously encountered protein. The resulting set
contains just 8003 proteins, but is sufficient for our purposes. Each sequence, of
length L residues, is run through PSI-BLAST? using PSIPRED? version 2.3
scripts, in order to generate a “.mtx” text file containing the position specific
scoring matrix of L columns by 21 rows. The rows correspond to the 20 amino
acids and a mystery value, presumably related to indels. A total of L
overlapping windows of width 15 are extracted from the matrix, using zeroes to
pad at each end. In total, 3,084,456 windows (15 by 21 submatrices) are
extracted from the 8003 proteins.

The 3,084,456 sequence profile windows are clustered/mapped into a SOM grid
of 25 by 20 nodes. The training procedure is divided into 20 steps. For each
step, 1/20 of the input data is sampled at random, and afterwards the training
rate and neighbourhood radius are decreased linearly (starting at 0.05 and 12,
respectively). After training, any (15 by 21) sequence profile window can be
mapped to a discrete location on the SOM grid.

We next calculate the “hit frequencies” for each SOM node for different types
of protein. This is simply the number of hits to each node divided by the total
number of hits to the whole map. We have done these calculations for the
representative UniProt sequences mentioned above and for a representative set
of proteins of known structure (an ASTRAL 10% identity subset of SCOP
1.55). As can be seen at http://www.sbc.su.se/~maccallr/disorder/maps.html,
there are regions of “UniProt space” which are essentially unpopulated by
proteins of known structure. Sequence windows which map to these locations
are not well represented in the PDB and therefore probably do not have an
ordered 3D structure. This is the basis of the DRIP-PRED predictor. We
quantify this by calculating the value log(UniProt/SCOP) for each position in
the map (see web figure part C).

The target sequence is processed in the same way as the training data (see
above) to produce a PSI-BLAST profile. Every window of 15 residues centred
around residue i is mapped to a node on the UniProt SOM, and baseline
disorder prediction score for this residue is taken from the corresponding
position in the log matrix (web figure, part C). Note that at this point, the score
is distributed around zero, with positive values indicating disorder. As in Jones
and Ward*, a confident secondary structure prediction (from PSIPRED?)
suggests that there is some ordered structure, so we set the score to -0.5 when
the numerical PSIPRED outputs (H for helix, E for strand, C for coil) for that
residue satisfy the following:
H-(E+C)> 0.5 OR E - (H+C) > 0.5

The scores are then smoothed with four cycles of a *1 residue window
average, and then adjusted by +0.5, and finally capped to the range O-1.
Manual inspection of a few CASP5 targets suggested that a threshold of 0.5
was suitable to delineate between ordered and disordered (>0.5 is disordered).
Note: no other optimisation, training or evaluation was performed. A web

service is available at http://www.sbc.su.se/~maccallr/disorder/.

1. MacCallum,R.M. (2004) Striped sheets and protein contact prediction.
Bioinformatics, 20 Suppl 1, 1224-1231.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

4. Jones,D.T. & Ward, J.J. (2003). Prediction of disordered regions in proteins
from position specific score matrices. Proteins. 53 Suppl 6:573-8.

EBGM - 12 models for 3 3D targets

Sorting candidate models using a structural alphabet-amino
acid sequence compatibility approach

P. Tufféry and A.C. Camproux
Equipe de Bioinformatique Génomique et Moléculaire, INSERM E0346
Université Paris 7, case 7113, 2 place Jussieu, 75251 Paris cedex 05
tuffery@ebgm.jussieu.fr

We have tested an approach that combines the encoding of protein structures
into a sequence of letters of a Structural Alphabet (SA-sequence) and a
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predictor of the SA-sequence from the Amino-Acid sequence (AA-sequence).
We use a Hidden Markov Model derived structural alphabet of 27 states, as
described in'. Such alphabet was shown to accurately describe the conformation
of the proteins. This alphabet describes the conformation of overlapping
fragments of 4-residue length and the way they can be interconnected.Using the
Viterbi or the forward-backward algorithms, it is possible to identify the best
sequence of letters that describe a protein structure in the terms of the structural
alphabet.

From a collection of over 2675 non redundant proteins(less than 30% amino
acid sequence identity), we have setup a method to predict the letters of the
structural alphabet from its amino-acid sequence. It combines a Bayesian
approach with the logic of the SA using the HMM procedure. Finally, we use
such predictor to measure the compatibility between a given structure and its
amino-acid sequence as follows:

(i) We encode the candidate models as SA-sequences as can be achieved at
http://bioserv.rpbs.jussieu.fr

(ii) By constraining the prediction from the AA-sequence to fit the SA-
sequence obtained from the 3D conformation of a model, it is possible to obtain
an estimate of how the encoded structural model is compatible with the AA-
sequence, in terms of likelihood. This likelihood of the AA sequence
constrained by the SA-sequence can be understood as some kind of measure of
the compatibility of the structure with its amino acid sequence.

(iii) Having computed the likelihoods associated with a series of candidate
structural models, we select the models having the maximal likelihoods.

Here, we have applied such approach to targets labeled by the robetta server®
as « cutpref », i.e. the lowest level of confidence of the robetta server, such as
T0215, T0239, T0242, T0243.

1. Camproux,A.C., Gautier,R. & Tuffery,P. (2004) A Hidden Markov Model
Derived Structural Alphabet for Proteins J. Mol. Biol. 339, 591-605.

2. Kim.,D.E., Chivian,D. & Baker,D. (2004) Protein structure prediction and
analysis using the Robetta server. Nucleic Acids Res. 32, Suppl.2, W526-
531.

3. Chivian,D., Kim,D.E., Malmstrom,L., Bradley,P., Robertson,T., Murphy,P.,
Strauss,C.E.M., Bonneau,R., Rohl,C.A. & Baker, D. (2003) Automated
prediction of CASP-5 structures using the Robetta server. Proteins 53,
Suppl 6, 524-533.

Eidogen-SFST (serv) - 64 models for 64 3D targets
Eidogen-BNMX (serv) - 64 models for 64 3D targets
Eidogen-EXPM (serv) - 64 models for 64 3D targets

Automated structure modeling with Eidogen’s suite of
algorithms

A. Poleksic, J.F. Danzer and D.A. Debe
Eidogen, Inc.
aleksandar@eidogen.com

STRUCTFAST (Structure Realization Ultilizing Cogent Tips From Aligned
Structural Templates) is a novel profile-profile alignment algorithm uniquely
capable of incorporating important information from a structural family directly
into the dynamic programming process. Query sequence profiles are generated
using a modified version of NCBI’'s PSI-BLAST algorithm’. A database of
profiles for representatives from the PDB are generated in a similar manner, but
are augmented with information from structure based alignments for the
structural family. Each query sequence is then aligned and scored against the
library of structural profiles. Statistical significance of alignment scores are
assessed using a variant® of the island statistics method**, so that the final E-
value for every database hit accounts for the lengths and compositions of the
sequences being compared.

The core alignment algorithm in all three of our automated servers is the same.
SEST outputs the alignment with the overall best E-value. BNMX and EXPM
go a step further to refine o-Carbon coordinates by using multiple PDB
templates and the remaining backbone atoms are reconstructed from the «-
Carbon coordinates®. The only difference between BNMX and EXPM is the
choice of a few algorithm parameters, such as the score significance cutoffs and
gap penalties.

1. Altschul,S.F., Madden,T.L., Schéiffer,A.A., Zhang,J., Zhang,Z., Miller,W.
and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25,
3389-3402.

2. Poleksic,A., Hambly,K., Danzer,J.F.,, Debe,D.A. Increased remote
homology detection performance using a fast method for determining local
alignment statistics, unpublished.

3. Olsen,R., Bundschuh,R. And Hwa,T. (1999) Rapid assessment of extremal
statistics for gapped local alignment. In Lengauer,T., Schneider,R., Bork,P.,
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Brutlag,D., Glasgow,J., Mewes,H.-W. and Zimmer,R. (eds), Proceedings
of the Seventh International Conference on Intelligent Systems for
Molecular Biology, AAAI Press, Menlo Park, CA, pp. 211-222.

4. Altschul,S.F., Bundschuh,R., Olsen,R., Hwa,T. (2001) The estimation of
statistical parameters for local alignment score distributions. Nucleic Acids
Res. 29, 351-361.

5. Rey,A., Skolnick,J. (1992) Efficient Algorithm for the Reconstruction of a
Protein backbone from the a-Carbon Coordinates. J. Comput. Chem. 13,
443-456.

EMBL_DisEMBL_coil - 57 models for 57 DR targets
EMBL_DisEMBL _hotloop - 57 models for 57 DR targets
EMBL_DisEMBL_rem465 - 57 models for 57 DR targets
EMBL_GIlobPlot - 114 models for 57 DP / 57 DR targets

Predictions of order/disorder in CASP6 using GlobPlot &
DisEMBL

Rune Linding, Lars Juhl-Jensen, Toby Gibson, Robert B. Russell
EMBL - Biocomputing, Heidelberg, Germany
linding@embl.de

We applied two of our recently developed order/disorder predictors to CASP6
targets. For each target, we used default parameters for both GlobPlot
(http://globplot.embl.de) & DisEMBL (http://dis.embl.de), augmented by some
visual inspection based on observations about the target. GlobPlot predicts the
tendency of segments within a protein sequence for order/globularity and
disorder. It uses a simple set of parameters based on the tendency of amino
acids to lie in structured or unstructured regions in known structures or proteins
where tendency to order/disorder is known experimentally. DisEMBL
addresses more explicitly the problem of identifying regions in a protein
sequence likely to be disordred or absent in known structures. It uses a neural
network trained on various measures of order/disorder extracted from known
three-dimensional structures. Both GlobPlot and DisEMBL were developed for
prediction of structural context of linear motifs as catalogued by ELM

(http://elm.eu.org).

1. Linding R, Russell RB, Neduva V, Gibson TJ. (2003) GlobPlot: Exploring
protein sequences for globularity and disorder. Nucleic Acids Res. 31(13),
3701-3708.

2. Linding,R., Jensen,L.J., Diella,F., Bork,P., Gibson,T.J., Russell,R.B. (2003)
Protein disorder prediction: implications for structural proteomics.
Structure (Camb). 11(11), 1453-1459.

FAMD (serv) - 320 models for 64 3D targets

Full automatic homology-modeling servers including wisdom
and practice: SKE(Sophia Kai Ergon) FAMD

K. Kanou', M. Iwadate', G. Terashi', D. Takaya',
M. Takeda-Shitaka' and H. Umeyama'

'~ Department of Biomolecular Desig
School of Pharmaceutical Sciences, Kitasato University
kanouk@pharm.kitasato-u.ac.jp

Selecting alignment
The aliment selection for constructing highly accurate protein models using

homology modeling was described. 7 kinds of methods, BLAST", PSI-BLAST,
PSF-BLAST, RPS-BLAST, IMPALA, FASTA and Pfam were executed for
amino acid sequences of query proteins.

PSF-BLAST is PSI-BLAST whose profile sequence group of PSSM
construction process is revised, and the selection criterion is E-value<=0.001
from template PDB sequence on PSI-BLAST search.

For selecting the best in 7 kinds of alignment methods, the score-function that
was constructed by model length, homology% and degree of secondary
structure agreement between PSI-PRED and STRIDE was defined:

score = f (k;, Hom, Len, SS)

Len is residue length of model protein. Hom indicate homology % value,
the ratio between the number of match residues and Len . SS is so called Q3
value, degree of secondary structure agreement between PSI-PRED and
STRIDE. K; are coefficients. The subscript number "i" indicate kind of

alignment method, 0 is PSI-BLAST, 1 is BLAST, 2 is RPS-BLAST, 3 is
Family-BLAST, 4 is IMPALA, 5 is FASTA, 7 is Pfam.

Selecting fragment
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The fragment selection process of FAMS? was modified to select fragment of
same protein family. Therefore selection criteria were RMSD of fitting, and
degree of SCOP? ID agreement between template PDB and fragment.

Energy Minimization and Molecular Dynamics
After homology modeling, both of Energy Minimization and Molecular

Dynamics are applied.

Results and Discussion

In 29 available CASP6 target structures, models were evaluated with GDT_TS.
Number of targets that maximum GDT_TS with 7 kinds of methods were more
than 30 was 19. The 19 targets approximately correspond to "PDB-Blast hits"
targets in CAFASP website, and 10 targets approximately correspond to no
"PDB-Blast hits" targets. Therefore, 10 targets were high-difficulty targets in 29
targets.

In 16 of 19 targets, the alignments that GTD_TS are more than 87% of
maximum GDT_TS were selected with this score-function. High GDT_TS
detection capability with a simple score-function was indicated.

The server was same to FAMS server that PRED-FASTA was excluded. The
influence of the PRED-FASTA exclusion did not appear in the 19 targets with
GDT _TS evaluation.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
and Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs Nucleic Acids Res 25,
3389-3402.

2. Ogata,K. and Umeyama,H. (2000). An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model 18, 258-272, 305-256.

3. Lo Conte,L., Brenner,S.E., Hubbard,T.J., Chothia,C. and Murzin,A.G.
(2002). SCOP database in 2002: refinements accommodate structural
genomics Nucleic Acids Res 30, 264-267.

FAMS (serv) - 320 models for 64 3D targets

Full automatic homology modeling server including the
transformation of amino acid residues: SKE(Sophia Kai
Ergon) FAMS

M. Iwadate’, K. Kanou', G. Terashi', D. Takaya',
M. Takeda-Shitaka' and H. Umeyama'
! - Department of Biomolecular Desig
School of Pharmaceutical Sciences, Kitasato University
iwadatem@pharm.kitasato-u.ac.jp

Selecting alignment
The aliment selection for constructing highly accurate protein models using

homology modeling was executed for 8 kinds of methods, BLAST?, PSI-
BLAST, PSF-BLAST, RPS-BLAST, IMPALA, FASTA, Pfam and PRED-
FASTA.

PSF-BLAST is PSI-BLAST whose profile sequence group of PSSM
construction process is revised, and the selection criterion is E-value<=0.001
from template PDB sequence on PSI-BLAST search.

PRED-FASTA is unique and simple homologue detection program which 20
amino acid residues were transformed based on secondary structure and amino
acid similarity. This program uses PSI-PRED? and FASTA®.

In order to select the best in 8 kinds of alignment methods, the score-function
that was constructed by model length, homology% and degree of secondary
structure agreement between PSI-PRED and STRIDE was defined by the
equation:

score = f (k;, Hom, Len, SS)

Len is residue length of model protein. Hom indicate homology % value,
the ratio between the number of match residues and Len. SS is so called
Q3 value, degree of secondary structure agreement between PSI-PRED and
STRIDE. K; are coefficients. The subscript number "i" indicates the number

of alignment method; 0 is PSI-BLAST, 1 is BLAST, 2 is RPS-BLAST, 3 is
Family-BLAST, 4 is IMPALA, 5 is FASTA, 6 is PRED-FASTA, 7 is Pfam.

Selecting fragment
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The fragment selection process of FAMS* was modified to select fragment of
same protein family. Therefore selection criteria were RMSD of fitting, and
degree of SCOP® ID agreement.

Energy Minimize and Molecular Dynamics
After homology modeling, both of Energy Minimization and Molecular

Dynamics are applied.

Results and Discussion

In 29 available CASP6 target structures, models were evaluated with GDT_TS.
Number of targets that maximum GDT_TS with 8 kinds of methods were more
than 30 was 19. The 19 targets approximately correspond to "PDB-Blast hits"
targets in CAFASP website, and 10 targets approximately correspond to no
"PDB-Blast hits" targets. Therefore, 10 targets were high-difficulty targets in 29
targets. In these targets other criterion (visual inspection?) is required.

In 16 of 19 targets, the alignments that GTD_TS are more than 87% of
maximum GDT_TS were selected with this score-function. High detection
capability for GDT_TS with a simple score-function was indicated.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
and Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res 25,
3389-3402.

2. Jones,D.T. (1999). Protein secondary structure prediction based on
position-specific scoring matrices J Mol Biol/J Mol Biol 292, 195-202.

3. Pearson,W.R. and Lipman,D.J. (1988). Improved tools for biological
sequence comparison Proc Natl Acad Sci U S A 85, 2444-2448.

4. Ogata,K. and Umeyama,H. (2000). An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model 18, 258-272, 305-256.

5. Lo Conte,L., Brenner,S.E., Hubbard,T.J., Chothia,C. and Murzin,A.G.
(2002). SCOP database in 2002: refinements accommodate structural
genomics Nucleic Acids Res. 30, 264-267.

Fischer - 189 models for 64 3D targets
Beautifying 3D-SHOTGUN models

D. Fischer

Bioinformatics Center of Excellence, University of Buffalo
dfischer@bioinformatics.buffalo.edu

C-alpha, unrefined models were automatically generated for all targets using
the 3D-SHOTGUN server. 3D-SHOTGUN assembles hybrid, C-alpha-only,
unrefined models that can be an excellent starting point for refinement.

For CASP, we refined the 3D-SHOTGUN models using either Honig’s nest or
Keasar’s beautify refinement programs. The resulting models are full-atom,
physically valid models. Large tests from LiveBench indicate that the
performance of these refinement programs in combination with 3D-
SHOTGUN, is superior to that obtained by other refinement programs
previously used. The MaxSub scores of the resulting models are on average
almost identical to those obtained for the original 3D-SHOTGUN models.
Thus, this procedure achieves two goals: accuracy and beauty. The first goal is
achieved because 3D-SHOTGUN produces excellent unrefined models. The
second goal is achieved because the refinement, without decreasing accuracy,
produces physically valid, full-atom models. For verification purposes, the
resulting full-atom models were assessed using the new MQAP-CONSENSUS
method developed for MQAP-CAFASP
(www.cs.bgu.ac.il/~dfischer/CAFASP4). The MQAP-CAFASP scores of our
refined models were also compared to models produced by the CAFASP
Servers.

Results from the evaluation of the nearly 30 CASP6 targets whose structures
have been released indicate that the beautified 3D-SHOTGUN models
submitted to CASP6 are of relatively high quality: their total MaxSub score is
higher than that obtained by the best CAFASP4 servers and meta-servers.
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Floudas - 60 models for 12 3D targets
ASTRO-FOLD: first principles tertiary structure prediction

C.A. Floudas, J.L. Klepeis, and S.R. McAllister

Department of Chemical Engineering, Princeton University, Princeton, NJ
floudas@titan.princeton.edu

ASTRO-FOLD is an integrated methodology for the first principles structure
prediction of proteins based on an overall deterministic global optimization
framework coupled with mixed-integer optimization. The novel four-stage
approach combines the classical and new views of protein folding, while using
free energy calculations and integer linear optimization to predict the location
of helical segments and the topology of beta-sheet structures and disulfide
bridges, respectively. Detailed atomistic-level energy modeling and the
deterministic global optimization method, aBB, coupled with torsion angle
dynamics, form the basis for the final tertiary structure prediction'*.

The first stage of the approach involves the identification of helical segments.
This is accomplished through detailed atomistic-level energy modeling of
overlapping subsequences of the overall protein sequence using the selected
force field (e.g., ECEPP/3°). The amino acid sequence is first decomposed into
subsequences of overlapping oligopeptides (e.g., pentapeptides, heptapeptides,
nonapeptides). For instance, using heptapeptides, the folowing subsequences
are generated: 1-7, 2-8, 3-9, . . . etc. For each subsequence, global optimization
can be used to generate an ensemble of low energy conformations along with
the global minimum energy conformation®. Rigorous free energies that include
entropic, cavity formation, polarization and ionization contributions, and
involve solution of the Poisson-Boltzmann equation, are calculated for a subset
of conformations for each oligopeptide system. Finally, these free energy
values are combined to determine helical propensities for each residue by
calculating equilibrium occupational probabilities for each possible helical
cluster’.

The second stage focuses on the prediction of beta-sheet and disulfide bridge
topology through the analysis of amino acid properties that are based on residue
hydrophobicities. The approach, which borrows key concepts from a
mathematical framework developed in the area of process synthesis of chemical
systems®, is based on the idea that beta-structure formation relies on a
hydrophobic driving force. To model this force, it is necessary to predict
contacts between hydrophobic residues. The first important component of the

approach is the postulation of a beta-strand superstructure that encompasses all
alternative beta-strand arrangements. A novel mathematical model is then
formulated to provide the formation of ordered structural features, such as beta-
sheets and disulfide bridge connectivity. The solution of this integer linear
programming problem, with the objective being the maximization of the
hydrophobic contact energy, provides a rank ordered list of preferred
hydrophobic residue contacts, beta strand topologies and disulfide bridge
connectivities®.

The third stage involves the derivation of restraints based on helical and beta-
sheet predictions in the form of dihedral angle and atomic distance restraints to
enforce the predicted secondary and tertiary arrangements. In addition,
restraints are developed by prediction of interhelical contacts for all alpha-
helical proteins'®. By maximizing the occurrence of highly probable pairwise
interactions, a rank ordered list of helical topologies is produced using a
detailed optimization model. Also, additional restraints can be determined for
the intervening loop residues connecting helical and strand regions through
novel application of free energy simulation'""*. More specifically, the identified
loops are extended on each side to incorporate three additional amino acids of
both secondary structure elements that the loop connects. Each set of three
flanking amino acids are imposed to be in their respective secondary structure
state (e.g., helix, beta-strand). Then, a series of free energy calculations are
conducted using overlapping oligopeptides, similar to the free energy
calculations in the helix prediction stage. The objective of these calculations is
to produce improved bounds on the dihedral angle and backbone distances
within the loop residues. However, due to the restrictive deadlines of the
CASP6 competition, it became infeasible to apply these loop modeling efforts
to the protein targets.

The fourth and final stage of the approach involves the prediction of the tertiary
structure of the full protein sequence. The problem formulation, which relies
on dihedral angle and atomic distance restraints introduced from the previous
stages, as well as on detailed atomistic energy modeling, represents a
nonconvex constrained global optimization problem. This problem is solved
through the combination of a deterministic global optimization approach, the
oBB method; a stochastic algorithm, conformational space annealing; and a
preprocessing torsion angle dynamics step*. The resulting low energy
ensemble is evaluated through a clustering analysis. A variant of a k-means
algorithm predicts five clusters of conformers using protein C-alpha
coordinates™. A distributed computing framework of each stage of the
proposed approach has been developed, and our predictions in the CASP6
competition employ this parallel implementation.

Abstracts - 56



10.

11.

12.

13.

14.

Klepeis,J.L.. & Floudas,C.A. (2003) Ab Initio Tertiary Structure Prediction
of Proteins, J. Global Optim. 25, 113-140.

Floudas, C.A. (2000) Deterministic Global Optimization: Theory,
Algorithms and Applications, Kluwer Academic Publishers.

Klepeis,J.L., Schafroth,H.D., Westerberg, K.M. & Floudas,C.A. (2002)
Deterministic global optimization and ab-initio approaches for the structure
prediction of polypeptides, dynamics of protein folding, and protein-
protein interactions, Adv. Chem. Phys. 120, 265-457.

Klepeis,J.L.. & Floudas,C.A. (2003) ASTRO-FOLD: A Combinatorial and
Global Optimization Framework for Ab Initio Prediction of Three-
Dimensional Structures of Proteins from the Amino Acid Sequence,
Biophys. J. 85, 2119-2146.

Nemethy,G., Gibson,K.D., Palmer,K.A., Yoon,C.N., Paterlini,G.,
Zagari,A., Rumsey,S. & Scheraga,H.A. (1992) Energy parameters in
polypeptides. 10. Improved geometrical parameters and nonbonded
interactions for use in the ECEPP/3 algorithm with applications to proline-
containing peptides, J. Phys. Chem. 96, 6472-6484.

Klepeis, J.L.. & Floudas,C.A. (1999) Free energy calculations for peptides
using deterministic global optimization, J. Chem. Phys. 110, 7491-7512.
Klepeis,J.L. & Floudas,C.A. (2002) Ab-Initio Prediction of Helical
Segments in Polypeptides, J. Comp. Chem, 23, 1-22.

Floudas, C.A. (1995) Nonlinear and Mixed-Integer Optimization:
Fundamentals and Applications, Oxford University Press.

Klepeis,J.L.. & Floudas,C.A. (2003) Prediction of Beta-Sheet Topology and
Disulfide Bridges in Polypeptides, J. of Comp. Chem. 24, 191-208.
Mickus,B., Klepeis,J.L.., McAllister,S.R., & Floudas,C.A. (2004). A Novel
Approach for Alpha-Helical Topology Prediction. In preparation.
Klepeis,J.L. & Floudas,C.A. (2004) Analysis and Prediction of Loop
Segments in Protein Structures, Comput. Chem. Eng., in press.
Klepeis,J.L., Pieja,M.J. & Floudas,C.A. (2003) A New Class of Hybrid
Global Optimization Algorithms for Peptide Structure Prediction:
Integrated Hybrids, Comput. Phys. Comm. 151, 121-140.

Klepeis,J.L., Pieja,M.J. & Floudas,C.A. (2003) Hybrid Global
Optimization Algorithms for Protein Structure Prediction: Alternating
Hybrids, Biophys. J. 84, 869-882.

Moennigmann,M., McAllister,S.R. & Floudas,C.A. Unpublished.

FORTEL1 (serv) - 320 models for 64 3D targets

FORTEL1: a simple profile-profile comparison method applied
to fold recognition

K. Tomii
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-43 Aomi, Koto-ku, Tokyo, Japan
k-tomii@aist.go.jp

In the CASP5 experiment, we proposed a simple fold recognition technique and
built its automated server, FORTE1, based on a profile-profile comparison
method. The FORTE1 server had been given a comparatively higher rank by
virtue of some evaluation results', and was included in Pcons-5 at LiveBench.
The server® is publicly available for academic use now. This approach has also
been applied to protein structure prediction of the CASP6 targets, but its profile
database has been improved, as explained below.

The FORTEL1 system uses position-specific score matrices (PSSMs) of both the
query and templates as profiles. It identifies proper templates and produces
profile-profile alignments of a target and templates. To calculate PSSMs of both
the query and templates, PSI-BLAST* iterations are performed a maximum of
20 times with the NCBI non-redundant database. The amino acid sequences of
templates are derived from the ASTRAL® 40% identity list and selected PDB®
entries that are not registered in the SCOP’ database. Furthermore, the full-
length sequences, which are divided into structural domains in SCOP, are also
prepared because we believe our prediction results were not reflected
appropriately in some cases in CAFASP3. Our server recognizes correct
domains separately (typically in the case of T0185).

The standard dynamic programming algorithm is used with gap penalties that
are optimized by our preliminary study, explained below, to align two PSSMs.
The dynamic programming algorithm requires a matrix containing similarity
scores for the pairs of positions in the PSSMs that are to be compared. The
similarity score for each pair of PSSM columns is defined as their correlation
coefficient. We use the global alignment algorithm with no penalty for the
terminal gaps to obtain an optimal sequence-structure alignment. The statistical
significance of each alignment score is estimated by calculating the Z-scores
with a simple log-length correction. Candidates of sequence-structure
alignments were sorted by their Z-scores. We submitted prediction results in the
AL format.
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We employ the Pearson’s correlation coefficient to measure the similarity
between two profile columns, as stated previously, because we have found that,
compared with the dot product, the correlation coefficient offers an advantage.
It showed higher sensitivity of fold recognition at the SCOP family,
superfamily, and fold level, when we performed our preliminary study with 948
single domain proteins selected by PDB-REPRDB®. Thereby, any pair of
proteins has less than 30% sequence identity. A similar tendency was noted in a
recent paper®.
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fold recognition using Pcons, ProQ, and Pmodeller. Proteins 53, 534-541.

2. http://supfam.mrc-lmb.cam.ac.uk/CAFASP/
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FORTELT (serv) - 320 models for 64 3D targets

FORTEILT: profile-profile comparison with improved profiles
for fold recognition

K. Tomii
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-43 Aomi, Koto-ku, Tokyo, Japan
k-tomii@aist.go.jp

MOTIVATION: We have constructed a new server, FORTE1T, to elucidate
effects of quality of profiles for alignment accuracy as well as sensitivity and
selectivity of fold recognition. This system uses a process that produces a
multiple alignment as a seed, thereby improving profile quality before profile
construction by PSI-BLAST! iterations.

PROFILE CONSTRUCTION FOR FORTELIT: Amino acid sequences of
templates are derived from the ASTRAL? 40% identity list and selected PDB?
entries which are not registered in the SCOP* database. Furthermore, full-length
sequences that are divided into structural domains in SCOP are also prepared.
Those are template library sequences. Moderately related sequences for each
sequence are gathered by PSI-BLAST from the NCBI non-redundant database.
A multiple alignment is constructed for each template using T-Coffee® with
those related sequences and the template sequence. Multiple alignment is used
as the seed alignment for profile construction by PSI-BLAST iterations with the
NCBI non-redundant database. This process to improve profile quality is
applied for both the query and templates.

BENCHMARK RESULT: To evaluate the ability of FORTEIT for fold
recognition, FORTE1T was also included partly in LiveBench-9. For most
cases, both alignment accuracy and sensitivity of fold recognition were
improved over those of FORTE1°,

IN CASP6: The FORTELT system also uses position-specific score matrices
(PSSMs) of both the query and templates as profiles to predict the structure of
the query sequence. Except for the profile quality, the procedures to obtain
candidates of sequence-structure alignments are identical to those of FORTEL.
We submitted prediction results in the AL format.
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FORTE2 (serv) - 320 models for 64 3D targets

FORTE2: automated fold recognition server with enhanced
profile library

K. Tomii
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-43 Aomi, Koto-ku, Tokyo, Japan
k-tomii@aist.go.jp

MOTIVATION: To elucidate effects including very distantly related sequences
into profiles for alignment accuracy, as well as sensitivity and selectivity of fold
recognition, we have constructed our new server: FORTE2 (FORTE is an
abbreviation for "FOld Recognition TEchnique"). Its system uses the same
protocol as FORTE1". It has enriched profiles by incorporating highly diverged
sequences detected by FORTE]1 into the sets of sequences that are gathered by
PSI-BLAST?

PROFILE CONSTRUCTION FOR FORTE?2: First, protein domain sequences
were derived from a 40% identity list of SCOP? 1.63. Their profiles were
constructed using the FORTE1 procedure. Those sequences and profiles were
prepared as a representative data set. Through an all-against-all search of this
data set by FORTE1, we identified the true positive pairs of proteins with Z-
score, ranging from 4 to 10. In this case, we determined true positive pairs as
those proteins that are assigned the same fold in the SCOP classification. We
constructed new profiles using alignments of those pairs for FORTE2. Those

alignments, provided by FORTE1, were used as seed alignments for profile
construction by PSI-BLAST iterations with the NCBI non-redundant database.

BENCHMARKS: We performed an all-against-all search using the
representative data set to evaluate and compare the ability of identifying
proteins with the same fold by FORTE1 and FORTE?2. In this test, we regarded
relationships with higher Z-scores than the first false positive as true hits.
FORTE1 and FORTE2 were also included in LiveBench.

BECHMARK RESULTS*: We found that subtle effects of incorporating highly
divergent sequences detected by FORTE] into the sets of sequences that had
been gathered by PSI-BLAST in profile construction. We found that FORTE2
can detect relationships between proteins that are different from those detected
by FORTE1 through all-against-all search, but most true hits are common to
both methods. According to LiveBench-8 results, FORTE2 showed the
additional advantage of remote homology or analogy detection, but with
slightly worsened alignment accuracy in some cases.

IN CASP6: The FORTE?2 system also uses position-specific score matrices
(PSSMs) of both the query and templates to predict the structure of the query
sequence, as FORTE1 does. The enhanced profile library was updated.
Procedures to obtain an optimal sequence-structure alignment and estimate its
statistical significance are the same as those of FORTE1. Candidates of the
sequence-structure alignments were sorted by their Z-scores. Subsequently, we
submitted prediction results in the AL format.

1. Tomii,K. & Akiyama,Y. (2004). FORTE: a profile-profile comparison tool
for protein fold recognition. Bioinformatics 20, 594-595.
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of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

3. Murzin,A. Brenner,S.E., Hubbard,T. & Chothia,C. (1995). SCOP: a
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4. Tomii,K. (2004). Effects of using highly diverged sequences in profile-
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FRCC - 56 models for 51 3D / 2 DP targets
EVM (Expert vs Machine) strategy for fold recognition

1.Y. Torshin

Private informatics consulting
tiy135@yahoo.com

There has seen an enormous increase in the number of the individual
computerized methodologies for protein structure prediction. Entirely
automated methods are most appropriate when applied to the tasks of the
comparative modeling rather than to fold recognition or “ab initio”-styled
algorithms. Experimentation with different fold recognition programs (such as
3D-PSSM', FFAS? FoldRec-CC? and others) shows that at low sequence
similarities structures of very different architectures are often selected among
the 10,20,30... “top-ranking” and the correct template is often on the list.
However, the sequence-based E-value does not in any way discriminate
between the correct and the incorrect templates. This is the stage of prediction
when the human’s expertise, of whatever level, should of necessity come into
view.

On one hand, it is the author’s conviction that a method of protein structure
prediction applicable to wide range of sequences (with any identities to known
sequences) should be based and consequently developed on the fundamental
natural laws. So far, there were quite a few attempts to develop methods (for
example, “Rosetta” %) in this extraordinarily important direction of research and
most of the methods appear to be content with various statistical models.
Statistical models are, in general, only a surrogate for, or, at best, a semi-
product of the actual scientific understanding®. As shows the centuries-long
history of physics, the fundamental laws can always be implemented as reliable
computational procedures. On the other hand, there is a possibility that the
structural proteomics (sometimes weirdly called as “structural genomics”, to
the considerable annoyance of geneticists and microbiologists) will yield
sufficient templates to model any protein structure. However, this is definitely
not the case at present.

Thus, a computational procedure that has been cleansed from the arbitrary
assumptions and that is supplemented by a human expertise can be a practical
solution to the fold recognition problem. It becomes increasingly clear that
secondary structure is a fundamental characteristics of proteins®® and its
important role in the folding also becomes apparent’. Therefore, moving the
accents of the similarity searches from “primary” to “secondary” structure

similarity allows a jump through the problem of low sequence identity (at least
in theory). Such a procedure should not rely on the sequence identity (in any of
its multiple forms and definitions) as the sole criterion for template selection.

The algorithm we applied to CASP6 targets was elaborated largely on the base
of the above considerations. At the first stage, the secondary structure was
predicted (Psipred®) and hashed against a non-redundant database of about
5,000 templates. The best-matches (300-500) were re-ranked according to the
compactness and domain isolation. Domain definitions were from GTDD?. The
3D models were prepared using the final list of matches (<20 models) and
CLUSTAL W alignments. Models were annotated with the function and domain
predictions, SCOP and GTDD domains. The final list was carefully analyzed to
select the most appropriate templates for the target sequence, appropriateness of
each potential template was determined through the human expertise including
“LSH-calculus” developed by the author. Only targets with such “appropriate
templates” were submitted to the CASP-6 experiment.

It is quite obvious that the accuracy of the entire procedure depends on the
accuracy of the secondary structure prediction (at present 80%, and this is an
arguable average). Of course, the procedure incorporates correction algorithms
accounting for possible errors in the secondary structure prediction. However,
experimenting with secondary structures of different accuracies shows that the
accuracy should be not less than 80%-85% to produce an accurate 3D model.
Another problem that arises especially at lower accuracies of the secondary
structure prediction is the requirement of the variety of the secondary structure
elements along the amino acid sequence. For example, procedure would not
work well on the structures with long loops and very few and short strands,
such as found, for example, in kringle and EGF-like domains. Comparisons
with predictions by other methods (primarily, BLAST, 3DPSSM and FFAS)
show strong agreement for a number of CASP6 targets, although at present (Oct
2004) the actual efficiency of the method in its current form is arguable as the
targets’ info is not yet available.
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FUGMOD_SERVER - 320 models for 64 3D targets
FUGMOD: an automatic comparative modelling server

Ricardo Nufiez Miguel, Tom L. Blundell and Kenji Mizuguchi
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road,
Cambridge CB2 1GA
kenji@cryst.bioc.cam.ac.uk

FUGMOD is a server that runs the Automatic COMParative MODelling
program ACOMPMOD. The program consists of several components that run
external fold recognition/comparative modelling programs and efficiently
analyse and combine their output. This makes ACOMPMOD a powerful tool
for fully automated comparative modelling. The only needed input is the amino
acid sequence of the protein of interest.

ACOMPMOD utilises the homology recognition program FUGUE". It takes the
alignments produced by FUGUE and then runs the program ALIMOD, which
modifies the alignments in order to place the deletions in the most appropriate
location within the target sequence by calculating the spatial distances between
the two residues of the template that are aligned with the residues at the borders
of the deletion in the target sequence. In the next step, ACOMPMOD runs
MODELLER?® to build atomic coordinates. In this step nine models are
solicited. ACOMPMOD selects the best model using the program
MODELLIST. This program utilises the energy and violations of every model
in order to obtain values that are considered in the selection of the best model.
Once the best model is selected, ACOMPMOD runs the program JOY* to
annotate protein sequence alignments with three-dimensional (3D) structural
features. The JOY output will help in the validation of the model.

ACOMPMOD produces full-atom models with all residues, including loops,
excluding, sometimes, the N- and/or C-termini if they do not have templates to
be aligned with.

Different options are available when running ACOMPMOD. The program can
accept only an amino acid sequence, run FUGUE and produce models for 1) the
top ten FUGUE hits or 2) only for the single highest scoring one. It can also
accept an amino acid sequence and a HOMSTRAD®’ family to produce a
model using that family as template. Furthermore, it can accept an amino acid
sequence, a HOMSTRAD family and an alignment to produce a model based
on that family and the user-supplied alignment. In all cases the user can choose
whether to use the ALIMOD for modifying the alignment or not.
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FUGUE_SERVER - 320 models for 64 3D targets

FUGUE - recent enhancements to sequence-structure
homology recognition

Jiye Shi, Tom L. Blundell and Kenji Mizuguchi
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road,
Cambridge CB2 1GA
kenji@cryst.bioc.cam.ac.uk

The key elements of the homology recognition software FUGUE!, when first
tested in CASP3? were environment-specific substitution tables (ESSTs),
structure-dependent gap penalties, automated alignment selection and the use of
the HOMSTRAD?* database, a curated collection of protein structural families.
A position-specific score matrix (PSSM) was derived using the ESSTs from the
structure-based alignment of each family in HOMSTRAD. Homologues of the
query sequence were collected and the resulting sequence profile was compared
against the structure-based PSSMs. A new feature was introduced and tested in

CASP4 and CASP5, to enrich the structure-based PSSMs with information
derived from homologous sequences. This enhancement improved the
performance dramatically® and it has now become the default feature.
Therefore, FUGUE not only utilizes structural information (in the form of
ESSTs), as in many fold recognition methods, but also incorporates the
elements of sequence-based structural profile enrichment and profile-profile
alignment techniques®.

Although the program has proved successful in other benchmark exercises and
continues to uncover novel homologies”®, our own recent benchmark results
suggested that the structural and sequence information may not be optimally
combined in the enriched profiles. This was because the enriched PSSMs did
not always produce better alignments than the original PSSMs (with no added
homologous sequences). The homologous sequences were added by PSI-
BLAST to the structure-based alignments and the quality of the PSI-BLAST
alignments appeared to influence the efficiency of structural profile enrichment.
A new algorithm was recently introduced to filter the PSI-BLAST output and it
has improved the performance of FUGUE with enriched PSSMs in our
benchmark exercises. This new option is being further tested in CASP6.

1. Shi,J., Blundell,T.L. & Mizuguchi,K. (2001) FUGUE: sequence-structure
homology recognition using environment-specific substitution tables and
structure-dependent gap penalties. J. Mol. Biol. 310, 243-257.

2. Burke,D.F. et al. (2000) An iterative structure-assisted approach to
sequence alignment and comparative modelling. Proteins Suppl 3, 55-60.

3. Mizuguchi,K., Deane,C.M. & Blundel,T.L. (1998) HOMSTRAD: a
database of protein structure alignments for homologous families. Protein
Sci. 7, 2469-2471.

4. Stebbings,A.L. & Mizuguchi,K. (2004) HOMSTRAD: Recent
developments of the Homologous Protein Structure Alignment Database.
Nucleic Acids Res. 32, D203-D207.

5. Williams, M.G. et al. (2001) Sequence-structure homology recognition by
iterative alignment refinement and comparative modelling. Proteins Suppl
5, 92-97.

6. Mizuguchi K. (2004) Fold recognition for drug discovery. Drug Discovery
Today: Targets 3, 18-23.

7. Witty, M. Sanz, C., Shah, A., Grossmann, J.G., Mizuguchi, K., Perham,
R.N., Luisi, B. (2002) Structure of the periplasmic domain of Pseudomonas
aeruginosa TolA: evidence for an evolutionary relationship with the TonB
transporter protein. EMBO J. 21, 4207-4218.

8. Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V, Boutin A, Rose DJ,
Blattner FR, Nataro JP. (2003) The export of coat protein from

Abstracts - 62



enteroaggregative Escherichia coli by a specific ATP-binding cassette
transporter system. J Biol Chem 278, 45680-9.
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GeneSilico-Group - 192 models for 64 3D targets
Dr. Frankenstein’s toolbox
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Pawlowski, M. Boniecki, A. Obarska, G. Papaj, P. Sroczynska, K.

Tkaczuk, P. Sonta, A. Augustyn, J.M. Bujnicki and M. Feder
International Institute of Molecular and Cell Biology, Trojdena 4, 02-109
Warsaw, Poland
marcin@genesilico.pl

During the previous CASP5 experiment, our group (GeneSilico/517) applied a
multi-step protocol called “FRankenstein Monster’s approach” to predict
protein structures of all targets regardless of their potential classification®. This
strategy used multiple models from various fold-recognition (FR)-servers to
construct a hybrid model and tweak it locally to obtain an optimal target-
template alignment. According to the official assessment we were able to build
very accurate models in the comparative modelling (CM)* and easy fold
recognition (FR/H)? categories targets but our performance was poorer for hard
fold recognition (FR/A) targets and we failed to predict correct structures for all
but one target in the new fold (NF) category. Another relevant difficulty we met
was reconstructing large insertions in the target without any counterpart in the
potential templates.

Several limitations of “FRankenstein’s Monster” approach were avoided in
CASP6. Previously “alignment shifting” and subsequent evaluation was done
manually. In CASP6 edition we automatized this steps what allowed us to probe
much higher number of possible alignments and only the best scoring ones
underwent manual and knowledge-based inspection.

The most severe limitation of the previous implementation of the
“Frankenstein’s Monster” approach in CASP5 was a lack of a reasonable
method to predict conformation of long loops, large insertions, terminal
extensions and domains with no template identified. In CASP6, we applied

Rosetta* to model de novo fragments of models for which the conformation
could not be confidently inferred from the templates. It was especially useful
when only the protein core could be modeled by comparative modeling, while
loops and peripheral elements had to be modeled de novo. In the cases we
identified as potential new folds, we used Rosetta in a fully de novo mode.
However, if we could identify any structural similarity between Rosetta models
and some of the potential templates, the templates were used preferentially.

Summarizing, in CASP6 we used the FRankenstein.s approach in similar
manner as in CASP5, but in a more automated and extended fashion. Most
analyses were carried out using components of a fully automated package of
programs and libraries (Dr. Frankenstein’s Toolbox), which in the near future
will be made available to the scientific community as a WWW server.

1. Kosinski,J., Cymerman,I.A., Feder,M., Kurowski,M.A., Sasin,JM. &
Bujnicki,J.M. (2003) A "FRankenstein's monster" approach to comparative
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iterative model refinement aided by 3D structure evaluation. Proteins
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predictions in CASP5. Proteins 53(S6):352-368.

3. Kinch,L.N., Wrabl,J.O., Krishna, S.S., Majumdar, I., Sadreyev, R.I., Qi,Y.,
Pei,J., Cheng,H. & Grishin,N.V. (2003) CASP5 assessment of fold
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Ginalski - 150 models for 64 3D targets

Modeling of CASP6 target proteins with 3D-Jury,
Meta-BASIC and ROSETTA

K. Ginalski
Department of Biochemistry, University of Texas, Southwestern Medical
Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
kginal@chop.swmed.edu

For the sixth round of Critical Assessment of Techniques for Protein Structure
Prediction (CASP6), 76 target proteins were modeled based on the results of
3D-Jury’, a consensus method of fold recognition servers, Meta-BASIC?, a
novel meta profile alignment method, and an ab-initio ROSETTA program®.
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The critical steps in comparative and fold recognition modeling: selection of
template(s) and generation of sequence-to-structure alignment, were guided
mainly by the results of secondary structure prediction and tertiary fold
recognition carried out using the Meta Server®. Initially, related proteins with
known structures were identified from the transitive PSI-Blast® searches
performed against the NCBI non-redundant protein sequence database until
profile convergence and from the consensus of the Meta Server results. For
difficult targets, template/fold identification was based on the results of the 3D-
Jury method for the query sequence and a few homologues as well as the
transitive Meta-BASIC searches performed against PfamA, PfamB and PDB. In
addition, fold selection was also guided by the consensus of exhaustive fold
recognition searches with Meta-BASIC for sets of homologues detected with
PSI-Blast (E-value <10) and by the similarity of ROSETTA models to known
structures detected with MAMMOTH program®. Structural determinants of the
selected folds were then analyzed: representative structures of a given fold and
the corresponding structural alignments were inspected for both conservation
and variability of the structural elements. Conservations of specific residues
and contacts responsible for maintaining tertiary structure and critical for
substrate binding and/or catalysis were also established. Additionally, PCMA
program’ was used to generate multiple sequence alignments for target and
template families. Sequence-to-structure alignments were built using the
consensus alignment approach and 3D assessment® within the context of the
structural and sequential constraints identified above. Importantly, in this
procedure several alignment variants for the most questionable regions were
derived manually, guided mainly by secondary structure predictions and
conservation of structurally important residues in the PCMA family profiles.
Final models of target proteins were built with the MODELLER program®
using more than one template structure where possible. In many cases loops
and structurally variable regions were built manually or taken from other
distantly related structures. No energy minimization procedures were
employed.

For the remaining targets initial models were generated with the ROSETTA
program for both the query protein and a few homologues as well. Resulting
models were inspected manually and final selection was based mainly on
consistency and compactness of the predicted structure. In several cases final
models were built manually from the most common fragments extracted from
ROSETTA models, taking into account predicted secondary structure,
hydrophobic profile of the family and the location of absolutely conserved and
presumably catalytic residues.
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Glo4 - 2 models for 1 3D target
Global search on a detailed energy surface

M.J. Dudek’

! — Recently unemployed.
mdudek@nethere.com

Structure prediction was attempted by global energy minimization of a detailed
rigid-geometry protein energy function for the smallest CASP6 target T0215
consisting of 53 residues. Calculations were carried out on a 1.7 GHz Pentium
IV processor. My two submitted structures correspond to steps 3 and 4 of a
short trajectory of local minima consisting of 4 steps. Full global energy
minimization was not possible due to limited computational resources.
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The energy surface”, currently unnamed, is based on a nonstandard collection
of detailed functional forms. These include a distributed atomic multipole
representation of the electrostatic component, a buf14-7 representation of the
repulsion +dispersion component, a 2-dimensional fourier series representation
of the intrinsic torsional component, and a hydration shell model representation
of the hydrophobic contribution to hydration free energy. The remainder of
hydration free energy is obtained as the energetic effect of a continuous
dielectric medium calculated using a boundary element solution to the Poisson
equation. Parameters were fit to small molecule data, including crystal
structures and hydration free energies, obtained from both experimental
measurements and molecular orbital calculations.

Initial validation of this energy surface* was through applications of global
energy minimization to 7-residue surface loop segments of protein crystal
structures. For 9 of 10 predictions, the native backbone conformation was
identified correctly. The energy surface has continued to perform well in
surface loop structure prediction of 9-residue segments, and in ab initio peptide
structure prediction of omega-conotoxin family members ranging in size from
24 to 31 residues.

Global energy minimization is accomplished by generating a sequence,
alternatively referred to as a trajectory, of local minima. Each step of this
trajectory consists of generation of a large collection of starting conformations,
intended to cover uniformly some subspace of possible deformations, followed
by fast screening and local energy minimization. The local minimum
conformation having the lowest energy is retained as the next step of the
trajectory and the starting point for the next deformation.

The global search program, currently named GLO4, was originally developed
for applications to protein surface loop segments ranging in length from 5-15
residues.' Feedback from global energy minimization of protein surface loops
has motivated and guided development of the present better-performing energy
surface. The GLO4 program has since been extended to enable applications of
our detailed energy surface to structure prediction of peptides and small
proteins. Recent extensions also enable applications to homology model
building and ligand binding. It is hoped that feedback from small protein
structure prediction can guide further improvement to the energy surface,
although computational limitations remain a barrier.

1. Dudek,M.J. & Scheraga,H.A. (1990) Protein Structure Prediction Using a
Combination of Sequence Homology and Global Energy Minimization I.
Global Energy Minimization of Surface Loops. J. Comput. Chem. 11, 121-
151.

2. DudekM.J. & Ponder,J.W. (1995) Accurate Modeling of the
Intramolecular Electrostatic Energy of Proteins. J. Comput. Chem. 16, 791-
816.

3. Dudek,M.J. & Hagler,A.T. (unpublished) The Impact of Atomic Dipoles
and Quadrupoles on Calculated Crystal Structures and Sublimation
Energies of Model Amide Compounds.

4. Dudek,M.J.,, Ramnarayan, K. & Ponder,J.W. (1998) Protein Structure
Prediction Using a Combination of Sequence Homology and Global
Energy Minimization II. Energy Functions. J. Comput. Chem. 19, 548-573.

5. Dudek,M.J. & Ramnarayan,K. (2001) Application of a Detailed Energy
Surface to Homology Modeling of the omega-Conotoxin Family.
Proceedings of the Seventeenth American Peptide Symposium 428-429.

Hamilton-Huber-Torda (serv) - 61 models for 61 RR targets
Protein contact prediction using patterns of correlation

N.A. Hamilton!2, K. Burrage!, M.A. Ragan?, A.E. Torda3
and T. Huber!
1— Advanced Computational Modelling Centre, The University of Queensland,
2— Institute for Molecular Bioscience, The University of Queensland,
3 — Zentrum fiir Bioinformatik, Universitdt Hamburg
n.hamilton@imb.uq.edu.au

Protein contact prediction provides a complementary approach to the
information provided by force field and sequence alignment based methods for
protein fold prediction. While the predictive accuracy is far from perfect it can
provide valuable complementary information that can be used, for instance, to
rank models created by other methods. In the following we describe a new
method for contact prediction by training a Neural Network to classify patterns
of contact. The main inputs to the neural network are a set of 25 measures of
correlated mutation between all pairs of residues in two “windows” centered on
the residues of interest. The individual pairwise correlations are a relatively
weak predictor of contact, but by training the network on windows of
correlation the accuracy of prediction is significantly improved.

Method
Psipred# version 2.3 software is used to generate a prediction for the secondary
structure as well as giving a pair-wise multiple sequence alignment for the
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proteins sequence. For each pair of residues in the protein sequence we
generate a pattern of inputs for a neural network as follows.

Pairwise correlations. The multiple sequence alignment is used to calculate the
(mutational) correlation between two columns of the multiple sequence
alignment. The correlations are calculated as in Gobel et al.!, with the minor
modification that the Blosum62 matrix rather than that of McLachlan is used to
score the residue interchanges. Windows of length 5 of consecutive columns are
found. For each pair of non-overlapping windows the 25 correlations between
columns of the first window with columns of the second are used as inputs to
the neural network. The aim is to predict whether the middle residue of the first
window is in contact with the middle residue of the second.

Residue classes. Residues may be classified as non-polar, polar, acidic, or basic.
For a pair of residues there are ten possible pair cases. Thus we have ten binary
inputs, exactly one of which is set to one to encode the residue type of the pair
we are attempting to predict on.

Predicted secondary structure. For a given residue, its predicted secondary
structure type is encoded as three binary inputs, being either helix, sheet or
neither. For a given residue pair that we are attempting to predict with, the
predicted secondary structure is input for the two residues as well as the two
residues that are adjacent to them.

Affinity score. A given residue pair is assigned an affinity score based on the
type of each of the amino acids. This expresses the fraction of times residue
pairs of a given type are in contact in a training set of 50 proteins.

Length of input sequence and residue separation. The length of the sequence
and the sequence separation, each divided by 1000, are input for the pair we are
predicting with.

Network Architecture and Training
The predictor neural network is a standard feed-forward network, with 56

inputs, ten hidden units, and a single output. The expected output is 1 for
contacts and 0 for non-contacts.

Proteins were randomly chosen from a representative set of proteins of the
Protein Data Bank. The network was trained, validated and tested on disjoint
sets of 100, 50 and 1033 proteins using back propagation with a momentum
term with the Stuttgart Neural Network Simulators.

Testing the Trained Network

The trained network was tested on a set of 1033 proteins of known structure.
An average predictive accuracy of 21.7% was obtained taking the best L/2
predictions for each protein, where L is the sequence length. Taking the best
L/10 predictions gives an average accuracy of 30.7%. An automated prediction
server can be found at

http://foo.maths.uq.edu.au/~nick/Protein/contact.html

1. Gobel,U., Sander,C., Scheider,R., Valencia,A. (1994) Correlated mutations
and residue contacts in proteins. Proteins 18, 309-317.

2. Fariselli,P., Olmea,O., Valencia,A., Casadio,R. (2001) Progress in
predicting inter-residue contacts of proteins with neural networks and
correlated mutations. Proteins Suppl 5, 157-162.

3. Hamilton,N., Burrage,K., Ragan,M., Huber,T. (2004) Protein contact
prediction using patterns of correlation, Proteins 56, 679-684.

4. McGuffin,L.J.,, Bryson,K., Jones,D.T. (2000) The PSIPRED protein
structure prediction server. Bioinformatics 16, 404-405.

5. Zell,A.,, et al. (1998) Stuttgart neural network simulator user manual
version 4.2. University of Stuttgart.

HHpred.2 (serv) - 310 models for 62 3D targets
HHpred.3 (serv) - 309 models for 62 3D targets

Homology detection and 3D structure prediction by = HMM-
HMM comparison

J. Sding
Dept for Protein Evolution,
Max-Planck-Institute for Developmental Biology, Tiibingen, Germany
johannes.soeding@tuebingen.mpg.de

The HHpred web server allows users to search for distant homologs of their
query sequence in several databases like Pfam, SMART, or SCOP. It returns a
list of best matches together with the query-template alignments in an easily
readable format. We try to maximize flexibility for interactive use, providing
the possibility to check the automatically generated alignment for errors or to
search with a user-generated alignment. The server can be accessed at

(http://protevo.eb.tuebingen.mpg.de/toolkit/index.php).
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For participation in CASP6/CAFASP4, we developed a fully automated version
of HHpred, called HHpred.2. It generates unrefined pdb-formatted structure
models by using the query-template alignments to directly map the coordinates
of the best templates to the query residues A multiple alignment is built from
the query sequence using up to 8 rounds of PSI-BLAST with E-value threshold
1E-5 (1E-4 in the last round) and purging the alignment of possibly non-
homologous sequence fragments after each round. PSIPRED2 is used for
secondary structure prediction. The alignment is converted to a HMM and
compared with a database of domains of known structure. These HMMs were
derived in the same way as the query HMM from a set of representative SCOP3
sequences (maximum sequence identity 50%). Their secondary structure states
are determined by DSSP. HHpred is based on the HHsearch4 software
(http://protevo.eb.tuebingen.mpg.de/download/). HHsearch makes use of
HMM-HMM comparison and employs a score that generalizes the log-odds
score of HMM-sequence comparison. Secondary structure is compared between
HMMs using specially derived substitution matrices for secondary structure
states.

HHpred.3 is similar to HHpred.2 but uses intermediate profile search to
construct the query alignments. It looks at the results of the last iteration of PSI-
BLAST when building the query alignment for HHpred.2 and picks seed
sequences with E-values between 1E-4 and 1. New PSI-BLAST searches are
started with theses seeds and the alignments are merged if an HMM-HMM
comparison indicates homology between the two.

In a preliminary analysis, two main limitations for HHpred.2/3 in the
CASP/CAFASP benchmark were discovered: (1) We based our template
selection on an outdated structure database (SCOP v1.65) that did not contain
the best templates in the pdb for many targets. (2) The database of alignments
was constructucted for homology detection purposes instead of structure
prediction. For homology detection to be reliable, one requires high selectivity,
i.e. clean, and therefore less diverse alignments, whereas for structure
prediction benchmarks, one should better use highly diverse alignments which
yield a higher sensitivity.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Murzin,A.G., Brenner,S.E., Hubbard,T.J. & Chothia,C. (1995) SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol. 247, 536-540.

4. Soding,J. (2004) Protein homology detection by HMM-HMM comparison,
submitted to Bioinformatics.

Hirst-Nottingham - 18 models for 18 3D targets
Great deluge algorithm in CASP6

Y. Bykov"?, M. T. Oakley?, E. K. Burke' and J. D. Hirst*
1 - School of Computer Science & IT,
2- School of Chemistry, University of Nottingham, United Kingdom.
yxb@cs.nott.ac.uk

All structures presented by our group were produced by in-house optimization
software that employs a multiobjective local search method called the “Great
Deluge” algorithm.! This technique has performed well on other optimization
problems,? which motivated its application to protein structure prediction.

The prediction of the native state of a protein was formulated as a continuous
optimization problem, where the three-dimensional conformation with
minimum energy needed to be identified. The representation of proteins
employed retains most of their geometrical properties, i.e. it simulates all atoms
except apolar hydrogen atoms, in an extended atom representation. The
conformational space of the model is explored by variation of the torsion angles
of the backbone and side chains.

The “Great Deluge” local search is an iterative procedure, where at each step a
new conformation is randomly selected from a set of candidates generated from
the current conformation (its neighborhood). The chosen candidate is accepted
as the new current conformation if it fits into an artificial feasible space, which
is gradually reduced during the search. This mechanism, unlike the Monte
Carlo method, makes the local search process highly controllable by the user. In
particular, it allows improvements to the accuracy of prediction by regulating
the processing time and exploring different areas of a multiobjective search
space. To make the algorithm more effective, different neighborhood structures
are explored with different priority, i.e. the rotation of main and side chains,
small and large changes in angles, simultaneous modification of two torsion
angles, etc. Special attention was paid to acceleration of the search. Using a
“delta-evaluation” mechanism the algorithm does not recalculate the complete
energy function of the candidate at every step, but only its difference from the
current conformation. This feature provides an almost linear scaling of the
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evaluation time with the length of a protein. The current version of the software
can work with proteins up to 140 residues. With such a protein it evaluates
around 1000 conformations per second (on a PC P4 3.2GHz) and is able to
produce a result in 10-15 hours (generally a result could be produced after
evaluating around 50 million conformations).

In the course of our research, most investigations were focused on improving
the effectiveness of the optimization technique, rather than verification of the
energy function. Currently, our algorithm operates with the following energy
terms: a sum (for all pairs of atoms) of Lennard-Jones potentials, a sum of
electrostatic potentials (between charged atoms), a sum of hydrogen-bond
potentials (in donor-acceptor groups) and a function modelling the hydrophobic
effect (involving side-chain carbon atoms). The total energy is calculated as a
weighted sum of these four components. The initial formulae and parameters of
the energy functions were taken from the CHARMM package.> However, we
are currently studying the possibility of verifying the energy parameters using a
higher level search (where the described algorithm is performed as a low-level
procedure). A special technique (based on a linear programming method) was
developed for dynamic tuning of the weights using known proteins. Thus, the
energy parameters used for prediction of CASP6 targets were automatically
tuned in order to provide the best fit to the known native states of several short
proteins.

Before submitting to CASP6 web site, all predicted structures were post-
processed using CHARMM. This involved energy minimisation with harmonic
constraints applied to the positions of the backbone atoms.

Acknowledgments: This work was supported by the BBSRC (grant
42/B1014458) and the EU/Framework 6 ‘BioPattern’ Network of Excellence.

1. Dueck, G. (1993). New Optimization Heuristics. The Great Deluge
Algorithm and the Record-to-Record Travel. J. Comput. Phys. 104, 86-92.

2. Burke, E. K., Bykov, Y., Newall, J. P, Petrovic, S. (2004). A Time-
predefined Local Search Approach to Exam Timetabling Problems. IEE
Trans. 36, 509-528.

3. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J.,
Swaminathan, S., Karplus, M. (1983). CHARMM: A Program for
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Hmmspectr3 - 206 models for 64 3D targets
Hmmspectr_fold - 120 models for 63 3D targets

Protein structure prediction using combination of Hidden
Markov Models (HMM) based search and modeling

Y.V. Sharikov, L.F. Ten Eyck, I.F. Tsigelny
University of California, San Diego, San Diego Supercomputer Center
itsigeln@ucsd.edu

For CASP6 predictions we used the advanced version of HMMSPECTR system
HMMSPECTRS (http://hmm-spectr.sdsc.edu) The system is based on searching
for the best alignments between the target primary sequence and members of
Hidden Markov Models (HMMs) library of protein structural homologs'. As
compared with the previous version of HMMSPECTR, we changed the concept
of selection of final protein structure predictions using combination of the
HMM library searches with high throughput target modeling. In the
Hmmspectr3 group we constructed the final prediction using human experience
with known homology modeling programs, in the Hmmspectr_fold group we
presented the results of automated prediction with some human corrections.

All protein targets presented in CASP6 competition one can divide to three
groups: Proteins having such sequences (sequence identities more than 27-
30%) that their structural relatives are found easily using simple BLAST-like
search (26 targets from the entire list). The second group contains 15 proteins
with the sequence identity 15-26%. For their processing one can use a set of
HMM libraries: TIGR?, Pfam library®, more powerful Superfamily1.65 library*,
our own HMM-SPECTR library'. The rest of proteins — 35 targets - are outside
of these two groups. These proteins have sequence identities less than 15% to
any known proteins having solved crystal structures. Such proteins either have
sequence identities lower to their real relatives than to random proteins from the
libraries sets, or have complex domain structures. HMMSPECTR3
(http://hmm-spectr.sdsc.edu) reflects such stratification of possible targets. It
makes protein structure prediction only after making decision about a specific
type of targets. We used SCOP* and CATH?® classifications, HMMER 2.2.1°
program package, and our program Original Structure Alignment Tool” for
construction of the comprehensive HMM library. Constructed HMM library is
available for users (ftp://ftp.sdsc.edu/pub/outgoing/sharikov). To include to the
library recently published protein structures we used the following technique.
Using the HMM libraries constructed from the existing members of
classification groups we did a search for primary sequences of new members of
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PDB database. The proteins that had scores corresponding to the specific
classification groups of protein structures were added to these groups and those
HMM sets were reconstructed adding these new proteins.

Process of protein structure prediction (fold recognition) can be defined as
having the following steps: (1) Selection of HMM having the greatest score
with a target sequence, (2) Association of a set of greatest score parent proteins
with this HMM, (3) Alignment of the target and parent using HMM. Two
proteins parents are usually associated with a specific HMM. The first—
showing the greatest score from the entire PDB proteins set. The second—
showing the ‘closest pattern of recognition’ by target—corresponding
boundaries in HMM, score value, general pattern of alignment (dominant
residues, gaps location, etc.). In the case of sufficient alignment length (usually
more than 50% of a target length) second protein parent usually very well
defines a predicted protein structure. Using various values of a ‘gapmax’
parameter® and a number of members in the structural alignment for a specific
HMM (using our pre-compiled libraries) we can obtain different alignments
parent-target and eventually different final predictions. The final selection is
based on a set of final models (for two different parents minimum two different
templates) and the final models are assessed using ProQ® The computation
complexity is growing sharply in the cases of small differences between HMM
selections for a target. It usually happens with low total scores and low
alignment lengths. In such cases we check not a one, but a set of closest HMMs
with minimum two proteins associated to each of selected HMMs. These
proteins usually have to show the greatest scores for a specific HMM inside
various length intervals of alignments (with the step around 10% of the entire
alignment length). Final selection is based on the ProQ scores of each of
predicted structures. In the case when no structure shows a reliable score with
ProQ we start the following algorithm based on domain separate estimates. The
domain model is created using the greatest score parent proteins on each of
sequence regions having maximum scores with specific HMMs. In this case
ProQ assessment gives low scores and for the final selection is used HMM
score and to some criteria.

Below we describe in more details an algorithm of the HMMSPECTR3 work in
the case of low sequence identity. We use here the concepts of ‘secondary
HMMs’ and simultaneous secondary structure prediction for high throughput
automatic construction of prediction models for their further selection using
scoring by protein structure quality tools like ProQ, Verify_3D, etc. The first
step in forming of the ‘secondary HMM’ is formation of 30-40 pairwise
alignments. Alignment of a parent to a target is done using existing HMMs
from the library. Then we select 3-5 HMMs with the greatest scores for each
‘sequence length category’. Here we align only the dominant (having the

greatest scores) proteins. For the more precise prediction one can use not only
dominant proteins but the sets of greatest score proteins. Then we construct
multiple alignments where a target protein sequence is not gapped. The inserts
residues in the protein sequences aligned to it are excluded. Then the secondary
HMM is constructed and is used for the search within the PDB databank.

To the set of supporting libraries we include a file ‘pdb4-3’ containing:
ID, scorelD, primary_sequence, secondary_structure_sequence, start_border,
end_border. This file is prepared using primary sequences of PDB proteins
divided to the pieces corresponding to the secondary structures sets HHHHHH,
EEEEEE, CCCCCC.

After the nomination of possible ’parent’ protein we use it as an initial template.
Let us presume, for example, that a template is from the c.2.1.4. class of the
SCOP classification. The pieces of the primary sequences (prepared as
described above) of all proteins of this class are aligned to the target protein
taking in consideration their primary and secondary structures and predicted
secondary structure of the target. The best fitting protein is used as a ‘parent’
and its C-alpha trace is used for further entire protein structural model
generation. The side chains of all residues that are directly aligned within the
corresponding secondary structures are inserted to the model. The side chains
of other residues are inserted when the corresponding residue is found in
pairwise alignment of a member of c.2.1.4. class with the target protein within
the corresponding secondary structure regions. This process is continued until
the entire set of c.2.1.4 class is examined. If there are still residues that do not
correspond to the target primary sequence this procedure is repeated with the
higher set of SCOP classification, in this case c.2.1, c.2. Eventually we
construct a model with the C-alpha trace corresponding to the initially chosen
parent protein and side chains constructed on the base of the entire set of the
class or subclass of SCOP. Created model sometimes still having some gaps
and unresolved regions can be already assessed by the protein structure quality
programs and used for checking if the initial parent selection was right. A
number of such models is created in automated mode and are used for selection
of the final prediction parent protein. This approach definitely has some
drawbacks. There exists a possibility that a model having highest scores by the
protein structure assessment programs would be far away from the real target
protein. Proper checking points scoring method is in development. The other
drawback is ‘overpricing’ of longer alignment vs. shorter alignments. Often it is
not true that the longest alignments would be more corresponding to the target.
There are some other problems. The main advantage of such an approach is its
complete automation. This way using high performance computers one can
check a number of possible hypotheses in a short period of time, change
weights of parameters used and even adjust a prediction system for specific
classes of proteins.
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Table 1. illustrates some limitations of HMM-based methods. Column ‘PDB
closest relative’ shows protein that had to be chosen as a best prediction. All
targets included to this table are not predicted well enough. For the targets
T0216 and T0228 the lengths of alignments to the ‘closest relative’ is around
25% of the target protein length. For the targets T0198, T0202, T0270 sequence
identities are lower than 10%, for the targets T0223, T0205 too many gaps. The
latest case prevent the effective use of HMM alignment of target-parent pair.
Initially a correct target is selected by HMM in the first selection set, but then
on the stage of final selection incorrect alignment because of large gap
percentage lead to the selection of other models having higher scores, but
incorrect parents.

PDB Seq. Length
CASP | Answer |Length| closest [Z-score RMSD iderc1|t. aligr?ed Gaps Hmm | Hmm
: (A) score | length
relative (%) part
70198 | 1SUM 235 1SUN 59 | 23 7.8 103 12 2.8 72
T0202 | 1SUW 249 1000 50 | 28 9.2 98 16 157 | 68
T0205 1VM0 130 1EXB 4.2 2.6 10.9 64 57 64.2 86
T0216 VL4 447 1IMU 4.1 37 9.5 84 24 0.7 42
T0223 1VKW 218 2BKJ 5.0 2.3 14.6 123 53 59.1 164
T0228 1VLP 441 1LTD 5.0 2.9 8.1 99 24 3.6 41
T0270 1VDH 249 1MLI 4.7 2.8 5.7 87 15 3.8 76

1. Tsigelny,I., Sharikov,Y., Ten Eyck,L. (2002) Hidden Markov Models-based
system (HMMSPECTR) for detecting structural homologies on the basis of
sequential information. Protein Eng. 15, 347-352.
http://tigrblast.tigr.org/web-hmm/

http://www.sanger.ac.uk/Software/Pfam/

4.  Murzin,A.G. et al. (1995) SCOP: a structural classification of proteins
database for the investigation of sequences and structures. J. Mol. Biol.
247, 536-540.

5. Pearl,LFM.G, Lee,D., Bray,J.E, Sillitoe,l., et al. (2000) Assigning genomic
sequences to CATH Nucleic Acids Research 28, 277-282

6. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics 14, 755-
763.

7. Kotlovyi,V, Tsigelny,l., Ten Eyck,L.F. (2002) A flexible method for
structural alignment: Application to structure prediction assessments. In
Protein structure prediction: Bioinformatic Approach (ed. I.F.Tsigelny), pp.
433-447. TUL La Jolla, CA.

8. Wallner,B, Fang,H, Elofsson,A. (2003) Automatic consensus-based fold
recognition using Pcons, ProQ, & Pmodeller Proteins. 53 S6, 534-41

9. Luthy,R, Bowie,J.U., Eisenberg,D. (1992) Assessment of protein models
with three-dimensional profiles. Nature 6364, 83-5
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HOGUE-DFP - 40 models for 8 3D targets
The Distributed Folding Project

H.J. Feldman', E. Garderman' and C.W.V. Hogue'?
! — The Blueprint Initiative, Mount Sinai Hospital, Toronto, Canada,
?— Department of Biochemistry, University of Toronto, Toronto, Canada
chogue@blueprint.org

This team made use of Distributed Computing to make CASP predictions.
Approximately 2000 volunteers around the world participated in the Distributed
Folding Project (http://www.distributedfolding.org/), volunteering their spare
CPU cycles to run our software client. To decide which targets to attempt, the
CAFASP website was visited for each new target, and we looked at the 3D-Jury
score'. Those which were below about 30 were considered ‘difficult’ and
marked for prediction.

The distributed client used a modified version of our TRADES algorithm?,
incorporating secondary structure prediction from PsiPred® and performing
probabilistic walks in Ramachandran space. Sidechains were placed
probabilistically using Dunbrack's backbone dependent rotamer library*. All
residues are chirally and sterically valid, having a minimum of non-hydrogen
van der Waals collisions.

Approximately one billion structures were generated for each target using the
Distributed Folding Project framework, in a time span of one week per target.
An iterative approach was used to create 250 successive generations, such that
each new generation is seeded with a conformational space map from the
previous generation's best structure, as determined by a fitness score (see
below). The first generation was large (30,000) and consisted of
probabilistically generated structures. The later generations were much smaller
(100) and all members were close in structure space to the seed structure for
that generation. The result is a dynamics-like folding simulation as the structure
travels through conformational space. Each participating CPU runs its own
independent simulation of 250 generations.

Finally, from the pool of generated structures various statistics were collected
including radius of gyration, exposed surface area, exposed hydrophobic
surface area, and a fitness score — a modified version of a statistical residue-
based potential® which also compares actual secondary structure content to
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predicted content. This helps remove structures that are loopy and not protein-
like. Additionally, to ensure only compact structures were retained, structures
with radius of gyration greater than 120% * 2.59N%*¢ where N is the number
of residues in the protein, were all discarded. The best structures were chosen
based on their fitness scores. The top 10 structures were visually inspected, and
five chosen for submission.

1. Ginalski,K., Elofsson,A., Fischer,D. & Rychlewski,L.. (2003). 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
19, 1015-1018.

2. Feldman,H.J. & Hogue, C.W.V. (2000). A Fast Method to Sample Real
Protein Conformational Space. Proteins 39, 112-131.

3. Jones,D.T. (1999). Protein Secondary Structure Prediction Based on
Position-Specific Scoring Matrices. J. Mol. Biol. 292, 195-202.

4. Dunbrack,R.L.,Jr. & Cohen,F.E. (1997). Bayesian statistical analysis of
protein side-chain rotamer preferences. Protein Sci. 6, 1661-1681.

5. Bryant,S.H. & Lawrence,C.E. (1993). An Empirical Energy Function for
Threading Protein Sequence through the Folding Motif. Proteins 16, 92-
112.

HOGUE-HOMTRAJ (serv) - 105 models for 45 3D targets

HomTraj: a fold recognition server using trajectory
distributions

H.J. Feldman', K.A. Snyder', M.J. Dumontier"?, and

C.W.V. Hogue"*
! — The Blueprint Initiative, Mount Sinai Hospital, Toronto, Canada,
2_ Department of Biochemistry, University of Toronto, Toronto, Canada
chogue@blueprint.org

We developed HomTraj, a powerful, fully-automated homology modeling and
fold recognition server. Once a query is received, NCBI BLAST" (expect value
cutoff 1e-20) is used to identify up to five highly homologous templates from
the PDB. If this call fails, the Sequence Alignment and Modeling (SAMT2K)
algorithm? is used to identify up to five structure templates, using a two-track
Hidden Markov Model (HMM) — one track for sequence, and one for secondary
structure. PsiPred® was used to predict secondary structure of the query for
input to the HMM.

Next, using a modified version of our TRADES algorithm*, the backbone
alpha-carbon trajectory of each template was recorded, and a trajectory
distribution built with the new sequence of the target. Each gapless stretch of
alignment was replaced by a single fragment from the recorded trace. Where
gaps occurred in the alignment, fragments were built to span the gaps. These
fragments were created as follows: The "takeoff angles" were recorded starting
from one residue prior to the gap and ending one residue following the gap, on
the template structure. These consisted of six degrees of freedom - the distance
between the start and end of the gap, two virtual Ca angles and three virtual Ca
dihedrals. Then three atoms from each side of the gap were placed in space,
according to the recorded takeoff angles. Alpha carbons required to fill the gap
were then given arbitrary starting co-ordinates within the gap region, and a
steepest descent energy minimization carried out. For the purposes of this
minimization, the energy function consisted of virtual Ca bond length restraints,
virtual Ca angles restraints, and a van der Waals term. The three anchoring
atoms on either side of the gap were held fixed during the minimization.
Finally, the resulting loop was incorporated as a fragment using its own Ca
trace. Gaps may be shifted a few residues left or right in order to minimize the
energy of the loop spanning the gap.

Roughly 50 structures were generated using the fragments obtained from the
previous steps and our Foldtraj software, with bump checking slightly reduced.
This process was repeated for each possible template found in the initial step.
Using a modified version of a statistical residue-based potential® which we have
termed "crease energy", the best structure generated from each template was
chosen and submitted.

Domain Prediction with Armadillo

A separate server, on the same team, was used to predict domain boundaries for
CASP. The servers presently do not talk to each other, but in the future
HomTraj will normally do a domain prediction first, and then model each
domain separately. The Armadillo Domain Prediction algorithm uses two amino
acid indices that reflect the propensity of residues to be in domain linker
regions. The first index, DLI (domain linker index), is constructed from the
amino acid propensity of domain linkers from a non-redundant set of multi-
domain protein structures from the Protein Data Bank. The second index, REI
(residue entropy index), was normalized from previously reported sidechain
entropy values®. Each was used to build a distribution of scores across multi-
domain proteins. Sequences used for a prediction are turned into a numeric
profile using the index values, which is subsequently smoothed using a low
pass filter under a Discrete Fourier Transform. Domain linker predictions are
made when the smoothed values pass a significance threshold. Domain linker
predictions are not made between the 50 residues at the N- and C- terminus.
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Domains are consecutively numbered and there is no current provision to
attempt to predict non-contiguous domains.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Karplus,K., Karchin,R., Barrett,C., Tu,S., Cline,M., Diekhans,M., Grate,L.,
Casper,J. & Hughey,R. (2001). What is the value added by human
intervention in protein structure prediction? Proteins Suppl. 5, 86-91.

3. Jones,D.T. (1999). Protein Secondary Structure Prediction Based on
Position-Specific Scoring Matrices. J. Mol. Biol. 292, 195-202.

4. Feldman,H.J. & Hogue, C.W.V. (2000). A Fast Method to Sample Real
Protein Conformational Space. Proteins 39, 112-131.

5. Bryant,S.H. & Lawrence,C.E. (1993). An Empirical Energy Function for
Threading Protein Sequence through the Folding Motif. Proteins 16, 92-
112.

6. Galzitskaya,O.V. & Melnik,B,S. (2003). Prediction of protein domain
boundaries from sequence alone. Protein Sci. 12, 696-701.

HOGUE-STEIPE - 177 models for 61 3D / 59 FN targets
Folding with FOLDTRAJ

H.J. Feldman', K.A. Snyder !, M.J. Dumontier', M.V. Brougham',
B.A. Tuekam', F. Wu', B. Thiruvahindrapuram?®, B. Steipe” and
C.W.V. Hogue"?

! — The Blueprint Initiative, Mount Sinai Hospital, Toronto, Canada,
2— Department of Biochemistry, University of Toronto, Toronto, Canada
chogue@blueprint.org

For CASP6 we used a variety of prediction methods to try to predict as much
information as possible about each protein target, using many of the tools
Blueprint has developed over the past few years. Each of these is summarized
below.

Homology Modelin
Our first step for manual 3D structure prediction was to look at the CAFASP

website for each new target, and to look at the 3D-Jury score’. Those which
were below about 40 were marked for ab initio prediction (see next section).

For the remainder, the alignment to the best CAFASP hit was usually used as a
starting point.

Next, using a modified version of our TRADES algorithm? the backbone
alpha-carbon trajectory of the template was recorded, and a trajectory
distribution built with the new sequence of the target. Each gapless stretch of
alignment was replaced by a single fragment from the recorded trace. Where
gaps occurred in the alignment, fragments were built to span the gaps. These
fragments were created as follows: The "takeoff angles" were recorded starting
from one residue prior to the gap and ending one residue following the gap, on
the template structure. These consisted of six degrees of freedom - the distance
between the start and end of the gap, two virtual Ca angles and three virtual Ca
dihedrals. Then three atoms from each side of the gap were placed in space,
according to the recorded takeoff angles. Alpha carbons required to fill the gap
were then given arbitrary starting co-ordinates within the gap region, and a
steepest descent energy minimization carried out. For the purposes of this
minimization, the energy function consisted of virtual Ca bond length restraints,
virtual Ca angles restraints, and a van der Waals term. The three anchoring
atoms on either side of the gap were held fixed during the minimization.
Finally, the resulting loop was incorporated as a fragment using its own Ca
trace. Gaps may be shifted a few residues left or right in order to minimize the
energy of the loop spanning the gap. In some cases, additional templates were
used when their alignments spanned gaps in the primary alignment. In this case,
fragments from the secondary template were used to bias loop-building, by
adding torsional angle constraints to the energy minimization. Then up to 30
structures were generated using the fragments obtained from the previous steps
and our Foldtraj software, with bump checking slightly reduced. Only the
region of the target which was aligned to templates was modeled. Using a
modified version of a statistical residue-based potential® which we have termed
"crease energy", the best structure is chosen.

Ab Initio Prediction

For those targets which had a CAFASP score below 50, a different approach
was taken using the ab initio mode of the TRADES software. First, the
Armadillo consensus algorithm [Dumontier & Hogue, unpublished] or NCBI’s
Reverse Position-Specific BLAST* was used to split the target chain into
several domains which were then treated as separate folding units. Next, 840
recurring structural motifs, ranging in length from 3 to 16 residues, were
identified from a protein database. For each residue in the target domains, the
probability that each motif is the correct fragment at that position was
determined wusing Bayesian statistics [Steipe & Thiruvahindrapuram,
unpublished]. Results from PSIPRED® performed on the target sequence
further bias the motif probabilities. In building the structures with a modified
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version of our TRADES algorithm?, the motifs were used, according to their
probability, to specify the phi-psi-omega angles for that length of the chain.
Then up to 6,000,000 structures were generated using the fragments obtained
from the previous steps and our FOLDTRAJ software. Using an atom-atom
contact potential which includes a solvation term®, the best structures were
chosen. The data for the separate domains, if there was more than one, was
then concatenated.

Function Prediction

Lastly, we were interested in testing some new methods we have developed for
function/binding site prediction. This was done as follows. First, GO terms
were found by using BLAST’ on target sequences, and copying annotation from
high-confidence hits (E-value below 0.001).

We then made use of BIND-BLAST (http://bind.ca/BINDBlIast/) to look for
interactions in the BIND database® consisting of a molecule similar to the
CASP target. A human expert then examined the interaction record, took into
consideration any information that was known about the CASP target, and then
decided whether any information could be inferred about the target based on the
demonstrated BIND interaction.

In a similar manner, SMID-BLAST (http://smid.blueprint.org/smid_blast.php)
was used to identify potential small molecule binding sites on the target, based
on known protein-small molecule interactions stored in the SMID database
(manuscript in preparation). This allowed precise prediction of small molecule
binding sites, based on the BLAST alignments. Again, a human expert took
into consideration what was known about the target, as well as sequence
conservation at the binding site and promiscuity of the small molecule, to help
determine which hits were biologically interesting and not false positives.

1. Ginalski,K., Elofsson,A., Fischer,D. & Rychlewski,L. (2003). 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
19, 1015-1018.

2. Feldman,H.J. & Hogue, C.W.V. (2000). A Fast Method to Sample Real
Protein Conformational Space. Proteins 39, 112-131.

3. Bryant,S.H. & Lawrence,C.E. (1993). An Empirical Energy Function for
Threading Protein Sequence through the Folding Motif. Proteins 16, 92-
112.
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U S A 100, 3215-3220.
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& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
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Interaction Network Database. Nucleic Acids Res. 31, 248-250.

Honiglab - 105 models for 46 3D / 28 FN targets

Combining alignment sampling and ab initio methods for
comparative modeling and fold recognition

Donald Petrey?, Mark Fasnacht'? Lucy Forrest?, Mickey
Kosloff?, Shoshana Posy', Chris Tang?, David Pincus?, Xin Li®,
Jiang Zhu'?, Cinque Soto?, Claudia Bertonati?, Sharon Goldsmith-

Fishman®, Rich Friesner?, and Barry Honig"*
! ~Howard Hughes Medical Institute, >— Department of Biochemistry and
Molecular Biophysics, Columbia University,
3 — Department of Chemistry, Columbia University
bh6@columbia.edu

In CASP6 we used recently developed software for the sampling and analysis
of alignments along with previously developed model building software The
new software includes two new programs for alignment sampling, dalign and
gnoali, and new tools for alignment analysis and visualization incorporated into
GRASP2'. Alignment sampling with dalign is accomplished by enumeration of
“suboptimal” alignments. An alignment is “suboptimal” if it does not have the
optimal similarity score that is generally the output of dynamic programming
algorithms. The program gnoali uses a similar algorithm, but also incorporates
a geometrically based gap penalty. The new tools incorporated into GRASP2
were used to display, analyze and combine alignments generated by these
programs to multiple templates. Combining alignments by merging them into a
structure alignment of the possible templates using GRASP2 was an important
step for several of the targets. It both enhanced the sampling of alignments
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over what could have been achieved using just a single template, and in some
cases allowed us to recognize when one template was more appropriate for a
particular region of the target sequence, even if that template had a lower
overall similarity score. A guiding assumption of the methods used during
CASP6 was that alignment sampling can be used to identify regions of a target
structure that are likely to be different from the structure of the template. Such
differences are a major source of error associated with all template-based
prediction methods and can have an effect on all aspects of the problem, from
template selection to model evaluation.

The hypothesis we tested was that variations in alignments generated by the
methods described below would indicate the model building/refinement
strategy that was appropriate for a specific region of the target sequence. These
strategies included building multiple models using alternate alignments
followed by model evaluation, ab initio structure prediction of short regions,
composite models based on multiple templates or any combination of these
three. Models were built using the programs NEST, SCAP? and LOOPY?
developed in our group. We emphasize that the alignment sampling used here
was accomplished with a single method. Preliminary analysis of our results
suggests that alignment variability produced using these programs is similar to
simply comparing alignments generated with different methods and that we
were frequently able to generate the “correct” alignment. Recognizing it
remains an unsolved and difficult problem, however. When it was determined
that ab initio methods were necessary, we used methods developed in the
Friesner group and new methods for model refinement that combine existing
sampling algorithms with a generalized Born model of the solvent.

Detailed analysis of the use of the above methods for two specific CASP6
targets are provided in our FORCASP methods paper but the procedure used
generally consisted of the following steps. Possible templates were identified
using HMAP®. Once a suitable template was found, similar folds were
identified and a multiple structure alignment of these folds was generated using
GRASP?2 and analyzed to determine conserved and variable regions. Alternate
alignments were generated using four methods: 1) by varying the HMAP input
parameters; 2) by aligning to different templates (all alignments to similar folds
were considered, as long as a statistically significant e-value was produced); 3)
by generating suboptimal alignments; and 4) by generating suboptimal
alignments using a geometrically-based gap penalty.

The generation of suboptimal alignments in methods 3 and 4 above is a new
feature incorporated into HMAP. An important new component of the
algorithm used to generate suboptimal alignments is the ability to “mask”
certain regions of the sequence if it is believed that variability in that region

will be insignificant. For example, if the template and target sequence are only
distantly related, it is usually unnecessary to consider alternate alignments in
loop regions, since loops will most likely have a different conformation. Thus,
the method for generating suboptimal alignments implemented in HMAP
allows a user to consider only “significant” differences in alignment, such as
shifts in beta strands, greatly increasing the efficiency of the alignment
sampling. The use of geometrically-based gap penalties is also a new feature of
HMAP. With this method, gaps in the alignment are assigned a value based on
the geometric distance between the end points of the deleted region of the
template.

Alignments generated by the various methods were compared and analyzed by
merging them into a multiple structure alignment of the selected templates
using GRASP2. Alignments generated by the CAFASP servers were also
included. The primary purpose of this analysis is to determine what models
should be built, i.e., identify regions of the alignments that vary “significantly”.
For example, if two alignments generated by the methods described above vary
in a shift in a secondary structure element, models based on both alignments
would be built and evaluated based on the methods described below. Regions
where the alignments were highly variable and no consensus alignments was
observed (loops and loop-helix-loop regions primarily) would be targeted for
ab initio prediction. In addition, functional information relating to targets and
templates was used to manually analyze and optimize alignments, specifically
to make sure that functional residues in the template (identified from review of
the literature) were aligned with residues conserved in the target family. The
analysis of alignments and the determination of which models to construct was
largely a manual process. An effort is underway to automate this process
however.

Our strategy for ab-initio loop prediction is based on the methodology outlined
in Jacobson et al.® In brief, the entire protocol can be divided into six stages and
consists of iterative execution of the Protein Local Optimization Program
(PLOP). Information about PLOP can be obtained from
http://francisco.compchem.ucsf.edu/~jacobson/. The first stage corresponds to
the generation of initial loop conformations. In the second and third stages,
restricted sampling is performed on low-energy minima previously located.
The fifth and sixth stages are identical to the second and third. The fourth stage
is termed the “fixed stage”, and is based on the assumption that fragments of
the generated structures have reasonable RMSDs from the native. A priori,
however, we do not know which fragments of our predictions are native-like.
The “fixed stage” attempts to solve this problem by holding an increasing
number of residues fixed on the termini and subsequently re-predicting the
remainder of the loop. All conformations are scored via an effective potential
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composed of an OPLS all-atom force field, the SGB model of polar solvation, a
nonpolar estimator, and a number of correction terms.

For loop-helix-loop prediction we adopted the methodology outlined in Li et.al®
which is an algorithm for performing sampling of helix position and
orientations, along with the rebuilding of the flanking loops on both sides of the
helix. The first step is the enumeration and screening of helix conformations.
Two anchor points of the helix terminals are mapped onto a set of grid points
within the bounding spheres with a specified cutoff radius. A set of positions of
the helix are obtained by moving the helix as a rigid body using all six degrees
of freedom. The positions are subject to filtering based on sterics and loop-
length. The next step involves the clustering of helix positions using a K-means
algorithm to remove redundant helix conformations. Step three and four
involve flanking loop closure and refinement; the protocol is almost identical to
the one outlined in the previous paragraph. Finally, the side chains on the
whole loop-helix-loop region are subject to optimization and energy
minimization. The loop-helix-loop sampling method has been incorporated
into the PLOP package, and utilizes the same effective potential.

All models are then evaluated using a combination of methods. Comparison of
the conformational free energy of the models after minimization using all-atom
physical chemical energy functions with either the CHARMM?22, OPLA-AA,
or GROMOS force fields was carried out. Minimization was done using either
a single dielectric constant of 10 or a generalized Born model as implemented
in the GROMOS and TINKER packages. When minimization was performed
using a single dielectric, solvent effects were treated with the FDBP/y method.
Simplified potentials were also used including a method developed in our
group, as well as Verify-3D and D-Fire. When there was strong consensus
among the methods favoring a particular model, that model was chosen for
submission to CASP6. When there was no consensus, a decision based on a
manual evaluation of the quality of the alignments was made.

We implemented a structure-based function prediction procedure, using
software developed in the Honig group as well as publicly available servers, in
addition to literature reviews. The procedure began with collating all existing
function information (e.g. Pfam family, InterPro, GO) for the target. Sequence
homologs were detected using BLAST and aligned with ClustalW to identify
specific residues conserved within the target family. This information was used
in our analysis of the target-template alignments, as described above. Once a
model was built we performed electrostatic and phylogenetic analyses using the
programs GRASP and ConSurf to identify putatively functional regions, for
example a patch of charged residues or cluster of conserved residues. The

results from ConSurf were visualized with Rasmol or GRASP2. Structural
alignments between the models and templates were generated and visualized
with GRASP2, to further analyze conservation between functional residues in
the template and structurally corresponding residues in the target. In addition,
the electrostatic features of the template and model were compared. Finally,
functional information obtained from the literature was combined with
sequence- and structure-based methods to identify putative functional sites. For
example, if the literature suggested post-translational modification (but the site
was not yet identified), the target sequence was submitted to the PredictProtein
server to identify multiple possible sites for modification. For each of these
sites, the degree of sequence and the structural location was compared to
choose the most likely modification site.

1. Petrey,D. and Honig,B. (2003). GRASP2: Visualization, surface properties,
and electrostatics of macromolecular structures and sequences. Meth. Enz.
374, 492-509.

2. Xiang,Z. and Honig,B. (2001). Extending the accuracy limits of prediction
for side-chain conformations.[erratum appears in J. Mol. Biol. 2001 Sep
14;312(2):419]. J. Mol. Biol. 311, 421-430.

3. Xiang,Z., Soto,C.S. and Honig,B. (2002). Evaluating conformational free
energies: the colony energy and its application to the problem of loop
prediction. Proc. Natl. Acad. Sci. U. S. A. 99, 7432-7437.

4. Tang,C.L., et al. (2003). On the role of structural information in remote
homology detection and sequence alignment: new methods using hybrid
sequence profiles. J. Mol. Biol. 334, 1043-1062.

5. Jacobson,M. et al. (2004). A hierarchical approach to all-atom loop
prediction. Proteins 55, 351-367.
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HU - 28 models for 19 3D targets
Consensus over transitive PSI-Blast alignments
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and L. Holm"?
! — Institute of Biotechnology, *— Department of Genetics,
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liisa.holm@helsinki.fi

A successful strategy for protein structure prediction relies on identifying
homologous sequences with known structure. Many proteins have only remote
relatives in the structure database which are difficult to detect by sequence-
based methods. With the rapid growth of sequence databases, the chances of
being able to link distant homologues by a series of more closely spaced
intermediate sequences are growing, too. We have developed a method for
transitive alignment that uses intermediate sequences as stepping stones to infer
an alignment between distant homologues'. This method was implemented in
the MF server, which we used for fold recognition. Alignments generated by the
automatic method were then manually refined. The MF server is based on pre-
processing the information in an all-against-all alignment library® to enable
instantaneous access to an optimal transitive alignment between any two
proteins, no matter how many intermediates separate them. It uses a single
sequence as input, computes transitive alignments to known structures, and
returns the highest scoring alignment as the fold prediction. We selected ‘hard’
comparative modeling cases for manual prediction. Conserved motifs were
identified as anchor points and the alignment of intervening segments was
optimized with respect to solvation preference® and backbone continuity.

1. Heger,A., Lappe,M. & Holm,L. (2004) Sensitive detection of very sparse
sequence motifs. J. Comp. Biol., in press

2. Heger,A, Holm,L. (2003) Exhaustive enumeration of protein domain
families. J. Mol. Biol. 328, 749-767.

3. Holm,L., Sander,C. (1992) Evaluation of protein models by atomic
solvation preference. J. Mol. Biol. 225, 193-205

Huber-Torda - 242 models for 63 3D / 60 RR targets

Probabilistic fragments, optimized substitution matrices and
fold recognition
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Miihlenmeister?, B. Otto,? A.E. Torda®
! — Dept of Mathematics, University of Queensland, Australia ,
2—Centre for Bioinformatics, University of Hamburg, Germany
torda@zbh.uni-hamburg.de

Philosophy
In the hands of many groups, protein threading means some combination of

structure- and sequence-based terms. This is true of the "wurst" server. The
emphasis in much of this work has been to treat as much as possible as
parameters for optimizing and to use numerical optimization to find parameters
which produce the best alignments on some calibration set of proteins. The
philosophy even went as far as building a completely new amino acid
substitution matrix.

Structure-based terms

The structure based score term gives the log-odds probability of a set of 9
residues matching a structural fragment of length 9. The implementation uses a
fragment library, but it is rather different to those in the literature. Normally,
one would classify fragments based on structural properties and then collect
sequence statistics for each class of fragment. In contrast, the fragment-based
scores were built by collecting 10° fragments and using a Bayesian
classification to sort them based on continuous descriptors (structural
properties) and discrete descriptors (sequence) simultaneously.>® This has
interesting consequences. For example two classes may be structurally similar
(both B-strand), but one reflecting a hydrophobic environment and one
alternating hydrophobic/hydrophilic.

Optimization of alignment parameters
A very general method was used to optimize parameters. A parameterization set

was collected, containing pairs of similar structures of low sequence identity.
Within each pair, A & B, the sequence of A was aligned to its partner, B,
producing a model for A. This could be compared to the original structure of A
and used as the basis for a cost function. The better the parameters, the better
the alignment and the lower the cost function. This was summed over a set of
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1.5 x 10? protein pairs.” The cost function was used in a simplex optimization
and could be applied to gap and other penalties as described below.

Substitution matrix and full score matrix

Sequence alignments were calculated by a dynamic programming algorithm
applied to an alignment matrix. This, in turn, was built by combining matrices
from structure- and sequence-based terms using some weighting. This
weighting was also treated as a parameter to be optimized and even the 210
elements of an amino acid substitution matrix were treated as parameters to be
optimized. This could be used to produce a matrix for sequence alignments*,
but in this work, one wants something adapted to the rest of the scoring terms.
To this end, an optimization was carried out of all gap penalties, the substitution
matrix and the weights of the different terms simultaneously. Rather than use
amino acid sequences, profiles from psi-blast were used in both sequence- and
structure-based terms.

Preliminary results suggest that the optimization philosophy is very good at
producing good sequence to structure alignment machinery. For this CASP, it is
likely that our parameterization set contained too many pairs with high
sequence similarity and was not tuned to the more difficult cases where the
structural terms are most important. It also produced a substitution matrix
which was too highly tuned to sequences with a large number of close sequence
homologues. Although too late for CASP, these problems have already been
repaired in recent re-parameterizations. A remaining weakness was our poor
ranking of models. For some targets, a good model was in often in the top 20
guesses, rather than first rank. We are delighted with this feature as it leaves
some other property to be optimized before CASP7.

1.  http://www.zbh.uni-hamburg/wurst

2. Torda,A.E., Procter,J.B. & Huber,T. (2004) Wurst: A protein threading
server with a structural scoring function, sequence profiles and optimised
substitution matrices. Nucl. Acids Res. 32, W532-W535.

3. Cheeseman,P. & Stutz,]. Bayesian classification (autoclass): Theory and
results, in Advances in knowledge discovery and data mining, U. Fayyad,
et al., Editors. 1995, The AAAI Press: Menlo Park. p. 61-83.

4. Qian,B. & Goldstein,R.A. (2002) Optimization of a new score function for
the generation of accurate alignments. Proteins 48, 605-610.

5. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.,
& Lipman,D.J. (1997) Gapped blast and psi-blast: A new generation of
protein database search programs. Nucl. Acids Res. 25, 3389-3402.

ISTZORAN - 190 models for 64 DR targets
Combining predictors for short and long disorder
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During the past few years we have been focused on improving predictions for
intrinsically disordered regions longer than 30 residues. As a most recent effort,
four neural-network-based predictors, VL3, VL3H, VL3P and VL3E, were
developed with prediction accuracies ranging from 83% (VL3) to 86%
(VL3E).! However, all these predictors performed considerably worse on
disordered regions shorter than 30 consecutive residues'. Similar behavior was
also observed during our participation in the previous CASP experiment: all
three VL3 type predictors (VL3E not used) successfully predicted both long
disordered regions in the target proteins with accuracy higher than 80%, but
were less successful on short disordered regions.?

There are several reasons for such a performance. First, the window lengths for
attribute construction (W;,) and post-filtering (W,.) were optimized for
predicting long disordered regions. Second, the training data did not include
disordered regions of 30 residues or shorter. Third, a detailed analysis revealed
that short disordered regions exhibit significantly different amino acid
compositions and are more similar to flexible ordered regions in terms of
flexibility index, hydropathy and net charge. * A predictor trained using a set of
short disordered regions (3-10 consecutive residues) achieved only 66%
accuracy on long disorder regions®.

To address this problem, we developed a two-level predictor (model 1) which at
the first level consisted of two specialized predictors: (1) a long disorder
predictor for disordered regions longer than 30 residues, and (2) a short
disorder predictor for disordered regions of 30 residues or shorter. At the
second level, a predictor was built to determine which of the two first-level
predictors should be used at a given position. Ideally, the two specialized
predictors should receive weights of 1/0 in long disordered regions, 0/1 in short
disordered regions, and 0.5/0.5 in ordered regions.

The dataset used contained a total of 1,335 non-redundant (all with <25%
sequence identity) protein sequences, including (1) 153 proteins from DisProt*
v1.2 (with DP0069 removed) with 163 long disordered regions and 24 short
ones, (2) 511 PDB chains with 673 (43 long and 630 short) disordered regions
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defined as stretches of missing coordinates?, (3) 290 completely ordered PDB
chains with no missing coordinates®, and (4) 381 PDB chains released after
June 2003 with 24 long and 329 short disordered regions. In total there were
230 long disordered regions with 25,958 residues, 983 short disordered regions
with 9,632 residues, and 354,169 ordered residues.

The long disorder predictor was built using the same 20 attributes used for VL3
predictor and the net charge / hydrophobicity ratio calculated over a moving
window of length 41 (W, = 41) centered at a current position. For the short
disorder predictor 52 attributes were calculated over a much smaller window of
15 (Wi, = 15), including amino acid frequencies, KZ2-entropy, averaged
flexibility, net charge/hydrophobicty ratio, averaged PSI-BLAST profiles,
averaged secondary structure predictions, and an additional one indicating if the
current position was located within 7 residues from the N- or C- terminus.

The second-level predictor is a 2-class predictor whose output indicates if a
given sequence position is more likely to belong to a long disordered region.
For a given sequence position, its class label was assigned by following rules:
(1) 0 if more than half of a short disordered region overlapped with the
subsequence of length 61 centered at that position, (2) 1 if more than half of a
long disordered region overlapped with the subsequence, and (3) 1 if more than
half of a short and a long disordered regions both overlapped with the
subsequence. If a sequence position could not be labeled, it would not be used
in training of the second-level predictor. The attributes used were the same as
those used for the short disorder predictor except that they were calculated over
a larger window of 61.

All three predictors were built as logistic regression models on balanced
datasets of 16,000 randomly selected examples. Principal component analysis
(PCA) was performed to reduce dimensionality by keeping variance at 95%.
The outputs of the long and short disorder predictors were filtered by moving
averaging windows (W,,) of length 31 and 5 respectively, while the outputs of
the second-level predictor and the composite predictor were not smoothed.

To estimate prediction accuracy, the 1335 sequences were randomly divided
into two disjoint sets (75%:25%) and the first part was used for predictor
training and the second part for predictor evaluation. This process was repeated
for 30 times and means and standard deviations of the resulting accuracies were
reported. In this way, the per-chain accuracies for the composite predictor were
estimated as 79.1+£2.6%, 75.5£2.7% and 83.3+0.5% on short disordered, long
disordered and ordered regions, respectively. For the two specialized predictors
for long disorder and short disorder, the corresponding accuracies were
50.1+3.6%, 76.5+4.2%, 85.1+0.9% and 81.5+2.1%, 66.7+3.5%, 82.4+0.5%,

respectively.

1. PengK., Vucetic,S., Radivojac,P., Brown,C.J., Dunker, A K. &
Obradovic,Z. (2004). Optimizing Long Intrinsic Disorder Predictors with
Protein Evolutionary Information. J. Bioinformatics and Comput. Biol. (in
press).

2. Obradovic,Z., Peng,K., Vucetic,S., Radivojac,P., Brown,C. & Dunker,A.K,
Prediction of Intrinsic Protein Disorder, Proteins 53(S6), 566-572.

3. Radivojac,P., Obradovic,Z., Smith,D.K., Zhu,G., Vucetic,S., Brown,C.J.,
Lawson,J.D. & Dunker,A.K. (2004). Protein Flexibility and Intrinsic
Disorder, Protein Sci. 13(1), 71-80.

4. Vucetic,S., Obradovic,Z., Vacic,V., Radivojac,P., Peng K.,
Iakoucheva,L..M., Lawson,J.D., Brown,C.J.,, Sikes,J.G., Newton,C. &
Dunker,A.K. (2004). DisProt: A Database of Protein Disorder,
Bioinformatics [August 13, Epub ahead of print].

IUPred - 57 models for 56 DR targets

Prediction of protein disorder based on the estimation of
pairwise interaction energy

Zsuzsanna Dosztanyi, Veronika Csizmok, Péter Tompa

and Istvan Simon
Institute of Enzymology, Biological Research Center, Hungarian Academy of
Science, Budapest, Hungary
zsuzsa@enzim.hu

Datasets of protein disorder are rather limited in size and heterogeneous in
terms of the type of disorder they cover. The disorder prediction in CASP is
restricted to only one type of disorder. i.e. missing residues in X-ray strutures.
Instead of specifically addressing this subtype of protein disorder, we took a
more general approach which could also provide a simple model for the
physical basis of protein disorder. The underlying assumption is that globular
proteins are composed of amino acids which have the potential to form a large
number of favorable interactions, whereas IUPs adopt no stable structure
because their amino acid composition does not allow sufficient favorable
interactions to form. Based on this assumption, the polypeptides encoding
globular and disordered proteins can be distinguished.
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With the structure in hand, the energy of a protein can be easily calculated.
Using a coarse-grained approach, the calculated energy is the sum of pairwise
interactions between amino acid pairs within a distance cutoff. The energy of
contacts between different amino acids, expressed in the form of a 20 by 20
matrix, was calculated from the observed frequencies of amino acid pairs using
the approach of Thomas and Dill' The summation of such energies, however,
cannot be carried out for proteins whose structure is unknown or for
intrinsically unstructured proteins. To overcome these limitations, we invented
a novel method for approximating the total pair-wise interaction energy from
the amino acid compostion only? Without considering the actual conformation,
we rely on statistics collected from a database of globular proteins which is
used to derive the parameters for the estimation of the energy.

This novel approach is validated by the good correlation of this estimated
energy with the values calculated for known structures. When applied for
disordered sequences, their predicted energy values was clearly shifted towards
less favourable energies compared to globular proteins. This indicates that
experimentally characterized disordered proteins have special amino acid
compositions, which, independently of the actual sequence, do not allow the
formation of favorable contacts expected for folded proteins. Thus, these
proteins are rightly called intrinsically unstructured.

At the core of our prediction method, termed [UPred, is the approximation of
the pairwise energy by means of the amino acid composition of the protein. By
limiting the calculation to a predefined sequential neighborhood, it yields a
position-specific score characteristic of the tendency of a given amino acid to
fall into a structurally ordered or disordered region. This score was averaged of
over a given window size and normalized to fall between O and 1. For the
specific targets in CASP, the cutoff value for the sequential neighbourhood and
the window size was optimized on a database of ordered and missing residues
in PDB structures. Although the optimization of these parameters brougth some
improvements in the prediction accuracy of missing residues, we do not expect
our method to outperform some machine learning algorithms directly trained
for finding missing residues in X-ray structures. The real strength of our
approach becomes apparent for full length proteins or domain-sized fragments
of disorder, when this method, relying on a simple physical model only,
outperfomes existing methods?, like DISPROT VL3H? or DISOPRED2*.

1. Thomas,P.D. & DillLK.A. (1996). An iterative method for extracting
energy-like quantities from proteins structures. Proc Natl Acad Sci USA.
93, 11628-11633.

2. Dosztanyi,Zs., Csizmdk,V. Tompa,P. & Simon,I. (2004) The pairwise
energy content esimated from amino acid composition discriminates
between folded and intrinsically unstructured proteins. submitted.

3. Obradovic,Z., Peng,K., Vucetic,S., Radivojac,P., Brown,C., & Dunker,A.K.
(2003). Predicting intrinsic disorder from amino acid sequence. Proteins 53

(S6), 566-572.

4. Ward,J.J, Sodhi,J.S., McGuffin,L.J., Buxton,B.F. & Jones,D.T. (2004)
Prediction and functional analysis of native disorder in proteins form the
three kingdoms of life. J. Mol. Biol. 337, 635-645.

JIVE - 14 models for 14 3D targets

JIVE: Protein structure prediction by the assembly of local
supersecondary structural motifs

David F. Burke and Tom L Blundell
Department of Biochemistry, University of Cambridge,80 Tennis Court Road,
Cambridge, CB2 1GA, United KingdomInstitution
dave@cryst.bioc.cam.ac.uk

In the CASP6 experiment, models of proteins which had low confidence values
across the CAFASP4 servers were selected to be modelled.

JIVE predicts the structure of small conjoint domains of proteins by the
assembly of fragments of local supersecondary motifs. Homologous sequences
were identified using PSI-BLAST!. Secondary structure prediction was
performed locally using PHD? together with the predictions from the CAFASP4
server. The conformational class of supersecondary fragments were predicted
using SLOOP?* based on all combinations of predicted secondary structure.
The SLoop database contains protein loops clustered into distinct classes based
upon the similarity of the mainchain conformation of their bounding secondary
structures and loop residues. Each loop class is defined by an amino acid
consensus pattern, the local structural environment of the loop residues and the
angle and distance between the vectors of the bounding secondary structures.
Models were built using a Monte Carlo simulation, assembling fragments
derived from the predicted supersecondary motifs for contiguous loops together
with fragments derived from the secondary structure predictions. Unsuitable
models were rejected based on excluded volume and a distance-dependent
conditional probability function®. The generated structures were then visually
inspected to aid selection of likely models.
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structure prediction.Comput Appl Biosci.10(1), 53-60
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comparative modelling. J Mol Biol. 267(2), 352-67.
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Protein Engineering 14 (7), 473-478
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Jones-UCL - 251 models for 63 3D/ 64 DR / 26 FN

FRAGFOLD3, THREADER3 and DISOPRED?2: improved
methods for prediction of protein folds, disorder and function

M.I. Sadowski', J.D. Watson?, J.S. Sodhi', J.J. Ward' &
D.T. Jones!

! — Bioinformatics Unit, Department of Computer Science, University College
London, Gower St., London, WC1E 6BT, United Kingdom
2_ EMBL Outstation - Hinxton, European Bioinformatics Institute, Wellcome
Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
dtj@cs.ucl.ac.uk

THREADER 3.5 is the latest incarnation of our original program to implement
threading' (D.T. Jones et al., Nature 358, 86-89, 1992) and although it now
incorporates a number of new features (in particular the use of sequence
profiles), and a set of alignment parameters optimized with a genetic algorithm,
the overall components of the current implementation remain more or less
unchanged since CASP2. THREADER 3.5 was used to predict targets which
were not predicted with high confidence by mGenTHREADER? or nFOLD (as
submitted to the server prediction section). However, in making full CASP6
submissions, we also considered other models obtained from our web servers,

and our new model quality assessment method (MODCHECK) was used to
evaluate an ensemble of structures in order to identify the model predicted to
have the highest accuracy.

For CASP6 targets which we believed could not be reliably predicted using fold
recognition methods, FRAGFOLD3 * was used to generate up to 5 structures.
This approach to protein tertiary structure prediction is based on the assembly
of recognized supersecondary structural fragments taken from highly resolved
protein structures using a simulated annealing algorithm. FRAGFOLD3 differs
from previous versions by making use of both fixed-length and supersecondary
structural fragments, explicitly modeling side chains using a fast rotamer
generation method, and an improved treatment of main chain hydrogen bonding
using a simple Morse potential. Up to 1000 structures were generated for each
target domain using a 100 CPU Beowulf cluster, and a simple rigid-body
structural clustering algorithm used to select the models representing the largest
clusters of conformations. Submitted predictions were made using little or no
human intervention apart from initial domain assignment and preparation of
input secondary structure and sequence alignment files.

For all targets (including CM and FR targets), regions of native disorder were
predicted using DISOPRED2 “*, DISOPRED? is based on a reimplementation
of DISOPRED using Support Vector Machines rather than neural networks.
Predictions of the functions of the structurally and functionally uncharacterised
targets for the CASP6 experiment were made using a manual approach
combining information from a variety of sequence and structure-based
methods, along with literature searching and visual inspection of predicted
structures. Sequence-based methods used were the standard sequence similarity
searching tools BLAST and PSI-BLAST®, InterPro’ and CDD?® searches,
STRING® and ANAGRAM". The newly-developed TopSite program' for
identifying metal-binding sites in low-resolution structural models and the
ProFunc®” ensemble of structural analyses (incorporating searches against
ligand- and DNA-binding templates, SSM fold matching, nest analysis and
SiteSeer searches) were also applied to the best structural predictions generated
for each sequence. Results were then carefully analysed with reference to the
results of the structural predictions and published information on the protein
families predicted.

1. Jones,D.T., Taylor,W.R. & Thornton,J.M. (1992) A new approach to protein
fold recognition. Nature 358, 86-89.

2. McGuffin,L.J. & Jones,D.T. (2003) Improvement of the GenTHREADER
method for genomic fold recognition. Bioinformatics 19, 874-881.
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4. Jones,D.T. & Ward,J.J. (2003) Prediction of disordered regions in proteins
from position specific score matrices. Proteins S6, 573-578.
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annotations on the fly. Nucleic Acids Res 32,W327-331

9. von Mering,C., Huynen,M., Jaeggi,D., Schmidt,S., Bork,P., Snel,B. (2003)
STRING: a database of predicted functional associations between proteins.
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10. Perez,A.J., Thode,G., Trelles,O. (2004) AnaGram: protein function
assignment. Bioinformatics 20, 291-292.

11. SodhiJ.S., Bryson,K., McGuffin,L.J., Ward,J.J., Wernisch,L., Jones,D.T.
(2004). Predicting metal binding sites in low resolution structural models.
J. Mol. Biol. 342, 307-320

12. Laskowski,R., Watson,J.D., Thornton,J.M. et al., unpublished.

Karypis - 61 models for 5 3D / 56 RR targets
Prediction of contact maps using support vector machines

Ying Zhao and George Karypis
Department of Computer Science, University of Minnesota
yzhao@cs.umn.edu, karypis@cs.umn.edu

The problem of contact map prediction can be stated as a classification
problem. Given a set of proteins with known structures, contact residues and
non-contact residues are separated as positive instances and negative instances.
For each instance, various features are collected to capture useful information
of the pair of residues, including amino acid content, physicochemical
environment, secondary structures, evolutionary correlation, and other
information that can discriminate contacts from non-contacts. Then, these
feature vectors of both positive instances and negative instances are used as the

input to a classification tool to learn a classifier (i.e., predictor). Given a
sequence with unknown structures, the resulting predictor classifies the pairs of
residues of the sequence to be contacts and non-contacts based on their feature
vectors. In our RR model for CASP6, we employed Support Vector Machines
(SVMs) as the classification tool and collected various features based on
primary sequences, multiple sequence alignments, predicted secondary
structures, and correlated mutation analysis® to predict contacts between non-
local residues (sequence separation between the two residues is larger than 6).

Data Preparation
The dataset we used in training and testing our predictors contains 170 proteins

with known 3D structures from Protein Data Bank (PDB*). The proteins whose
chains are not interrupted and contain no more than two domains were selected.
The list of proteins was further reduced to only contain the proteins with
pairwise sequence identity lower than 25%. To obtain multiple sequence
alignments (MSAs), we first used PSI-BLAST to retrieve homologous
sequences for each protein and only kept sequences with more than 20% and
less than 80% sequence identity. Then, we used ClustalW* to generate the final
MSAs of the target protein and its homologous sequences. The predicted
secondary structures for each protein were obtained by using PSIPRED®,

Features

For each pair of positions in a protein sequence, we identified five sets of
features that capture different aspects of the amino acids and the two locations:
sequence separation, sequence conservation, predicted secondary structures,
sequence profiles, and correlated mutations analysis.

The sequence separation between a pair of positions is the distance between
two positions in the sequence. The conservation of each position in the
sequence was calculated based on how conserve the amino acids appearing at
that position in the multiple sequence alignment.

For each pair of positions, we consider the predicted secondary structures of
both the two positions and their neighboring positions. In particularly, for each
residue and its predicted secondary structure, we used three values to represent
whether it belongs to an alpha helix, beta strand or coil. If the residue belongs
to one of the three secondary structures, we set the corresponding value to be 1,
and 0 otherwise.

The use of sequence profiles, which are derived from a multiple sequence
alignment of homologous sequences, has been shown to be able to improve the
prediction of contact maps®>. We adopted the three-neighborhood approach in
Ref?. For a pair of positions and their neighboring positions, we calculated the
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sequence profiles as the occurrence frequencies of all the possible amino acid
pairs from the multiple sequence alignment. In addition to using amino acid
pair frequencies to represent the profile, we also used twelve physicochemical
vectors from AAindex* to describe the physicochemical environment around.
Specifically, for each position, the average of one physicochemical property
was calculated by averaging the physicochemical property values for all the
amino acid that appeared at that position in the multiple sequence alignment.

The correlated mutations analysis (CMA) utilizes evolutionary information. In
evolutionary times, the significance of non-local contacts is manifested in the
observed conservation patterns and the covariation of amino acid residues in
multiple sequence alignments of homologous proteins. Pairs of distant sequence
positions that are proximal in three-dimensional space appear to be conserved
or mutated in a correlated fashion, i.e., the frequencies of particular amino acid
appearances in one position are dependent on the amino acid residue in the
other position. In principle, positions with high correlation coefficients, a
quantitative measure of mutational covariance in families of homologous
proteins, can be inferred to be proximal in 3D. Specifically, we used the ten
first principal components that resulted from a principal component analysis on
142 physicochemical vectors in AAindex [4] as the quantitative measures to
calculate the correlation coefficients between pairs of positions based on the
multiple sequence alignment of the target sequence. In addition, we also
calculated correlated mutations defined in [2], which also employed similar
correlation coefficient measure, but used pairwise amino acid scoring matrix of
McLachlan instead of physicochemical vectors.

SVM Training and Prediction of Contacts
Given a training set of feature vectors of all the position pairs from all the

sequences, we used SVM"#" [3] with a linear kernel and the default C value to
train the SVM model. Since there are much more non-contacts than contacts,
we randomly sampled non-contact instances, so that the number of contact
instances and the number of non-contact instances are the same approximately.

Given a target sequence, the input for our predictor is also a collection of
feature vectors of all the position pairs of that sequence. The predictor will
return a score for each instance. Since we assign contact to be the positive class
and non-contact to be the negative class, the higher the score is, the more likely
the pair of amino acids is in contact. Hence, the returned scores can be sorted
into a list, from which the top pairs are predicted as contact points. In our RR
model for CASP6, we set the total number of predicted contacts from the sorted
score list to be the total number of amino acids of the target sequence divided
by 2. Finally, local contacts (sequence separation between the two residues is
less than or equal to 6) were predicted based on sequence separation and

predicted secondary structures, and all the local contacts were added to the final
contact set as well.

1. Zhao,Y. & Karypis,G. (2003). Prediction of contact maps using Support
Vector Machines. In Proc. of the 3™ IEEE International Symposium on
Bioinformatics and Biomedical Engineering (BIBE 2003). 26-33.

2. Fariselli,P,, Olmea,O., Valencia,A. & Casadio,R. (2001). Prediction of
contact maps with neural networks and correlated mutations. Protein Eng.
14(11), 835-843.

3. Joachims,T. (1999). Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning. Schlkopf B. and
Burges C. and Smola A. (ed.), MIT-Press.

4. Kawashima,S., Ogata,H. & Kanehisa,M. (1999). AAindex: Amino acid
index database. Nucleic Acids Research. 27, 368-269.

5. Berman,H.M., Bhat,T.N., Bourne,P.E., Feng,Z., Gilliland,G., Weissig,H. &
Westbrook,J. (2000). The Protein Data Bank and the challenge of structural
genomics. Nature Structural Biology. 7, 957-959.

6. Jones,D.T. (1999). Protein secondary structure prediction based on
position-specific scoring matrices. J. Mol. Biol. 292, 195-202.

7. Thompson,J.D., Higgins,D.G. & Gibson,T.J. (1994). CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Research. 22, 4673-4680.

Keasar - 283 models for 58 3D targets

Refinement of fold recognition models by optimization with
cooperative potentials

N. Kalisman, A. Levi, E. Erez, K. Noy, and C. Keasar

Department of Computer Science, Ben-Gurion Universiry, Israel
keasar@cs.bgu.ac.il

Fold Recognition (FR) emerges as a successful and promising approach to
protein structure prediction. However, FR models tend to be fragmented and to
include non-physical inter-residue distances. Such models may not be very
useful beyond the somewhat artificial context of prediction experiments like
CASP. Thus, we believe that the refinement of FR models is a major challenge
in current computational structure biology.
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Specifically, we try to generate non-fragmented, all-atoms models that are as
similar as possible to the FR models, and at the same time physically plausible.
Both requirements can be formulated into a derivable potential and the problem
then becomes an optimization task. @~ We implement this approach in
BEAUTIFY, a new program handling many aspects of protein structure
prediction including loop building and energy based optimization. BEAUTIFY
is based on MESHI our in-house software package for molecular structure
modeling.

Similarity of the BEAUTIFY model to the original FR template is enforced by
distance constrains extracted from the template. a-priori all the distances
between Cal atoms in the FR model may serve as constrains. In general,
however, not all these constrains can be satisfied simultaneously in a physically
plausible model. The optimization is thus done in several runs. The less
satisfied constrains are removed after each run.

Physical plausibility is enforced by knowledge-based energy terms extracted
from a non-redundant set of high-resolution structures (based on ASTRALY.
Bond, angle, plane, out-of-plane and Van-der-Waals terms result in correct local
structure and resolve clashes. On a higher level, we try to achieve “protein-
like” appearance of the models by using cooperative energy terms that involve
a large set of atoms coupled in a non-linear way. While more complex than the
other terms, all the cooperative energy terms are derivable and evaluated in a
linear time.

The cooperative energy terms include:

1) Hydrogen bond pairs - This energy term assigns low energy values to HB
pairs frequently observed in proteins, such as the characteristic patterns of beta
sheets. HB pairs that never occur in proteins are concurrently penalized by
high-energy values. Usage of this term was shown to enhance the formation of
native-like alpha/beta structures?.

2) Solvation - This energy term induced a native-like solvation environment
around every atom by forcing a certain number of neighboring carbon atoms in
its vicinity.

3) Torsion Pairs - Low energetic values were assigned to frequently occurring
torsion pair conformations, such as the allowed regions of the Ramachandran
plot or the chil/chi2 of common side chain rotamers.

In the current round of CASP we tried to refine Ca-models extracted from the
CAFASP4 site. Depending on the variability of the models submitted to
CAFASP, we manually chose from one to five template models. If an educated
guess could be made considering the position of some missing residues, their

Ca-atoms were added manually. These models were fed to the program
together with a secondary structure prediction (a consensus of PSIPRED? and
SAM-T02%. The refinement was done in three steps. First, the Cco-model was
completed and refined, than the other backbone atoms were added and finally
those of side chains. In all stages missing atoms were initially assigned random
positions and reasonable structures were obtained by direct energy
minimization. The random positioning of the missing atoms made this process
non-deterministic, and many alternative decoys could have been generated from
each template. The number of decoys actually generated ranged from one to
4000, depending on protein size and availability of computing resources. The
resulted decoys were clustered and low energy representatives of the major
clusters were submitted to CASP.

1. Brenner,S.E., KoehL,P., Levitt,M. (2000). The Astral compendium for
protein structure and sequence analysis. Nucleic Acids Res. 26, 254-256.

2. Keasar,C, Levitt,M. (2003) A novel approach to decoy set generation:
designing a physical energy function having local minima with native
structure characteristics. J Mol Biol. 329, 159-174.

3. Jones,D.T, (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292: 195-202.

4. Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans
M, Hughey R. (2003) Combining local-structure, fold-recognition, and
new fold methods for protein structure prediction. Proteins 53, Suppl. 6,
491-496.

KIAS - 675 models for 64 3D / 64 DP / 64 RR

Prediction of residue-residue contacts using
correlated mutation and hydrophobic packing score

Mee Kyung Song, Keehyoung Joo and Jooyoung Lee”
School of Computational Sciences, Korea Institute for Advanced Study
207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-722, Korea

jlee@kias.re.kr

Pair-wise residue contacts are predicted using the information on residue
covariation' and conservation.>* The covariation is determined from correlated
mutation and the conservation from hydrophobic packing score between two
positions in multiply aligned sequences. The contacts are predicted by three
different methods; with correlated mutation only, with hydrophobic packing
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score only, and finally with a combination of two as was done by Olmea and
Valencia.* A contact is assumed between two residues when the minimum
heavy-atom distance between them is less than 4.5 A. All short range contacts
less than four residue sequence separation are excluded.

For target proteins, the multiple sequence alignment (MSA) is carried by PSI-
BLAST, using the non-redundant protein sequence database, with default
parameters and the maximum of three iterations. With selected sequences, the
following filtering process is carried out; sequences containing gaps of more
than 22% of the target sequence and those with sequence identity greater than
95% are removed. The remaining sequences are used for contact prediction.

The correlated mutation score Cj; between residues i and j is calculated as
described by Gobel et al.' Each position in the alignment is represented by the
corresponding element in the McLachlan matrix.® Residue pairs are sorted by
their average correlated mutation score to predict contacts.

The hydrophobic packing score Hjis calculated from the sequence conservation
coupled with hydrophobicity data.®> The sorted list of residue pairs by their
average hydrophobic packing score is used for contact prediction.

For the combined method, the score function between residues i and j is defined
as f; = Cj + w H;;, where w is the relative weight of H; with respect to C;. The
value of w is chosen so that the best performance is achieved for a set of 281
domains selected from the SCOP database 1.63. From the total of 49497
domains in the SCOP, a set of domains containing sequence identity no more
than 10% to any of its members is constructed. Out of 457 such domains, small
domains containing less than 50 residues as well as domains with mutated
residues are removed. Domains with the total number of aligned sequences less
than 15 are also excluded to reduce statistical errors to obtain the 281domains.
The prediction accuracy is defined by the number of correct contacts divided by
the total number of predicted contacts. The best accuracies achieved for the 281
domains are 17.4%, 20.9%, 23.5%, and 37.7% for the number of predicted
contacts of L/2, L/5, L/10, and 1, respectively, L being the length of domain. In
CASP6, the parameter for L/2 is used to predict contacts.

For each target, we first perform domain prediction using PPRODO.® If the
target is predicted as a single-domain protein, residue-residue contacts are
predicted as described above. Otherwise, predictions are carried out separately
for each domain. All three methods described above are employed to submit
answers in CASP6.

1. Gobel,U., Sander,C., Schneider,R. & Valencia,A. (1994). Correlated
mutations and residue contacts in proteins. Proteins 18, 309-317.

2. Mumenthaler,C. & Braun,W. (1995). Predicting the helix packing of
globular proteins by self-correcting distance geometry. Protein Sci. 4, 863

3. Aszodi,A., Gradwell,M.J. & Taylor, W.R. (1995). Global fold determination
from a small number of distance restraints. J. Mol. Biol. 251, 308-326.

4. Olmea,0. & Valencia,A. (1997). Improving contact predictions by the
combination of correlated mutations and other sources of sequence
information. Folding & Design 2, S25-S32.

5. McLachlan,A.D. (1971). Tests for comparing related amino acid
sequences. J. Mol. Biol. 61, 409-424.

6. Sim,J., Kim,S-Y. & Lee,J. (2004). PPRODO: Prediction of PROtein
Domain boundaries using Neural Networks. submitted.

Tertiary structure prediction for comparative modeling, fold
recognition and new fold targets in CASP6

Keehyoung Joo', Jejoong Yoo', Kyoungrim Lee', Hyung-Rae

Kim', Seung-Yeon Kim', Mee Kyung Song', Ju-Beom Song?,
Sang Bub Lee'?, Sung Jong Lee*, Jooyoung Lee"”

School of Computational Sciences, Korea Institute for Advanced Study
’Department of Chemistry, Kyungpook University, Korea;
3Department of Physics, Kyungpook University, Korea
“Department of Physics, Suwon University, Korea
jlee@kias.re.kr

For blind prediction of 3D structures of CASP6 targets, we have developed a
unified method that can be applied to all classes of targets, called CMCSA
(Combined Modeling using Conformational Space Annealing). The CMCSA
method is based on an energy function designed from the information on the
radius of gyration, hydrophobicity, Cq - Cy contacts, restraints from templates,
restraints from super-fragments, restraints for B-pairing, hydrogen bond
rewarding and steric hindrance. The energy function is given as
E = wyEy + WipEnp + wmiEwmy + WisiEwse + WinEr + WeeEse (1)
where w’s are the weights of energy components.

Conformations are constructed by assembling fragments generated from
PREDICT'. The PREDICT provides the secondary structure information of
target proteins, libraries of local structure fragments, and Cq - Cq restraints of
super-fragments extracted from the PDB_SELECT_90 by fold recognition
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developed by us. For fragment assembly, we have used PROFESY?, which was
successfully applied to new fold targets in CASP5. Conformational search was
carried out by conformational space annealing (CSA) method *.

A standard set of weights in eq. (1) is obtained by parameter optimization using
“representative” proteins selected from the SCOP database. For targets without
additional information, the standard weights are used. For targets with “sure”
templates (homology and threading targets), a larger weight is assigned for the
restraints from templates. Weights are varied depending on the secondary
structures of all & proteins, all S proteins, o/ proteins, and a+ f proteins.

Methods for the design of the energy function
Each component of the energy function is designed as follows.

(i) E.g: the component on the radius of gyration. The average value of radius of
gyration of proteins of N residues is <Rz> = 2.2 x N **, Thus, we set that the
structure with its radius of gyration larger than the average value would have a
high energy score. One simple choice of such an energy component is
E, = max{R,— (2.2 x N%*¥+ 0.5), 0},

where R, is the radius of gyration of the protein model.
(ii) Eyp: the component for hydrophobicity. Parameters for hydrophobicity are
calculated from the mean C, distance from the center of mass for each type of
amino acid for proteins in ASTRAL 1.65. The energy component for
hydrophobicity is designed so that it becomes smaller when hydrophobic
residues are located at inner regions of a protein and hydrophilic residues are at
outer regions. We define such an energy component as

Ehp = - Z iD,’Hi/Rg,
where D; and H; are, respectively, the C, distance from the centroid and the
hydrophobicity of the i-th residue. This component therefore has a tendency to
force hydrophobic residues to form a core inside a protein.
(iii) Emy: the Miyazawa and Jernigan type contact-energy component. Contact
frequencies are calculated from the PDB_SELECT_90 database and the
parameters for the contact matrix A(R; ,R;) are determined, where R; and R; are
the residue types of the i-th and j-th residues respectively. Two residues are
assumed to be in contact if their C, distance is less than 7 A. The energy
component is defined as

Ewi=-Y ijAR,R), fori-j>4.

(iv) Ew: Co- Cq restraints energy. The Cq - Cq distance restraints are generated
from three sources, templates when available, super-fragments, and -pairing.
Super-fragments are contiguous fragments obtained from the fold recognition
method, B-paring restraints are to ensure the paring of f-strands. The energy
component based on C, - C, restraints is defined as

Ew = 3 Xuli)/ dy,

where Xnin(i,j) is the minimum value of the difference between d; and all
restraints for i and j, d; being the C, distance between the i-th and j-th residues.
(v) Ew: Hydrogen bond rewarding term. While modeling, two residues whose
C, distance lies between 2.6 A and 3.6 A with favorable bond directions get
reward for gaining a hydrogen bond. The energy component is defined as
Ew =-3 4 Vi'V;,

where V; and V; represent two vectors forming a hydrogen bond.
(Vi) E«c = Ewa + Egg + Ecc + Exn + Eoo: Penalties for steric clashes. Modeling
may cause steric clashes between two residues. We calculate pairwise distances
between all backbone heavy atoms from PDB_SELECT 90 and find the
minimum distances that are rarely allowed. For example, two C,'s rarely come
closer to each other than 3.9 A. For C, - Cq, C-Cp, C-C, N-N, and O-O, the
minimum allowed distances, dmn, are 3.9 A, 3.4 A, 3.7 A, 36 A, and 2.8 A
respectively. With dumax = (dmin + 5) A, the component is defined as

E= Z ij {(dmax - dij) / (dmax - Clmin)}8 B
where d; is the distance between two backbone heavy atoms i and j.

Procedure

The prediction procedure consists of the following four steps.

(i) Prediction of secondary structure and construction of fragment libraries. We
employ PREDICT which is based on the nearest-neighbor method on the
pattern space. The PREDICT generates sequence profiles using PSI-BLAST
and defines the pattern for each residue. Each pattern is compared with those in
the pattern database construted from PDB_SELECT_90, and 100 closest
patterns to a query residue are selected to determine its secondary structure. In
addition, for each residue, out of the 30 closest patterns, a fragment library of
backbone dihedral angles containing 15 consecutive residues is constructed.

(ii) Distance restraints from templates, super-fragments and B-pairing. When
templates with reasonable confidence are available, Cq- Cq restraints for aligned
parts are generated. In practice, we have used the results from the Meta Server*.
In all cases, additional restraints are generated by analyzing the results of
PREDICT. The PREDICT generates 100 nearest-neighbor patterns for each
residue of a target sequence. A super-fragment is defined as a collection of
contiguous residues along the target sequence where a particular protein in the
PDB provides one of the 100 patterns. These super-fragments are sorted
according to their residue lengths, and the top 100 of them provide Cq - Cq
restraints among them. When PREDICT indicates that there are more than one
B-strands, Cq - Cq restraints of all possible combinations of [B-pairing are
generated. Finally, all C, - C, restraints are put together in the energy term.
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(iii) Global optimization of the energy function by CSA. In order to obtain a
collection of diverse low-energy conformations, we apply CSA to the energy
function of eq (1) where conformations are generated by fragment assembly.
This is a variation of the PROFESY? a prediction method used for new fold
targets in CASP5/6. Initial conformations are generated as follows. We
randomly pick a fragment for each residue from its library. We then assemble
these fragments in an order from N- to C-terminal by shifting one residue at a
time. If a fragment does not join smoothly to the existing assembled structure,
the current fragment will be discarded and a new one is selected from the
corresponding library. Two fragments are assumed to join smoothly if they
satisfy the constraints |p1-¢2|<30° and |[1-y2|<30°, or |@1-@2|+|W1-y2|<45°.
After conformations are generated, they are subsequently minimized by a local
minimizer; one residue in the sequence is selected at random, and a fragment
corresponding to the residue is selected from the library. If the replacement of
the new fragment improves the energy score, the new conformation is kept and
otherwise, the replacement is rejected. This procedure is repeated until the
energy score does not improve any further. The conformational search is carried
out by Conformational Space Annealing (CSA) method®. CSA provide us a
bank of diverse conformations with low lying minima in the conformational
space.

(iv) Model selection. Typically, a final CSA bank contains 100 conformations,
which are grouped into five clusters by a K-means algorithm. The best
conformation from each cluster is taken. The final five models are selected
according to their scores.

1. Joo,K., Kim,I., Lee,J., Kim,S-Y., Lee,S. & Lee,J. (2004). Profile-Based
Nearest Neighbor Method for Pattern Recognition. J. Korean Phys. Soc.
42, 599-604.

2. LeeJ., Kim,S-Y., Joo,K., Kim,I. & Lee,J. (2004). Prediction of protein
tertiary structure using PROFESY, a novel method based on fragment
assembly and conformational space annealing. Proteins 56, 704-714.

3. Lee,J., Scheraga,H.A. & Rackovsky,S. (1997). New optimization method
for Conformational Space Annealing, J. Comp. Chem. 18, 1222-1232.

4. Ginalski,K., Elofsson,A., Fischer,D. & Rychlewski,L. (2003). 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
31, 3291-3292.

5. Sali,A. & Blundell,T.L. (1993). Comparative protein modeling by
satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815.

6. Grotthuss,M., Pas,J., Wyrwicz,L., Ginalski,K. & Rychlewski,L.. (2003).
Application of 3D-Jury, GRDB, and Veryfy3D in Fold Recognition.
Proteins 53, 418-423.

KIST-CHI - 127 models for 40 3D targets

Prediction of protein structure using homology modeling
technique

Myung Whan Chi and Jin Su Song
Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
zambo@Xkist.re.kr

The homology modeling technique predicts the three-dimensional structure of a
given protein sequence (target) based on an alignment of the protein to one or
more homologous proteins (templates) of known structure. This technique
becomes more and more important because the structural information from x-
ray crystallographic or NMR results is increased. In this study we carried out
conventional homology modeling approaches. The target protein was aligned
with the templates which selected using PSI-BLAST"' search against PDB
(Protein Data Bank) database. Then, the template coordinates of aligned regions
were transferred to target. The coordinates of the regions which not aligned
were given using small fragment amino acid library. If the matched amino acid
fragment was not found, the conformation search was carried out. The energy
minimization and molecular dynamics simulation were performed to refine the
model structure.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

KIST-CHOI - 220 models for 60 3D targets
Protein structure prediction by fold recognition

Han Su Choi', Young Sun Kim', Jin Kak Lee"? and Chan No
Yoon'
1. Korea Institute of Science and Technology, Cheongryang, Seoul, Korea

2 - Nanormics, Inc. 10-57 Hawolgokdong, Sungbukku, Seoul, Korea
chs@kist.re.kr
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For identification of template structure we used PSI-BLAST' against the non-
redundant sequence database and fold recognition program. Fold recognition
program searches sequence structure alignment using predicted secondary
structure (PSI-PRED?), solvent accessibility, and sequence property. It is
designed so that the best performance is achieved at twilight zone with low
sequence identity. From sequence structure alignment, we carried out the target
protein modeling by MODELLER? and side-chain modeling was followed by
SCWRL* program. Then, energy minimization and molecular dynamics
simulation were performed to refine the target structure.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Sali,A. & Blundell,T.L. (1993). Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815.

4. Dunbrack, R.L., Jr., Karplus, M. A. (1993) backbone dependent rotamer
library for proteins: application to sidechain prediction. J. Mol. Biol. 230,
543-571.

KOLINSKI_BUJNICKI - 303 models for 64 3D targets

Generalized protein structure prediction based on
combination of fold-recognition with de novo folding and
evaluation of models

A. Kolinski' and J.M. Bujnicki®
! - Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw,
Poland, °— International Institute of Molecular and Cell Biology, Trojdena 4,
02-109 Warsaw, Poland
kolinski@chem.uw.edu.pl, iamb@genesilico.pl

To predict the tertiary structure of full-length sequences of all targets in CASP6,
regardless of their potential category (from easy homology modeling to
apparent new folds) we used a novel combination of two very different
approaches that performed quite well in different categories in CASP5: the
"FRankenstein's Monster" approach for comparative modeling (CM) based on
recombination of Fold-Recognition (FR) models', and a new implementation of

a Replica Exchange Monte Carlo method for protein structure prediction de
novo or with restraints>?,

Sequences of all CASP6 targets were processed by the GeneSilico structure
prediction meta server, which is a gateway to a variety of third-party methods
for prediction of protein primary and secondary structure, solvent accessibility,
and protein fold-recognition (see http:/genesilico.pl/meta/*, for links to all
methods). Fold-recognition (FR) alignments were compared, evaluated, and
ranked by PCONS and structures corresponding for up to 5 most frequently
reported folds were selected for further analysis. For each candidate fold, the
alignments between the target sequence and the structures of selected templates
were used as a starting point for modeling using the “FRankenstein’s monster”
approach’. Best models obtained (1-15 models for each fold) were used to
derive spatial restraints from those amino acids that exhibited VERIFY3D?®
score > 0.2. Additional restraints were derived from CAFASP models submitted
by third-party fully automated servers for de novo structure prediction.
Secondary structure restraints were derived from the consensus of methods
implemented in the GeneSilico meta server®, Tertiary restraints derived from the
FR and de novo models as well as secondary restraints derived from the
consensus prediction guided the Replica Exchange Monte Carlo (REMC)
folding simulation using a new high-resolution reduced lattice CABS model**,
The CABS model employs a lattice-confined Ca representation of the main
chain backbone, with 800 possible orientations of the Ca-Ca virtual bonds. The
side-chains are off-lattice. The force-field of the CABS model contains several
components that mimic averaged interactions derived from statistical analysis
of the structural regularities seen in globular proteins. The effect of the solvent
is treated in an implicit manner as an averaged contribution to the interaction of
the side chains (see www.biocomp.chem.uw.edu.pl and ref.*® for details).
Results of the CABS simulations were subject to the average linkage
hierarchical clustering algorithm with the distance root-mean-square separation
as a measure of structures similarity. For each cluster its centroid was calculated
and a full atom model rebuilt. Selection of final models was based on the
combination of objective criteria, such as the energy of the models and the size
of the respective clusters, and subjective visual analysis to reject models that
exhibited features unlike to appear in real proteins, such as atypical angles of
strands in beta-sheets or rare handedness of connections between elements of
secondary structure.

1. Kosinski, J., Cymerman, I.A., Feder, M., Kurowski, M.A., Sasin, J.M., and
Bujnicki, J.M. (2003). A "FRankenstein's monster" approach to
comparative modeling: merging the finest fragments of Fold-Recognition
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models and iterative model refinement aided by 3D structure evaluation.
Proteins 53 Suppl 6, 369-379.

2. Boniecki, M., Rotkiewicz, P., Skolnick, J., and Kolinski, A. (2003). Protein
fragment reconstruction using various modeling techniques. J Comput
Aided Mol Des 17, 725-738.

3. Kolinski, A. (2004). Protein modeling and structure prediction with a
reduced representation. Acta Biochim Pol 51, 349-371.

4. Kurowski, M.A., and Bujnicki, J.M. (2003). GeneSilico protein structure
prediction meta-server. Nucleic Acids Res 31, 3305-3307.

5. Luthy, R., Bowie, J.U., and Eisenberg, D. (1992). Assessment of protein
models with three-dimensional profiles. Nature 356, 83-85.

LANL_PFIG - 16 models for 16 FN targets
Nearest neighbor categorization for function prediction

K. Verspoor, J. Cohn, S. Mniszewski and C. Joslyn
Los Alamos National Laboratory
verspoor@lanl.gov

We present the methods utilized in a system aimed at predicting the function of
CASP targets, as represented by a node in the Gene Ontology?®. The strategy we
follow is to (1) identify close neighbors of a target sequence in sequence space,
(2) collect the Gene Ontology nodes associated with these neighbors in a
curated data set (Swiss-Prot), and (3) categorize the collection of Gene
Ontology nodes based on their distribution in the Gene Ontology structure,
utilizing a technology called the Gene Ontology Categorizer®. The resulting set
of Gene Ontology nodes is interpreted as the most representative nodes for the
function of the original target sequence.

To identify close neighbors of a target sequence, we performed a PSI-BLAST
(Position-Specific Iterated BLAST)' search on the target against the NCBI NR
database, with 5 iterations. We used the default e-value threshold of 10.

Once the nearest neighbors in sequence space of the target sequence have been
identified, we must collect the Gene Ontology (GO) nodes associated with
these sequences. To achieve this, we first obtain the Swiss-Prot identifiers
annotated to each PSI-BLAST match using a parsed listing of the NR database
headers. Then, using the SIB/EBI Swiss-Prot to GO mappings, we find all of
the Gene Ontology nodes related to the corresponding proteins. Finally, we
build a weighted collection of Gene Ontology nodes, where each node in the

collection is given a weight according to the PSI-BLAST e-value. Since several
near neighbors of the original target sequence may map to the same Gene
Ontology nodes, the collection we build can have redundancy. In this case, each
occurrence of a Gene Ontology node will be weighted individually according to
its source.

This collection of weighted Gene Ontology nodes becomes the input query to a
categorization technology called the Gene Ontology Categorizer (GOC)*. This
technology aims to identify a set of nodes in the Gene Ontology which best
summarize or categorize a given list of input nodes. The technology is based on
a view of bio-ontologies as combinatorially structured databases rather than
facilities for logical inference, and draws on the discrete mathematics of finite
partially ordered sets (posets) to develop data representations and algorithms
appropriate for the Gene Ontology. Briefly (for more detail, see references 4,6),
after identifying the set of input nodes in Gene Ontology space, GOC traverses
the structure of the Gene Ontology, percolating hits upwards, and calculating
scores for each Gene Ontology node. GOC then returns a rank-ordered list of
Gene Ontology nodes representing cluster heads. In the end, this provides an
assessment of which nodes best cover the input set.

We consider the set of cluster heads returned by GOC to be indicative of the
function of the collection of nearest neighbors of the target sequence, and hence
indicative of the function of the target sequence itself. These are returned as the
predictions for the functions of the target sequence (subject to thresholding of
the GOC results) and submitted to the CASP assessors.

The GOC system has many parameters that need to be specified in order to run
effectively. To establish appropriate parameter settings for the CASP
predictions, we created a “gold standard” test set of protein sequences for
which mappings to Gene Ontology nodes were known. The test set consisted of
the distinct set of Swiss-Prot sequences associated with entries in the 1.65
version of the SCOP dataset® through Protein Data Bank?® annotations. This set
was filtered to include only those sequences that had mappings in Swiss-Prot to
the Gene Ontology, resulting in 774 test sequences. We measured precision and
recall results for the GO function predictions over this test set for different
parameter values, making sure to eliminate a PSI-BLAST match to the original
sequence itself to avoid biasing the GOC analysis. For the system used to
generate the submitted results for the CASP targets, we selected the parameter
values which corresponded to the best empirical balance of precision and recall
over the test set.
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under contract W-7405-ENG-36 to the University of California. We would like
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LOOPP (serv) - 320 models for 64 3D targets
Fold recognition by machine learning approach

Jian Qiu', Jaroslaw Pillardy? Tamara Galor’, Craig B. Lowe',
Leonid Meyerguz' and Ron Elber'
'Department of Computer Science, Cornell University, Ithaca NY 14853,
?Cornell Theory Center, Cornell University, Ithaca NY 14853
ron@cs.cornell.edu

LOOPP (Learning, Observing, and Outputting Protein Patterns) is a program to
build structural models based on information from related proteins. LOOPP
emerged from our earlier studies of folding potentials using Mathematical
Programming approaches'*’. We have trained numerous scoring functions/
energies that evaluate the fitness of a sequence to a structure. To fully test and
appreciate the capacity of the newly developed potentials we developed a
prediction algorithm around these potentials. The first version of the algorithm*
was based primarily on matching sequences to structures. Since then we have
extended and enhanced the algorithm by including numerous similarity

measures that are going beyond the single feature of sequence-to-structure
matching.

Roughly, the similarity measures/features are divided as follows. We consider
general properties: sequence similarity, sequence-to-structure matching,
secondary structure fitness, exposed surface area, (we use the secondary
structure and exposed surface area prediction program Sable®), and matching to
the sequence profile of the probe and target sequence families. Each of these
properties is examined in multiple ways. We compute the raw score, the
difference of the native score from the score of the reverse native sequence, and
the Z score. We also compute a special threading energy' and a Z score of that
special energy according to the alignment of the current feature. Since some of
these measures are expensive to compute in large-scale predictions of protein
structures, we divide the calculation into three steps. In the coarse level only
similarity measures that can be computed rapidly are taken into account, and
that excludes the calculations of the Z scores. The remaining scores are
combined to a single similarity measure that is used to pick 50 top candidates
from our database of structures.

The top 50 candidates are evaluated with the expensive scores. Those include
(but not limited to) the Z scores. Other expensive features include the build-up
of atomically detailed models (generated with the MODELLER program of
Andrej Sali®) and the assessment of this model using novel energy functions.
The cheap and the expensive measures are finally combined to a single
similarity measure that ranks the models and provides the structures for the top
20 models.

1. Tobi,D.,, & Elber,R. (2000). Distance dependent, pair potential for
protein folding: Results from linear optimization. Proteins, Structure
Function and Genetics 41, 40-16.

2. Meller,J.,, Elber,R. (2001). Linear Optimization and a double
Statistical Filter for protein threading protocols Proteins, Structure,
Function and Genetics 45,241-261.

3. Teodorescu,0., Galor,T., Pillardy,J., Elber,R., (2004) Enriching the
sequence substitution matrix by structural information. Proteins,
Structure, Function and Genetics, 54, 41-48.

4. Frary,A., Nesbitt,C., FraryF., Grandillo,S., van der Knaap,E., Cong,B.,
Liu,J., Meller,J., Elber,R., Alpert,K.B., Tanksley,S.D. (2000) Cloning,
Transgenic Expression and Function of fw2.2: a Quantitative Trait Locus
Key to the Evolution of Tomato Fruit. Science 289, 85-88.
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LOOPP_Manual - 258 models for 56 3D targets

An alignment algorithm using residue type, secondary
structure and solvent accessibility information to enhance
accuracy of structural models

Jian Qiu
Department of Computer Science, Cornell University, Ithaca NY 14853
jlang@cs.cornell.edu

LOOPP_manual is a modeling procedure that picks candidates for structural
templates by the LOOPP server http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm
and manually refines them to atomically detailed structures. In the first step, the
top 20 templates returned by the LOOPP'* server and top hits from
PSI_BLAST?® are combined to make up the set of template candidates.

In the second step, an alignment between the target and a candidate template is
generated with a novel substitution matrix that is based on three complementing
statistical potentials derived from structural alignments. These three potentials
include a residue-residue substitution matrix, a residue type vs. secondary
structure-surface area type matrix, and a predicted secondary structure_surface
area type vs. actual secondary structure_surface area type matrix. Secondary
structure and surface area predictions are computed with program SABLE®
from Prof. Jaroslaw Meller's group, and actual secondary structure and surface
area values of the templates are computed with program DSSP’. To complete
the parameters required for generating the optimal alignment between the probe
sequence and the template using dynamic programming, a position-specific gap
penalty scheme was developed from structural alignments. This scheme
includes residue-type-dependent gap penalty, secondary structure-surface area-
dependent gap penalty and SABLE prediction-dependent gap penalty.

In the third step, an atomic model is generated based on each of the alignments
with the program MODELLER®. The resulting atomically detailed models are

evaluated, and a series of different scores are computed from the models,
including atomic potential-based scores, the correlation between the actual
secondary structures and exposed surface areas of the models and the SABLE-
predicted values, sequence similarity between the query and the templates, and
LOOPP scores. Visual inspections complemented with these scores are used to
select the best models for submission.
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LTB_Warsaw - 259 models for 62 3D targets

Multitemplate modeling by a hierarchy of high-resolution
lattice folding and all-atom refinement
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Our method starts from a number of molecular templates generated by
threading metaservers. These templates provide a large set of distance restraints
which guide folding using a reduced representation of protein conformational
space. After clustering of folding results the final models are refined and ranked
using all-atom force field and explicit solvent.

At the first step the threading models (20 top scoring templates) from bioinfo.pl
metaserver' were compared to each other using structural pairwise alignment.
In the cases of good consensus between various servers all templates were used
as a source of distance restraints for a single folding simulations and the
reduced models of templates used as a set of replicas for the Replica Exchange
Monte Carlo Simulations using CABS** reduced-space modeling tool. In the
cases of divergent results the structures from metaserver were clustered
according to the crmd distance between them and the length of consensus
alignment. Then, each cluster of templates provided a set of distance restraints
for separate series of simulations. Additional restraints were derived from
strongly predicted consensus secondary structure for regular fragments of
structure (helices and beta sheets).

Large sets of distinct protein structures resulting from the CABS lattice
simulations were then subject to a clustering procedure. Average linkage
hierarchical clustering algorithm was employed with drmsd as the measure of
the distance between structures. Cluster’s centroids (averaging step in the
clustering procedure) were computed via average distance maps. Finally 5-7
clusters were manually selected, according to the cluster size, average energy of
its members and average distance dispersion (as a measure of the density of a
cluster).

Starting from the alpha carbon trace for a cluster’s centroid a full atom model
was build using Pulchra algorithm®. Full atom models were then subject to long
Molecular Dynamics simulations using the Amber® force field and an explicit
solvent model. In the cases of “easy” CM/FR targets the MD simulations were
limited to few steps and calculations of the all-atom energy) The lowest energy
conformations were selected from the MD trajectories and subsequently
optimized using conjugent gradient method. The resulting models were ranked
according to their final all-atom energies and sent to the CASP server.

The method could be easily automated, provided a set of strict criteria for
cluster selection is defined.

1. Ginalski K, Elofsson A, Fischer D & Rychlewski L. (2003)
3D-Jury: a simple approach to improve protein structure predictions.
Bioinformatics. 19 1015-1023.

2. Kolinski, A. (2004) Protein modeling and structure prediction with a
reduced representation. Acta Biochim Pol. 51, 349-371.

3. Force field and other supplementary files for CABS model could be find
on http://www.biocomp.chem.uw.edu.pl

4. Feig, M., Rotkiewicz, P., Kolinski, A., Skolnick, J., & Brooks, C. L.(2000)
Accurate reconstruction of all-atom protein representations from side-
chain-based low-resolution models. Proteins 41, 86-97.

5. Pearlman, D.A., Case, D.A., Caldwell, J.W.,, Ross, W.R., Cheatham, III,
T.E., DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995) AMBER,
a computer program for applying molecular mechanics, normal mode
analysis, molecular dynamics and free energy calculations to elucidate the
structures and energies of molecules. Comp. Phys. Commun. 91, 1-41.

Luethy - 71 models for 64 3D / 7 FN targets

Iterative sequence profile searches using a hardware
accelerated Smith-Waterman algorithm

Roland Luethy
TimeLogic Corp
luethy@timelogic.com

Overview

The method described here is based on a iterative profile approach, similar to
PSI-BLAST", but using a rigorous Smith-Waterman sequence database search
step on a DeCypher hardware accelerator’. We have determined that this
method is generally more sensitive than PSI-BLAST. In the first step, a profile
was built from the target sequence and the sequences in the nonredundant
protein database using the iterative profile method. The resulting profile was
then used to scan sequences from the ASTRAL database® for high scoring
sequences. The highest scoring PDB structure* was then used as the template to
model the target. If the alignment of profile and PDB structure covered less
than 60% of the target sequence, the target sequence was divided into
subsequences, which were used to train profiles and build structure models.

Construction of profiles
Profiles were constructed in the same fashion as PSI-BLAST": First a multiple

sequence alignment was made from the hits of the previous run or from a single
sequence search for the first iteration. The sequences with P-scores below 0.02
were aligned pairwise against the query sequence. These alignments were
subsequently combined into a multiple sequence alignment using the initial
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query sequence as an anchor. Sequences with pairwise identities greater than
94% were then removed from the alignment. Sequence weights were assigned
using the position-based weighting method introduced by Henikoff®. Finally the
position dependent scores were calculated as the natural log of R; using the
following equation’:

_alfi/ P+ B firy)
N a+f

i

where f; is the weighted observed frequency of amino acid i at the alignment
position under consideration, P; is the frequency of amino acid i in the SWISS-
PROT database, « is the average number of different amino acids per alignment
position, §is a pseudo count constant set to 9, f; are the weighted frequencies of
all amino acids at the given alignment position and r; are estimated ratios of
frequency with which amino acids i and j are aligned. The values for r; were
estimated from BLOSUMSG62 substitution matrix S ¢ with the formula %/,
Iterations were terminated when no new sequences were added to the alignment
or after five iterations.

Model construction

First, all coordinates from the best scoring PDB structures were copied using
the profile alignment as the guide. Gaps in the alignment where filled by
finding overlapping short fragments from a database of PDB structures.
Following this, the missing side-chain atoms were copied from the closest five-
residue fragment from PDB with the identical middle residue. The structure
was then minimized using TINKER” using the steepest descent method and a
stepwise protocol that kept all C-alpha atoms fixed in the first step, those from
the template were kept fixed in the second step and finally all atoms were
allowed to move in the last step.

Conclusion
The method used here represents an improvement over PSI-BLAST with
respect to sensitivity and speed.
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Luo - 268 models for 54 3D targets
Consistent scoring with AMBER/PB energy function

M.J. Hsieh and R. Luo
Department of Molecular Biology and Biochemistry
University of California, Irvine, CA 92697
rluo@uci.edu

Protein structure prediction at atomic detail, an important aspect of the protein
folding problem, remains one of the fundamental unsolved problems in the field
of computational molecular biology. There are primarily two classes of
prediction methods for protein three-dimensional structure: comparative and ab
initio predictions. No matter what method is taken, the final stage of protein
structure prediction usually involves ranking or evaluating many protein
models with a scoring function, an algorithm that gives a score for input
structures to their fitness, that are used to judge the models likelihood of being
the native structure, or at least of being close to the native.

There are two classes of scoring functions: knowledge-based and physics-based
approaches?. The two scoring functions are constructed from very different
starting points. Knowledge-based approaches are derived from distributions of
experiment structural data. Physics-based approaches assume that the protein
potential energy function can be broken down into terms of bond stretching,
angle bending, torsional and nonbonded interactions. These parameters are then
fitted to high-level ab initio quantum mechanical calculations and small
molecule thermodynamic/spectroscopy data.

We have developed a physics-based scoring function (termed AMBER/PB)?
based on an efficient Poisson-Boltzmann (PB) implicit solvent*® and a refined
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AMBER force field’. The accuracy in the PB treatment of the electrostatic
interactions and the scalability of the particle-mesh treatment of long-range
electrostatics make the scoring function well suited for targets up to protein
domain boundaries®. In addition, the efficiency in the PB solvent* allows us to
use the scoring function directly during the minimization phase before ranking,
making it possible to develop a refinement method that directly applies the
scoring function during sampling.

The scoring function for protein structure prediction has been analyzed with
several widely used all-atom decoy sets. Testing on chosen decoy sets shows
that the scoring function, designed to consider detailed chemical environments,
is able to consistently discriminate all 62 native crystal structures after
considering the heteroatom groups, disulfide bonds, and crystal packing effects
that are not included in the decoy structures. When NMR structures are
considered in the testing, the scoring function is able to discriminate 8 out of 10
targets.> In the more challenging test of selecting near-native structures, the
scoring function also performs very well: for the majority of the targets studied,
the scoring function is able to select decoys that are close to the corresponding
native structures as evaluated by ranking numbers and backbone CaRMSD.?
Various important components of the scoring function have also been studied to
understand their discriminative contributions towards the rankings of native and
near-native structures. It was found that neither the non-polar solvation energy
as modelled by the SA model nor a higher protein dielectric constant improve
its discriminative power. The terms remained to be improved are related to 1-4
interactions. We found that the most troublesome term is the large and highly
fluctuating 1-4 electrostatics term, but not the torsion-angle term.?

To blind-test our scoring function in CASP6, we have taken initial all-atom
models from two different sources: (1) all-atom models built in-house based on
alignments deposited at the CAFASP4 prediction site, and (2) all-atom models
deposited at the CASP6 prediction site. These models are then minimized in the
AMBER/PB scoring function before initial ranking is performed. The top 10
models are then further refined in simulated annealing with the scoring function
and re-ranked to select the final top 5 models for submission.

1. Moult,J. (1997) Database Potentials and Molecular Mechanics Force
Fields. Current Opinion in Structural Biology 7,194-199.

2. Lazaridis,T. & Karplus,M. (2000) Effective Energy Functions for Protein
Structure Prediction. Current Opinion in Structural Biology 10,139-145.

3. Hsieh,M.J & Luo,R. (2004) Physical scoring function based on AMBER
force field and Poisson-Boltzmann implicit solvent for protein structure
prediction. Proteins 56, 475-486.
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MacCallum - 128 models for 64 3D / 64 RR targets
Meta-server model ranking using predicted contact maps

R.M. MacCallum, B. Wallner and A. Elofsson

Stockholm Bioinformatics Center, Stockholm University, Sweden
maccallr@sbc.su.se

As described in more detail in the SBC group abstract (Wallner, et al.), we have
made full-atom models using alignments taken from the bioinfo.pl metaserver!
for all CASP6 targets and their homologues (if submitted). Various scoring
schemes and energy calculations were applied to the models and the results
were browsed via HTML tables (now at http://www.sbc.su.se/~arne/casp6). A
new experimental score based on predicted contact maps was developed during
the early stages of this prediction season. Encouragingly, the contact-based
score seems to correlate with other measures, such as ProQ?, and 3D-JURY?,
though we have not yet looked in detail at the (possibly trivial) reasons behind
this. In the following, we describe the calculation and use of the contact
prediction-based score.

We used contact predictions from our own approach®, which were also
submitted under the group name MacCallum in the RR category. All predicted
contacts are separated by 24 or more residues, and for this purpose we take the
L/2 most confident contacting pairs (L is the length of the target). For each all-
atom model we then calculate two quantities:

1. the fraction of the predicted contact pairs that are actually present in the
model — this is denoted c, and is a measure of coverage.

2. the mean C-beta to C-beta (C-alpha for glycine) distance between all
predicted contact pairs in the model — this is denoted d.
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We expect therefore to see a smaller mean distance, d, in the models which
agree with our contact predictions (which we hope are correct). At the same
time we don't want too many predicted contact pairs to be absent from the
model.

Normalisation of d is required because it is quite strongly dependent on the
length of the target. Starting with a plot of d against L for a set of SCOP
domains, we derived two functions which approximated to the upper and lower
limits of the distribution of d for any given L. These functions are as follows:

lower(L) = 3 * log(L + 26) - log(28)
upper(L) = 12.19 + (L - 12.72)%->

is calculated as:

Then the normalised distance, dn orm

dporm = (d—1ower(L)) / (upper(L) — lower(L))

Now we have two scores ¢ and dn orm’

can plot on the “x” and “y” axes respectively. An ideal prediction would be
found at the bottom right corner of this plot. In order to produce a single score
from the twoscores, we calculate the Euclidean distance from the ideal (1,0)
and subtract this from one:

both ranging from zero to 1 which we

contact_score = 1 — sqrt((c - 1)2 + dnormz)

Models derived from the servers that feed the meta-server are then ranked using
the contact score alone. In most cases, only rank-1 models were used, but for
some hard targets it seemed worth risking a non-rank-1 model if it had a much
higher contact score. Some additional judgments were made based on the
consensus of SCOP superfamilies, energy scores and the overall
loopiness/knottedness of models. In general however, no more than about 15
minutes was spent on each target.

If this approach does provide an advantage, it is expected to be best for the
more remote targets where alignment quality is poor, alignments may be
partial, and fold assignment is not at all obvious. One possible limitation of this
approach stems from problems with contact prediction itself; namely that most
predicted contacts are rather short-range. Therefore the contact score will
generally be higher for models with low contact order (fewer long-range

contacts). This may be an issue with target T0279, where circularisation
seemed to be an issue.

1. Bujnicki,J.M. Elofsson,A. Fischer,D. Rychlewski,L. (2001) Structure
Prediction Meta Server Protein Science Nov, 10(11), 2354-62

2. Wallner,B. & Elofsson,A. (2003) Can correct protein models be identified?
Protein Science May, 12(5), 1073-86

3. Ginalski,K. & Rychlewski,L. (2003) Detection of reliable and unexpected
protein fold predictions using 3D-Jury. Nucleic Acids Res. 31(13), 3291-2.

4. MacCallum,R.M. (2004) Striped sheets and protein contact prediction.
Bioinformatics 20 Suppl 1, 1224-1231.

MacCallum - 128 models for 64 3D / 64 RR targets
GPCPRED (serv) - 63 models for 63 RR targets

Contact map prediction from PSI-BLAST profile windows

R.M. MacCallum

Stockholm Bioinformatics Center, Stockholm University, Sweden.
maccallr@sbc.su.se

As previously described', we developed a simple approach to visualise
sequence profile information on 3D protein structures. This involves clustering
sequence profile windows (from proteins of known structure) using Kohonen's
self organising map; then colouring the residues in a 3D protein viewer
according to cluster identity. Due to the nature of the self organising map,
neighbouring clusters have similar properties and are therefore assigned similar
colours. Visual inspection of protein domains identified regularities in the
colouring of beta-sheets. Parallel sheets often exhibit parallel striping of colour
sequences, and neighbouring strand pairs in anti-parallel sheets occasionally
showed reversed colour patterns. To test the generality of these observations,
the transformed sequence profile information (residue colours) was used as the
sole input (plus sequence separation) to a contact prediction algorithm. The
results were surprisingly good and the prediction accuracy is expected to be
equivalent to existing methods, even though it does not use any information
about correlated mutations.

The target sequence of L residues is run through the default PSIPRED? version
2.3 scripts to produce a PSI-BLAST? “.mtx” text file containing the position
specific scoring matrix of L columns by 21 rows. The rows correspond to the
20 amino acids and a mystery value, presumably related to indels. A total of L
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overlapping windows of length w are extracted from the matrix, using zeroes to
pad at each end. Each window (a w by 21 matrix) is mapped to a discrete
position on a pre-trained self-organising map (SOM) which, in this work, is a
3D grid of 6 x 6 x 6 nodes. Note that the dimensionality reduction is
substantial, particularly for larger windows (e.g. 15x21=315 reduced to 3). The
3D map coordinates can be converted into an RGB colour for visualisation or
used as input to the prediction algorithm. Thus, a L residue sequence can be
converted into a L by 3 matrix, for various sizes of window, w.

The “manual” RR predictions submitted by this group (MacCallum) are in fact
produced with no manual intervention and are based on input transformations
(see previous paragraph) using windows of size 1,5, 9 and 15. The prediction
algorithm is centred around the calculation of distances for pairs of residues i
and j. Not all pairs are considered, first a subset of residues are selected using a
filter function which takes the four input matrices, the residue position i and the
sequence length L as input. The best-scoring L/5 residues are then passed to
the pairwise distance calculation function, which takes the same inputs as the
filter function, plus another residue index, j. Finally, the best scoring pairs
(lowest distance) are considered as contacting residues. Typically one would
select the best L/2, L/5 or L/10 for comparison with other methods.

How are the filter function and pairwise distance function implemented? Their
internals are optimised using a type of evolutionary computing called genetic
programming (GP). This is a population based search algorithm. Initially,
individuals in the population each contain a random version of the two
functions described above. The allowable expressions and operators are rigidly
defined in a “grammar”. A helper function is provided to facilitate the
calculation of “colour pattern distances” between short parallel and anti-parallel
segments of the input matrices. An individual is evaluated by applying the
functions to the contact prediction problem on a periodically resampled set of
100 SCOP domains. The L/10 accuracy (fraction of predicted contacts that are
real contacts; C-beta C-beta < 8.0A) is used as the “fitness measure” to decide
which individuals should reproduce and which should die. After some
considerable amount of computation time, the accuracy of the predictors on the
training set and an unseen test set is reasonably good (27% for L/10
predictions).

The results in the paper' are presented for a single individual picked from one
of the 20 parallel evolving populations. In order to hedge our bets, the
predictors used in CASP and the web-based service combine the results of a
number of predictors sampled from these populations. The consensus method
is relatively simple. Each predictor produces an L by L matrix of i,j distances,
which are then ranked 1 (closest distance) to N (furthest distance), giving an L

by L matrix of distance ranks. The final contact predictions are simply the
residue pairs with the lowest mean ranks (averaged over different predictors).

The GPCPRED automated server uses a slightly different approach, with
window sizes of just 1 and 15, and a different GP implementation, which works
on the entire L x L matrix (there is no “filter” function).

1. MacCallum,R.M. (2004) Striped sheets and protein contact prediction.
Bioinformatics 20 Suppl 1, 1224-1231.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

MCON - 63 models for 63 3D targets
Selecting models with a meta-MQAP

Y. Azaria

Center of Excellence in Bioinformatics, Buffalo, NY.
azariaya@bioinformatics.buffalo.edu

An MQAP (Model Quality Assessment Program) is a program that receives as
input a predicted 3D-model and returns a single number that represents its
quality. An MQAP can do any computation, as long as the only input is a single
model. The quality assessment is performed on the predicted model only,
without any prior knowledge of the native structure itself. Traditionally,
MQAPs correspond to programs that evaluate the “energy” of a model using
some potential.

Six MQAPs (Solvx, Modcheck, Bala, ProQ, Verify3D and Prosa) that
participated in the CAFASP-MQAP experiment
(http://www.cs.bgu.ac.il/~dfischer/CAFASP4) plus a virtual MQAP developed
in-house were combined to create an MQAP-consensus program. The MQAP-
consensus program simply adds the z-scores of the individual MQAPs to
produce a combined MQAP-consensus score. For CASP, the MQAP-consensus
was applied to all the rank-1 predictions of the full-atom-generating CAFASP
servers and the model with the highest sum-of-z-scores was submitted.

Abstracts - 95



Notice that the above procedure is different from that applied by the MQAP-
CONSENSUS of the CAFASP-MQAP experiment in that the latter considered
all the full-atom models of the servers, and not just the rank-1 models.

MQAP-consensus is not a predictor: it is simply a “meta-selector”. The goal

was to evaluate how successful a simple meta-MQAP is in selecting the best
models from the rank-1 models of a number of CAFASP servers.
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MF (serv) - 81 models for 52 3D targets
Consensus over transitive PSI-Blast alignments

A. Heger', C.A. Wilton', and L. Holm"?
! _ Institute of Biotechnology, — Department of Genetics,
University of Helsinki
liisa.holm@helsinki.fi

The idea was to use an algorithm for transitive alignment’, but we kept
developing and debugging the server throughout the prediction season.
Predictions for targets T0196-T0219 were therefore based on a Blast search
against the PDB, predictions for targets T0220-T0252 were based on consensus
alignment in the union of the first PSI-Blast® neighbour shells of the target and
template, and predictions for targets T0253-T0280 can have any number of
intermediates between the target and template. No prediction was submitted for
a number of the late targets, because the server assumed that the exact target
sequence is present in UniProt.

1. Heger,A., Lappe,M. & Holm,L. (2004) Sensitive detection of very sparse
sequence motifs. J. Comp. Biol., in press

2. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

mGenTHREADER (serv) - 320 models for 64 3D targets
nFOLD (serv) - 320 models for 64 3D targets

Fully automated fold recognition using nFOLD and
mGenTHREADER

L.J. McGuffin, J.S. Sodhi, K. Bryson & D.T. Jones
-Bioinformatics Unit, Department of Computer Science, University College
London, London WC1H 6BT
dtj@cs.ucl.ac.uk

There have been a number of improvements in our fully automated fold
recognition methods since CASP5. Our popular mGenTHREADER"? method

has been improved through the inclusion of profile-profile alignments. We have
also developed a new method called nFOLD, that is based on the new
mGenTHREADER protocol, but which also incorporates a number of extra
inputs into the underlying neural network.

The major change to the original mGenTHREADER algorithm is the
implementation of a profile-profile alignment algorithm. The comparison
method used was designed to directly compare PSI-BLAST profile scores and
is based on an optimized heuristic formula, though essentially comprising a
scaled dot product of the two profile vectors. A more minor change is that all
alignment parameters (e.g. gap penalties) were optimized using a genetic
algorithm to maximize a weighted sum of model quality over a benchmark set
of 50 difficult fold recognition targets.

The nFOLD method is an extension of the new mGenTHREADER protocol.
Three additional inputs are fed into the neural network which include; the
secondary structure element alignment (SSEA) score?, a new functional site
detection score (MetSite)® and a simple model quality checking algorithm,
MODCHECK?®. The nFOLD neural network is also trained directly on MaxSub®
score which allows for a greater assignment of confidence in model quality.

Although the SSEA score has been benchmarked previously as an extra neural
network input to mGenTHREADER?, this is the first time it has been included
ina fully automated method within a blind assessment.

The functional site predictions were calculated using a set of classifiers based
on the MetSite method®, which was initially developed in order to predict the
location of residues forming commonly occurring metal binding sites in low-
resolution structural models. The top ranking MetSite predictions were
extracted for the top models generated from the mGenTHREADER profile-
profile alignments. Analysis of the MetSite scores showed a significant
improvement in distinguishing native and near native-like models from decoy
hits and so was therefore implemented as an extra input in the nFOLD method.

The MODCHECK score was also used to directly assess the quality of the
models from the profile-profile alignments. The MODCHECK program has
been used previously for our CASP predictions*, however this is the first time it
has been implemented in a fully automated method.

A further important improvement to the fold recognition servers has been the
implementation of fully automated weekly updates of both the fold recognition
library and sequence databases, which reduces the chance that no obvious
homologs or fold templates are missed when the PDB is updated.
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MIG_FROST - 80 models for 29 3D targets
Toward an efficient threading method

A. Marin', J-F. Taly', J. Martin', R. Andonov?, S. Balev®,

V. Poirriez* and J-F. Gibrat'

1- MIG, INRA, Jouy-en-Josas, 78352, France 2 — Symbiose/IRISA,
INRIA,35042 Rennes, France, 3— LIH, U. Le Havre, 76058 Le Havre, France,
4— LAMIH/ROI, U. Valenciennes, 59313 Valenciennes, France
gibrat@jouy.inra.fr

FROST?** is a fold recognition program based on a sequential use of a series of
filters. It consists of 4 components:

e alibrary of cores representative of all known 3D structures or domains;

e two score functions measuring the fitness of a query sequence for a core;

e anumber of algorithms to align the sequence onto the cores;

e g statistical evaluation of the score significance.

Each filter corresponds to a different score function. Since we are using a
relatively crude description of the polypeptide chain (each residue is modelled
as a single interacting site) it is difficult for a single score function to capture
the complex relationship between the amino acid sequence and the 3D
structure. Each score function in FROST is supposed to specifically model
some particular aspect of this relationship. For the moment, though, only 2
score functions have been fully implemented and tested in FROST.

The first one is based on local parameters. In essence, it is comparable to amino
acid substitution matrices, but, because we know the 3D structure of the core,
we are able to design matrices that are specific of the residue state in the 3D
structure. The state of a residue is defined in terms of secondary structure and
surface accessibility to the solvent. With this set of parameters aligning a
sequence to a core is akin to align 2 sequences using a set of state-dependent
substitution matrices and specific gap penalty (e.g., insertions/deletions are
strongly penalized within secondary structure elements).

The second score function uses non-local parameters, i.e., considers
interactions between sites in contact in the 3D structure. These parameters are a
generalization of the local parameters because we now consider the
replacement of a pair of residues in contact in the 3D structure by a pair of
residues in the query sequence. The main difficulty with this type of non-local
parameters is that one cannot use anymore dynamic programming algorithms to
align the sequence onto the core. In fact this alignment problem has been shown
to be NP-hard. In the current version of FROST great improvements toward
solving, in practice, this problem have been made using linear mixed -integer
programming models' combined with lagrangian relaxation techniques®.

The magnitude of alignment scores depends strongly on the sequence length
and the 3D features of the cores making them impossible to compare directly.
Unlike sequence comparison methods, there is no analytical result available
concerning the characteristics of random threading score distributions. To
evaluate the significance of the alignment scores we have to calculate
empirically such distributions, for each core used in the program, using
different query sequence lengths. These distributions permit us to normalize the
scores and thus to compare them meaningfully across the complete library of
cores. Computing these distributions is very CPU intensive. The availability of
fast sequence-structure alignment algorithms is extremely useful in this respect.

Finally, each filter provides a normalized score. A query sequence is thus
characterized by a vector of scores. We have to decide, based on this score
vector, whether the sequence is compatible with the structure or not. This
decision is taken based on a SVM analysis of the results.

1. Andonov,R., Balev,S. and Yanev,N. (2004), Protein threading: From
mathematical models to parallel implementation, INFORMS journal on
computing 16, 4, Special Issue on Computational Molecular Biology/ Bio-
informatics, Greenberg H., Gusfield D., Xu Y., Hart W., Vingro M. Eds.
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M.L.G. - 119 models for 63 3D targets

Prediction of tertiary structure of proteins based on shadow
method

Bo Yang, Ya-dong Wang
School of Computer Science and Technology, Harbin Institute of Technology, China
Yangbo@mlg.hit.edu.cn , Yeungbo@gmail.com

This paper reports on a new method, shadow method, for predicting tertiary
structure of protein, which introduced the method that people evaluate the
object from little information in real life. Our strategy for prediction of tertiary
structure of protein is based on the observation that man can guess an answer
and testify/overthrow the answer, even to find the most probability answer. We
take the second structure of protein as the shadow of tertiary structure, and find
the best fitting of shadow to the predicted second structure by other methods.

When man recognizes an object with little information, he always guesses an
answer at first. Just like the host guess the guest’s identity with his shadow that
come from the door left unlocked when a guest come to the door. The host can
image a name list that who on this list has a shadow like this one. Moreover he
will assume that if someone on the list stand at the door, whether is he/she has
the same shadow? Or guess who has the most probability to call in on this time.

For this reason, in first step, we obtained the target’s shadow S, which is the
second structure of target come from the prediction tools, such as PSIPRED,
NNPREDICT etc. And we create a name list A using PSIPRED which on the
list has high structure similarity to the target protein. Then we construct a
tertiary structure, prototype R, of target referring to A. And projected the
prototype R with DSSP to get its shadow S’. Now we have tow shadows, S &

S’. Hereto, the question is ‘Are they similar enough?’ That’s to say ‘is our guess
reasonable?’

We believe that the more similarity between S and S’, our guess is more closer
to the real identity of the one who after the door.

Of cause, the guess usually fall into fail, we should adjust R for a new guess
when the difference is distinct between S and S’. Here, we introduce the
evolving algorithm, an optimal algorithm, to adjust R.

We design the evolving algorithm as follows:

Stepl. Set mutation rate Pm; the training’s Termination-Conditions: maximum
iteration times & the expected precision; Initial Colony A(N) with prototype R.
Step2. Fori=1to N do

Calculate the shadow S l of the i" individual in A

Step3. Estimate each individual’s fitness in A, and store the best one of whole
to the Elite. Check the Termination-Conditions:
If True Jumpto Step 7 Else Continue  End if

Step4. Using the individuals with high fitness to generate new colony A’(N)
with Selection operator

Step5. Mutate the individual in A’ to adjust the each individual’s prototype R,
get the next generation colony A(N)

Step6. Repeat the above steps from step2 to step5.
Step7. Return the best result Elite.

In step 3, the fitness indicate that the distance between S and S’. The smaller
distance is, the higher fitness is. And the fitness is evaluated as follows:

Fitness(i) = Length(S ") — Sum(gap)— | Length(S ") — Length(S) |
The Sum(gap) denote that the number of gap in S’.

In step 5, the Mutation take place on the points with low score of stability. The
score indicate that the sameness of the point between S and S’. Those points of
prototype with low score should be adjusted to mutate a better prototype to fit
the S.
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At last, we can get a guessed prototype Elite when the evolving accomplished.
We take regard the Elite as the most probability prototype of the guest after the
door.

The future work:

In our algorithm didn’t use the energy minimization to optimal the final result,
so we expect to get better result with the energy minimization in future. And we
will extend this method to be a Server for predicting of tertiary structure of
protein based on our secondary structure prediction Web Service at
http://mlg.hit.edu.cn/xml
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MPM - 25 models for 25 3D targets
Comparative modeling of CASP6 target proteins

J. Kopp, J.N.D. Battey, L. Bordoli and T. Schwede
Biozentrum Basel and Swiss Institute of Bioinformatics, University Basel,
Switzerland
Torsten.Schwede@unibas.ch

We aimed at building comparative models for CASP6 targets where templates
could be identified for at least part of the target sequence. Since template
selection and target-template alignment are considered as the crucial steps in
comparative modeling, we used a "build many - select best" strategy: several

methods for template selection, alignment and model building were applied in
parallel to generate an ensemble of models. These were evaluated to identify
the best candidate for subsequent rounds of iterative model improvement.
Models found to be contradictory with available biological information (e.g.
incomplete metal binding sites) were not submitted.

Template Selection: Templates were selected from the SWISS-MODEL
template library' using sequence based search methods: First, templates sharing
high sequence similarity were identified using PSI-BLAST? with a target
sequence profile based on NR. Target sequence regions for which no template
was identified in the previous step were used to generate a target Hidden
Markov Model using SAM 3.4** for searching the template library.

Target-Template Alignment: Multiple sequence alignments for the target-
template sequence family were generated using the following three methods: a)
T_COFFEE including information from structural alignments of related
templates®, b) a template sequence HMM generated by SAM>*, and c) profiles
for both target and template generated with SAM were aligned with LOBSTER®
or COMPASS’.

Model Building and Evaluation: Models for the resulting alignments were built
based on single templates using both SWISS-MODEL' in project mode and
Modeller [8]. Following a "build many - select best" strategy, the best model for
subsequent rounds of iterative model improvement was selected by evaluation
with the atomic mean force potential ANOLEA?®, as well as Gromos96 force
field energy after steepest descent minimization'’.

Model Validation and Iterative Refinement: Ranking and selection of possible
template structures, and the target-template alignment of the best-scoring model
was cross-validated with PFAM" and TIGRFAMs" profiles, and other
available biological information (e.g. motivation for modeling T0240 as
monomer). Regions identified as unreliable during the evaluation steps were
subjected to a refinement process: Alignment modification, loop re-modeling,
and re-arrangement of side-chain conformations were applied iteratively until
the ANOLEA evaluation converged.
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How do the web facilities help predictors from head to toe of
homology modeling?

M.R. Saberi, A. Razzazan, H. Ramezani and A. Baratian
Medicinal Chemistry Division, School of Pharmacy, Mashhad University of
Medical Sciences, Mashhad, Po. Box: 91775-1365, Iran
saberimr@mums.ac.ir

In this project, we applied the theory of evolution method, including threading
and comparative modeling. It was carried out through NCBI" ?, Swiss-Prot?,
EMBL?, PDB®, SCOP®, CATH’ and a dozen of related web sites that perform
single and multiple alignments to get similar sequences and find proper
template(s) as well as other tasks in bioinformatics field.

Similarity search was carried out through PSI-BLAST® and PHI-BLAST?
against nr and PDB to find high identical proteins as the first line similarity and
homology study as well as finding proper templates based on sequence-
sequence alignment. These methods were applied mainly through ExPASy?,
NCBI? and EBI° services. A rang of different PAM and BLOSUM thresholds
were applied as similarity search matrices. Some computer based programs
such as ClustalX', ViewerLite, MODELLER" and SPDBViewer'* " were
applied to produce and analyze sequence alignments in both multiple and single
routes to find conserved and identical regions within the query and similar
sequences. Different gap penalties were exploited to improve alignments when
needed. Alignments were deeply studied to find critical segments which might
play a key role in the functionality of the proteins. In the next step, we
predicted the possible secondary structure for the query sequences. This was
carried out through Jpred", 3D-PSSM" and PSIpred'®. Resolution and R-factor
of a crystallographic structure were indicative of the accuracy of the structure.
Templates were carefully considered regarding their folding and family in
SCOP and CATH servers. Threading method came into account when proper
template(s) did not come across from PDB-BLAST. This was employed
through FUGUE" and 3D-PSSM servers. FUGUE program, scan a database of
structural profiles, calculate sequence-structure compatibility scores and
produce a list of potential homologues proteins and alignments.

Having predicted conserved areas of the query secondary structure and proper
templates in hand, models were created in MODELLER 6v2 on a high
performance PC platform by satisfaction of spatial restraints. Hundreds of
models were generated using almost all scripts of MODELLER such as
FULL_HOMOL, MULTIPLE_MODELS, SEGMENT_MATCHING,
MAKE_RESTRAINTS and REFINE. High speed internet connection let us to
evaluate the models on web based evaluation programs such as ERRAT,
VERIFY3D", WHAT_CHECK?*, WHAT IF* and iMOLTALK* on UCLA,
BIOTECH and ExPASy servers. Models were investigated in SPDBViewer and
ViewerLite programs checking amino acids making clash, Phi-Psi angles,
secondary structure matching the secondary structure prediction etc. before
submission to evaluation sites. Although the group took advantage of some
commercial packages such as MOE* but we preferred to use downloadable
programs to prove the power of pure web based bioinformatics in homology
modeling. The said programs allocated atom environment, solvent accessibility
and stereochemistry of models. Models were modified in MODELLER when
needed and the last steps were repeated to improve the protein structure.
Models from CPHmodels*, ESyPred3D* and SWISS-MODEL* were
compared to our models to refine and confirm the folding and improve the
models. The accuracy of the various models from different methods was
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relatively similar. Other factors such as template selection and alignment
accuracy usually showed a larger impact on the model accuracy.
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Energy based 3D protein structure predictions

Koji Ogata', Raphael Leplae* and Shoshana J. Wodak>*

! - Zoegene Corp., Japan; ?- Service de Conformation de Macromolecule
Biologique et Bioinformatique, Université Libre de Bruxelles, Belgium;
3 - University of Toronto/The Hospital for Sick Children, Canada
mz@scmbb.ulb.ac.be

ModzingerZ (MZ) is a software package dedicated to the prediction of protein
structures by homology modelling. Structural templates are identified by a two
steps procedure. A first set of structural template candidates for the target
sequence are identified using Psi-BLAST' with default parameters and 5 times
iterations against a sequence database combining sequences from GenBank?
and PDB-sub (PDB-sub containing sequences with <90% sequence identity
from PDB). In the second step, individual PDB entries obtained from the first
step are used as query sequence against PDB-sub with Blast to identify
additional homologs with known 3D structure. All the identified template
candidates are then structurally aligned. A profile is derived from the structural
alignments and the target sequence is aligned against this profile®. In addition a
sequence profile is computed for each identified structural template by running
Psi-Blast against the GenBank sequence database and pruning so as to leave
highly similar sequences (with identity more than 50% and less than 100%). In
performing these alignments, gaps inside the secondary structure elements
(computed using DSSP*) were penalised.

Structurally conserved regions (SCR) in the target sequence were then defined
as residues aligned to those of the structural templates displaying an RMSD
<1.0A in the corresponding multiple structural alignment. The backbone of
these SCR residues in the target sequence was built using the main chain
coordinates of the template with the highest BLOSUMSG62 score to the target.
Side chain coordinates from the same template were also used whenever the
amino acid of the target and template were the same.

The remaining regions in the target sequence, called structurally variable
regions (SVR), were built by using the main chain atom coordinates of the
template structure having the highest BLOSUMSG62 score computed without
insertion/deletion regions. For regions with insertions/deletions, an energy-
based loop modelling method® was used to find suitable loop conformations.
The force-field, used for evaluating the conformations, models each residue by
two interaction centers positioned at the Ca and Cb atoms. The pairwise
interaction energies between these centres was derived by computing the

average of the potential energy of the AMBER force field® for main chains and
side chains interactions for all residue pairs found in the PDB. We verified that
this force-field yields rather accurate predictions for individual protein loops as
well as several interacting loops. This loop modelling approach can be applied
to segments of maximum 22 residues; longer loops were simply not modelled.

Residues without side chain coordinates from a template structure were
generated using the Monte Carlo method with the AMBER force field.

Models produced by the above procedure were examined, and the alignment
was adjusted (either manually or with alignment tools), whenever some
inconsistencies (on the sequence, structure or biological level) were discovered.
The new alignment was then re-fed to the model building method described
above.
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Functional network analysis as an effective scoring system for
protein structure prediction
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Automatic prediction of protein structure requires the evaluation of multiple
models. As a consequence, reliable scoring systems to identify native-like
protein structures from these models are essential for achieving accurate
predictions. We propose that a scoring system that identifies unique
characteristics to every protein may be more reliable that the current scoring
systems used for protein structure prediction based on average characteristics of
protein structure. A proof for this idea has been previously presented by
Valencia and col.". However, such approach was only successful for short
proteins (<170 amino acids). Here we describe an alternative approach to
Valencia’s that is not dependent on the protein length.

Our approach, dubbed NIM, is based on the assumption that every protein has a
unique set of critical residues for the protein’s function®. Critical residues may
be identified from protein sequences using phylogenetic approaches, while we
have described a highly specific method to identify critical residues from
protein structures®. Our scoring system then, determines the quality of a protein
structure model by matching the critical residues observed in the model with
those determined from the protein sequence by phylogenetic approaches. To
identify the critical residues from protein structures, we represent the structures
as a network of residue contacts at 5 or less Angstroms. From this
representation, we identify the most traversed residues in the network by
counting the number of times a residues is transited in connecting every pair of
residues in the network through the shortest path, using Dijkstra’s algorithm.
We have found that the most traversed residues match with the critical residues
for protein function®.

To evaluate the reliability of NIM, we participated in CASP5 and CASP6. In
CASP5 we compared our method with a scoring system based on an energy
function, PROSPECT2®. For CASP6 we are now comparing our method to
BLASTPGP*. BLASTPGP aligns a protein target with every protein of known
structure (template) and scores these based on the observed sequence identity of
the alignment. We learned in CASPS5, that our scoring system improved the
predictions reported by PROSPECT?2. A similar trend was observed in CASP5
and CASP6: Protein targets presenting high sequence similarity to a protein
template, NIM, PROSPECT and BLASTPGP predicted the same fold, but
differed as the similarity felt down. We are developing a server to give access to
the scientific community to our scoring system.

In summary, we have developed a new scoring system for protein structure
prediction. Our approach may represents a new kind of scoring system that has
shown to be useful in improving some of the current methods for fold
recognition.
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Prediction of domain boundaries and disordered regions in
proteins with unknown tertiary structure

S.0. Garbuzynskiy, M.Yu. Lobanov, D.N. Ivankov,

N.S. Bogatyreva, A.V. Finkelstein and O.V. Galzitskaya
Institute of Protein Research RAS
ogalzit@vega.protres.ru

Our method of prediction of domain boundaries and disordered regions in
query proteins is based on calculating profiles (using our program PROFILE)
where one of 20 numbers is attributed to each residue according to its type.

Domain boundaries were predicted as follows. We formed a database of
multidomain proteins (proteins with at least one domain boundary) with
sequence identity below 25% taking them from the SCOP* database. Positions
of domain boundaries were also obtained from SCOP. Then we calculated the
occurrence of each of 20 types of amino acid residues at the domain boundaries
as compared to the occurrence in all proteins of our database. Using the
obtained 20 numbers we calculated the profile for a query protein. One of the
20 numbers was assigned to each residue of the query protein; then, these
numbers for the residues inside the window of 41 residues were averaged and
the mean number was attributed to the central residue of the window. Thus we
have a profile where maxima should correspond to the domain boundaries.
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An alternative scale for domain predictions® was produced using an approach
based on the assumption that the unique tertiary structure of protein is a result
of the balance between the gain of native interactions and the loss of
conformational entropy of the unfolded chain. In other words, the topology of
the chain determines how much entropy is lost while native interactions are
formed. So it can be suggested that high side chain entropy of a region in a
protein chain should be compensated by high interaction energy within the
region, which could correlate with a well-structured part of the globule, that is,
with a domain unit. This means that domain boundaries are composed of
mainly amino acid residues with low conformational entropy. Considering the
conformational entropy as the number of degrees of freedom on the ¢, y, and %
angles for each amino acid along the chain, our method for domain boundary
prediction relies on finding the minima in a latent entropy profile.

Possible information about homologs of query proteins was also used in our
predictions. If a close homolog of a query protein had a known 3D structure, we
took into account the available information about the domain boundaries in that
homolog. If no 3D structures of homologs are available, we sometimes
constructed multiple alignments using PSI-BLAST® searching for possible
evolutionary units in query proteins. We consider an evolutionary unit as a part
of protein which is observed either in isolation or as a part of different
multidomain proteins. Since it is one of the definitions of a domain', the
presence of more than one evolutionary unit in a target protein may indicate
that it is probably a multidomain protein. If, for example, only the first part of a
query sequence is aligned with one group of proteins while only the second part
is aligned with another group, it is evidence that the query protein is a two-
domain one.

For making our prediction of the disordered regions in target proteins the
profile was constructed using a scale of an expected number of contacts* for
each of 20 types of residues in a globular state. The idea is that amino acid
residues, forming disordered regions of proteins, undoubtedly make fewer
contacts per residue than residues in ordered regions in the native globular
state. It is obvious that residues of different types usually form an unequal
number of contacts (Trp generally makes more contacts than Gly). So we can
try to predict the number of contacts per residue starting from sequence only.
The scale of the number of contacts for 20 types of amino acid residues in
globular state was constructed as follows. We selected a database of protein
domains with less than 80% sequence identity values using SCOP. Then the
average number of residue-residue contacts per residue of each of 20 types was
calculated with an assumption that two residues are in contact if any pair of

their heavy atoms (i.e. at least one atom per residue) is situated at a distance
less than 8.0 A from each other. The scale obtained in such a way was used for
constructing the profile of a query protein; the regions on the profile with a low
estimated number of contacts per residue were predicted as possible
unstructured regions.

1. Lo Conte,L., Brenner,S.E., Hubbard,T.J.P., Chotia,C. & Murzin,A.G.
(2002). SCOP database in 2002: refinements accommodate structural
genomics. Nucleic Acids Res. 30, 264-267.

2. Galzitskaya,0.V. & Melnik,B.S. (2003). Prediction of protein domain
boundaries from sequence alone. Protein Sci. 12, 696-701.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

4. Garbuzynskiy,S.O., Lobanov,M.Yu. & Galzitskaya,0.V. (2004). To be
folded or to be unfolded? Protein Sci. 13, in press.

Pan - 272 models for 64 3D targets
Using secondary structure to build structural template

Y. He?, S. Qin?, X.M. Pan"*", M. Beckstette® and R. Giegerich®
-Department of Biological sciences and biotechnology, Tsinghua University,
Beijing, China, °-National Laboratory of Biomacromolecules Institute of
Biophysics, Chinese Academy of Sciences, Beijing, China, *-AG Praktische
Informatik Technische Fakultdt, Universitdt Bielefeld, 33594 Biefeld, Germany
xmpan@sunb.ibp.ac.cn

Homology modeling is an effect method for structure prediction when suitable
template protein exists; but sometimes, PSI-BLAST' can not find proper
homologous because of the low sequence identity or bad structural quality and
in such cases homology modeling is always impossible. Herein we describe a
method for detecting distant homologous which have low sequence identity
with the target protein but may share the same fold patterns by involving the
structure information into the sequence alignment.

We use the multiple linear regression (MLR) method to predict secondary
structure from the amino acid sequence that was reported previously® For the
recent months, the implementation of this prediction method has been changed
a lot; the new implementation adopts the PSSM (Position Specific Scoring
Matrix) generated by PSI-BLAST as its only input information. In addition, the
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“Jury system" adopted in the old implementation was obsolesced by the new
implementation, with a new engine replaced it. The new implementation has
achieved an average accuracy better than 80% in the prediction for a set of
about 1400 protein chains (unpublished results).

We also use MLR method to predict relative solvent accessibility, and the
implementation of this method was reported previously®, and we now have
developed a new implementation of it which has achieved an average accuracy
better than 80% in the prediction for a set of about 1116 protein chains at a
threshold of 20% for the definition of two-state of solvent accessibility
(unpublished results).

A protein referred as a homologue, not only for its homology of amino acid
sequence, but also more conservation at the structural level. There are two
strategies to find suitable templates for homology modeling by involving the
structure information.

One strategy in this study is still based on the sequence-driven detection,
searching the target sequence against the sequence database compiled from a
representative PDB collection. A reduced alphabet is employed which divides
the twenty types of amino acid into eight groups®. This reduced alphabet can
increase the possibility of detection for distant-homology protein; meanwhile, it
can increase the possibility of false positives. A restriction condition of high
similarity of secondary structure of the target and that of potential homologous
is employed to exclude the false positives. A 6x6 score matrix is introduced into
the alignment procedure of the secondary structure, each class of all three states
of secondary structure (H, E, C) is divided into two types according to states of
two adjacent residues: at edge, or not at edge. Since the prediction is relatively
weak for those residues at edge, the assignment of secondary structure states for
residues at edge and those not at edge should be treated differently.

Another strategy is based on the structure-driven pattern detection, searching
the secondary structure pattern of the target against that secondary structure
library compiled from the same collection of chains. Segments predicted as
coils are not very confidential, so their properties of solvent accessibility are
surveyed. We combine predicted secondary structure and solvent accessibility
as well as sequence into a score matrix for search and alignment. The score
matrix employed is an expanded matrix from the 6x6 score matrix above. The
6x6 matrix has 36 blocks, and each block will be further divided into 20x20
blocks with values derived from BLOSUMG62 matrix, the solvent accessibility
is also included, for exposed, buried and uncertain state which is a critical state
between exposed and buried, different scores are appended respectively, finally
it is a 120x120x3 matrix.

Both of the two searching strategies will produce alignments of the target
versus the template, and can be directly used by MODELLER?® to build models.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Pan,X.M. (2001). Multiple linear regression for protein secondary structure
prediction. Proteins. 43(3), 256-259.

3. Li,X. & Pan,X.M. (2001). New method for accurate prediction of solvent
accessibility from protein sequence. Proteins. 42(1), 1-5.

4. Pan,X.M., Niu,W.D. & Wang,Z.X. (1999). What is the minimum number
of residues to determine the secondary structural state? J Protein Chem.
18(5), 579-84.

5. Sali,A. & Blundell, T.L. (1993). Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol. 234, 779-815.

Panther - 55 models for 28 3D targets
Backbone clusters as structural templates

Hao Wang, Robert W. Harrison

Department of Computer Science, Georgia State University

One recurring critical problem revealed in CASP has been the ability to model
insertions and deletions in protein structure. Related to this is the inability of
potential based modeling approaches to correct for minor sequence alignment
errors. Two approaches were tested to see if they had potential to help
overcome these issues. The first approach was to extend the molecular
mechanics potential by including a mean-force potential. The potential was
chosen by defining a set of most common nodal or “eigenstructures” together
with terms to represent the range of variation in the structure. These nodal
structures effectively span the space of allowed and observed peptide
conformations. The problem of modeling an insertion or deletion then becomes
the problem of identifying the correct nodal structure. The nodal structures
were chosen via K-nearest neighbors clustering to provide a uniform covering
of the space of structures. The second approach was to add a switching
hydrogen bond potential to help stabilize the backbone structure. This potential
was implemented with a Morse function.
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Clustering of Protein Backbone Structure
The protein database was analyzed by K nearest neighbors (Knn) clustering on

a—carbon atoms. The distances between all pairs of amino acids within short
fragments of the structure were used as a basis for clustering. The distance
matrices were generated and clustered. For 5-mers 100 clusters were enough to
completely cover the space of conformations, and for 10-mers between 100 and
1000 were sufficient. With 1000 clusters and 10-mers the clusters index the
space of protein structures to an accuracy of 0.4454A. The clusters on o-
carbon atoms were then used as a basis to extract and index distances between
other atoms in the protein backbone. Experimental trial showed that O-N, C-O,
C-N and O-O distances were sufficient to build the protein backbone with good
local geometry from o.-carbon positions.

Window [Number of Clusters Root Mean SquareRoot Mean Square
Size error [Error (Chiral Cluster)
5 10 0.2469 0.3510

5 100 0.1425 0.2101

5 1000 0.0983 n.d.

10 10 0.8606 n.d.

10 100 0.5666 0.7050

10 1000 0.4454 0.5566

10 10000 0.3087 n.d.

There is a problem in the use of clustering based on distances alone. The
distance matrix is achiral, and therefore the clusters may reflect a mixture of
structures. Post-CASP calculations using a chiral cluster, where chirality was
implemented with a scaled triple product or pyramid height term, show an
increase in the RMSE at the same number of clusters. This suggests that the
achiral clusters are partial mixtures of structures and including the chirality will
improve the accuracy of the approach. However it also shows that more
clusters will be needed to achieve increased accuracy.

Distance Restraints from o-Carbon Clusters

The clusters are applied by finding the closest cluster based on the distances
between all observed pairs of o-carbon atoms in the starting model structure.
Distances from unobserved atoms are ignored in this calculation. Typically the
average difference between the closest cluster and the model is about 0.5A or
less. All overlapping fragments are used to determine the distances, and they
typically define a range of values that are possible for a given fragment. The
distance constraints are implemented with the split-harmonic potential in
AMMP. This term was originally introduced into AMMP for representing
NOE-based distance restraints, and to support solving NMR structures.

Using the Distance Restraints

The distance restraints are applied throughout the modeling building steps in
AMMP. Initially the new parts of the model, which correspond to atoms not
present in the starting model including side chain and amino acid insertions, are
built in the context of a static known structure. After building and energy
minimizing the new parts of the structure, the entire model is allowed to move.

Hydrogen Bonding via Morse Potentials.
Hydrogen bonds stabilize regular protein structures like helices and sheets.

One of the best simple visual checks on the correctness of a model is whether
the regular secondary structure is conserved. While it does not prove
correctness, it is highly diagnostic of procedural errors when regular structure is
disrupted in the modeling process. Therefore, we hypothesized that reinforcing
regular structures by increasing the hydrogen bonding terms above the default
values in our molecular mechanics force field would improve the quality of the
models. In order to avoid disrupting the structure by simply increasing charges
or changing the Van derWaals terms, a bonding potential that disassociates was
chosen. The simplest such potential is the Morse potential <insert equation
here>. The radius was 2.4A, the potential depth to 2 kcal/mol, and the bond
order was set to 1. These values were found by adjustment to preserve structure
when energy minimizing a protein structure. Morse bonds were defined for all
pairs of backbone hydrogen bonds in the protein.

Preissner_Steinke - 123 models for 60 3D / 7 FN targets
A distributed pipeline for structure prediction

E. Michalsky *, A. Goede "%, R. Preissner"?, P. May"* and

T. Steinke"?
! - Berlin Center for Genome Based Bioinformatics, * - Charité, University
Medicine Berlin, Germany, 3 - Zuse-Institut Berlin (ZIB), Germany
elke.michalsky@charite.de

The first step in our protein structure prediction procedure is to identify suitable
templates for homology modeling. A pipeline was established to perform
successive PSI-Blast' searches automatically in order to find template
structures. If no suitable template structure was found in the Protein Data Bank?
(PDB), a PSI-Blast search in SwissProt>* was performed to initiate a further
Blast search in the PDB starting from the SwissProt hits. Here, it was tried to
collect several good Blast hits having the same PFAM domain in order to be
able to construct multiple alignments from them. If the Blast search in
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SwissProt had found several proteins with the same (known) function, a new
search among the PDB structures was initiated to find protein structures having
the same function. Moreover, we collected secondary structure predictions from
different resources and used them to choose suitable and to eliminate
implausible templates from the list of Blast hits. Also the fold prediction
provided by JCSG (Joint Center for Structural Genomics) via the CASP6
homepage was incorporated into the template search.

Starting with the templates found with the Blast searches, the Blast Alignments
were refined manually, focusing on the conservation of secondary structures,
i.e. gaps within secondary structures were avoided. Here again, the secondary
structure predictions were incorporated. If PDB structures with bound ligands
were available, the amino acid residues responsible for the binding, and thus for
the function of the protein, were identified and the alignment was inspected
towards conservation of those residues. Function predictions were derived
using this information and with aid of the Columba database of protein
structure annotation®.

To obtain reasonable alignments using entire available protein family
information, we used STRAP, which is a tool for generating multiple structure
based alignments, developed in our research group at Charité®. Gaps, i.e.
insertions as well as deletions in the alignment, were handled with the tool LIP
(Loops In Proteins)’. The program LIP is based on a comprehensive
compilation of backbone conformations from a recent version of the PDB. In
the first step protein segments are selected that fit approximately into the gap in
the protein structure and that have the required number of amino acids. In order
to evaluate the fitting, for each segment a goodness is calculated. The goodness
is defined as the RMSD between a loop candidate and the gap in the protein
structure with respect to the distance between the stem residues and several
certain dihedral angles. Thereafter, the selected protein segments are evaluated
using an optimized scoring function. Besides the goodness, it includes
additional values, i.e. the RMSD between the stem residues as well as a
sequence alignment score based on a modified BLOSUM mutation matrix.
Clashes of the new loop with the core of the protein are avoided. The best-
ranked protein segment is inserted into the gap between adjacent secondary
structures.

After filling the gaps in the protein models, mutations, side chain rotamer
selection and successive energy minimizations were performed by means of the
protein visualization and modeling tool Swiss-PdbViewer, version 3.7b°
Remaining protein segements for which no suitable template had been found,
were predicted using special Blast searches for short nearly identical segments
and with aid of the secondary structure predictions.

If in the pipeline described above no suitable template structure was found, a
protein threading procedure using the Theseus® implementation was initiated at
ZIB. The target sequence was scanned for potential multi-domain proteins
using Domain-Fishing'.

Theseus is a parallel implementation of a protein threading based on a branch-
and-bound search algorithm to find the optimal threading through a library of
template structures. The template fold library is built on SCOP* domains,
which are available as ASTRAL" PDB-style files. Theseus uses a template core
model based on secondary structure definition and a scoring function based on
pseudo energies that include pairwise contacts, solvent accessibility, homology,
variable gap lengths, and secondary structure matching between template and
target as predicted by PsiPred'*'*. From the highest scoring templates we
selected the most probable template for further processing.

The reconstructed loops were modeled with the LIP tool’. Side chain rotamers
were (partly) selected using Swiss-PdbViewer or SYBYL/Biopolymer®. The
obtained initial structural guess was refined by a local optimization protocol
and a final short energy minimization using the Tripos60 force-field and
AMBER charges as implemented in SYBYL/Biopolymer.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.,
Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucl. Acids Res. 25, 3389-3402.
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Shindyalov,I.N., Bourne,P.E. (2000). The Protein Data Bank. Nucl. Acids
Res. 28, 235-242.

3. Bairoch,A., Apweiler,R. (1997). The SWISS-PROT protein sequence
database: its relevance to human molecular medical research. J. Mol. Med.
75, 312-316.
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5. Rother,K., Mueller,H., Trissl,S., Koch,I., Steinke,T., Preissner,R.,
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PROFESY - 70 models for 14 3D targets

Protein structure prediction method based on fragment
assembly and conformational space annealing

Julian Lee', Seung-Yeon Kim” and Jooyoung Lee*"
1. Dept. of Bioinformatics and Life Science, Soongsil University,
2 - School of Computational Sciences, Korea Institute for Advanced Study
jlee@kias.re.kr

We have developed an improved version of PROFESY", a novel method for ab-
initio prediction of protein tertiary structures based on fragment assembly and
global optimization.

In contrast to the primitive version presented in CASP5, where the hydrogen
bond was defined only in terms of inter-atom distances, its angle dependence is
now incorporated. This new feature allows us to obtain low-energy
conformations with a reasonable amount of beta strands, in contrast to the
earlier version where the fraction of alpha helices was excessively large on

average. In order to enhance the performance of the prediction method, we have
optimized the linear parameters of an energy function, so that native-like
conformations become energetically more favorable than non-native ones for
proteins with known structures. The feasibility of the parameter optimization
procedure is tested by applying it to the training set consisting of two proteins
of the structural class a + B: 1FSD and 1PQS. We use the resulting parameter
set for jackknife tests, using several proteins from various structural classes.
The results are quite promising. In particular, for protein 2GB1, the prediction
results improve dramatically with the optimized the parameter set compared to
the original parameters, despite the fact that it is not included in the training set.
This suggests that parameters trained for a relatively small number of proteins
are transferable to other proteins to some extent.

We have applied the PROFESY with the optimized parameters for the blind
prediction of CASP6. The results will be discussed.

1. LeeJ., Kim,S.-Y., Joo,K., Kim,I.,, Lee,J. (2004). Prediction of Protein
Structure Prediction using PROFESY, a novel method based on fragment
assembly and conformational space annealing. Proteins 56, 704-714.

ProteinShop - 75 models for 15 3D targets

Protein structure prediction using physics-based global
optimization with knowledge-guided fragment packing

Jinhui Ding', Elizabeth Eskow?, James Lu', Wei Liu"?, Lianjun
Jiang®, Richard Byrd?, Robert Schnabel?, and Silvia Crivelli*
!California Institute for Quantitative Biomedical Research, Univ. of California,
Berkeley, CA 94720, “Dept. of Computer Science, Univ. of Colorado, Boulder,
CO 80309, 3Dept. of Statistics, Univ. of California, Davis, CA 95616,
“Lawrence Berkeley Laboratory, Berkeley, CA 94720
SNCrivelli@lbl.gov

We describe a protein structure prediction method that predicts the three-
dimensional structure of new folds via minimizations of a physics-based energy
function. The method is one of the few attempts to use an all-atom physics-
based energy function throughout all stages of the optimization but it also uses
filters to enhance the ability to discriminate among folds. It is based on the
hypothesis that although the fold recognition servers can only provide limited
and incomplete folding information for the targets in the new folds category,
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that information may be valuable for guiding the global optimization process to
find the native conformation.

Our method uses a novel fragment-assembly approach in which the structural
fragments are constructed from the ideal geometric definitions of the local
secondary structures using just sequence and secondary structure information.
No structures of known proteins are used for the preparations of the structural
fragments. The method is composed of two phases. Phase I creates an initial,
extended configuration that has o-helices and B-strands according to the
predictions. This configuration is split into fragments, each containing a single
o-helix or B-strand and then the fragments are packed according to results
obtained (if any) from the fold recognition meta-servers using the initial
sequence of amino acids as a query. All the starting configurations are
minimized locally to start the next phase. In phase II, both global and local
optimization methods are applied to a number of the best minimizers generated
in phase I. Phase II improves the initial configurations through global
minimizations in subspaces of the dihedral angles of amino acids predicted to
be coil.

Method Description: Phase I

In this phase, a variety of partially or fully folded initial configurations are
constructed using secondary structure predictions. The predictions of secondary
structure are primarily obtained from the PSIPRED server' but results from the
JUFO server” are also considered. First, an unfolded configuration is created
that has a-helices and B-strands according to those predictions. The extended
configuration is created “from scratch” using ProteinShop?, a manipulation tool
that creates the three-dimensional coordinates of an extended protein structure
containing o-helices and B-strands using sequence and predicted secondary
structure information only. The extended configuration is divided into several
structural fragments such that each structural fragment contains one rigid-body
portion, which is either an o-helix or a B-strand. The cut point between the
structural fragments lies in the region predicted to be “coil”. The fragments are
repacked using model templates. We use LiveBench?, combined with 3D-Jury?,
to find the models (using the target sequence) and then we group the hits so that
those hits that belong to the same SCOP family® are in the same group. A list of
model templates is created by choosing those hits with the highest 3D-Jury
score in each group. In addition, several “welded” model templates, built by
combining structural information from two hits from different groups, may also
be included in the final list of model templates. Once the model templates are
ready, the final set of initial configuration is constructed using one of the
following approaches:

Constructing Partially Folded Structures Using Templates: One initial structure
is built for each model template by packing the structural fragments according

to the model template. For each structural fragment, one transformation matrix
is calculated by aligning the rigid-body portion in the fragment to the
corresponding portion on the template. The correspondence between the rigid-
body portions on the target and those on the template is determined by the
alignment generated by the meta-server. The transformation matrix is applied to
the structural fragment for which the matrix was calculated. Often the model
templates provide only partial information because of alignment gaps. If an
alignment gap is in the middle of the sequence, the corresponding fragment is
manipulated depending on the spatial limitations from the neighboring
fragments. If the alignment gap is at the C- or N-terminals, the rigid-body
fragments are connected extended. The coil regions between the two rigid-body
portions are predicted by the loop prediction program developed by Xiang, et
al.” whenever possible. When the loop regions cannot be predicted by the loop
prediction program, we apply adjustments to each residue in the loop.

Constructing Folded Structures Using Templates: When there is no information
available to model either the C- or N-terminals, we manually align the (-
strands in the extended part with the B-strands in the folded part to form new [-
sheets or to join existing B-sheets in the folded core. Depending on the number
of the B-strands in the unfolded part, a variety of refined models are built from
one partially folded model to create different B-sheet topologies. The fragment
assembly and manipulation are performed by using O® and ProteinShop.

Constructing Structures using BuildBeta: BuildBeta is a ProteinShop feature
that uses probability results on both protein fold topology® and sequence
matching specificity' to automatically produce a high probability collection of
possible initial sheet conformations. The current implementation of BuildBeta
is limited to ten strands or less, which is the limit of Ruczinski’s data fitting®,
and makes no attempt to make two or more sheets; all B-strands are placed in
one [B-sheet. Furthermore, it produces no result when the coil region between
two PB-strands is short (less than four residues). Usually, manipulations are
necessary to avoid the severe steric overlap that may result after BuildBeta. The
structures generated for CASP6 with BuildBeta accounted for about 8-20% of
the initial structures created for Phase II.

Phase 11

The second phase improves the initial structures by performing small-
dimensional global minimizations in various subspaces of the parameter space
followed by full-dimensional local minimizations. The method selects a number
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of low-energy configurations from the list of initial structures and then selects
small subsets for improvement by global minimizations. A subset of variables
consists of a number of consecutive dihedral angles picked from the set of
amino acids predicted to be coil by the secondary structure predictions. Once
the subset is determined, a stochastic global optimization procedure is executed
to find the best new positions for the chosen dihedral angles while holding the
remaining dihedral angles fixed. A number of those configurations with the
lowest energy values are selected for local minimizations in the full-
dimensional space. The new full-dimensional local minimizers are then merged
with those found previously, and the entire process repeats iteratively until the
lowest energy configuration does not change substantially after a number of
iteration steps.

Our method uses an all-atom AMBER force field with modified parameters".
The modified parameters are designed to improve the discriminatory ability of
the energy function by enforcing the formation of hydrogen-bonds and -
sheets. Although our long-term goal in the context of new folds protein
structure prediction is to find an effective energy function with some capability
of distinguishing correct folds from misfolds, we believe a combination of
molecular mechanics-based and protein database-derived potentials is the right
direction to improve the ability to discriminate among folds in the short-term.
This is particularly important for our method because it is computationally
intensive. Thus, we began using some filters during Phase II to zero in on the
most likely protein structures among the large number of potential candidates
created by the minimization process. These filters evaluate certain attributes of
the protein structures such as compactness, number of hydrogen-bonded pairs,
and overall quality of the elements of secondary structure.
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structure prediction server. Bioinformatics 16, 404-405.

2. Meiler,J., Mueller,M., Zeidler,A. & Schmaeschke,F. (2002) JUFO:
Secondary Structure Prediction for Proteins. www.jens-meiler.de

3. Crivelli,S., Kreylos,O., Hamann,B., Max,N. & BethelW. (2004)
ProteinShop: A tool for interactive protein manipulation and steering.
Journal of Computer-aided Molecular Design 18, 271-285.

4. Rychlewski,L., Fischer,D. & Elofsson,A. (2003) LiveBench-6: large-scale
automated evaluation of protein structure prediction servers. Proteins 53
Suppl 6, 542-547.

5. Ginalski,K., Elofsson,A., Fischer,D., & Rychlewski,L. (2003) 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
19(8),1015-1018.

6. Murzin,A.G., Brenner,S.E., Hubbard,T. & Chothia,C. (1995) SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol. 247, 536-540

7. Xiang,Z., Soto,C. & Honig,B. (2002) Evaluating Conformational Free
Energies: The Colony Energy and its Application to the Problem of Loop
Prediction. Proc. Natl. Acad. Sci. USA 99, 7432-7437.

8. Jones,T.A., BergdolL,M. & Kjeldgaard,M. (1990) O: A macromolecular
modeling environment. In: Crystallographic and Modeling Methods in
Mol. Design. Eds.: C. Bugg & S. Ealick. Springer-Verlag Press 189-195.

9. Ruczinski,l., Kooperberg,C., Bonneau,R. & Baker,D. (2002) Distributions
of beta sheets in proteins with application to structure prediction. Proteins
48, 85-97.

10. Zhu,H. & Braun,W. (1999) Sequence specificity, statistical potentials, and
three-dimensional structure prediction with self-correcting distance
geometry calculations of -sheet formation in proteins. Protein Sci. 8, 326-
342.

11. Simmerling, C., Strockbine,B., & Roitberg,A.E. (2002) All-atom structure
prediction and folding simulations of a stable protein. J. Am. Chem. Soc.
124, 11258-11259.

Protfinder (serv) - 250 models for 53 3D targets

Protfinder, a physically motivated protein structure prediction
algorithm

U. Bastolla'
! — Centro de Astrobiologia (INTA_CSIC), Madrid, Spain
bastollau@inta.es

The Protfinder algorithm predicts protein structures by aligning the query
sequence to candidate structures in the PDB. Alignments are evaluated through
a minimal model of protein folding, which reproduces approximately some key
features of protein thermodynamics and is very convenient for rapid
computation.

Information on sequence homology is not used in the scoring function.
Nevertheless, when homologous proteins are present in the structure database,
they are in almost all cases predicted as the best scoring structure.
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Protein structures are represented as contact maps and their effective
intramolecular interactions are modeled as a sum of contact interactions. The
contact energy function used was derived in Ref.! through an optimization
procedure, and assigns lowest energy to the experimentally known native
structure for almost every sequence of monomeric protein whose structure has
been determined by X-ray crystallography, except small fragments and chains
with large cofactors. Moreover, it generates well-correlated energy landscapes,
in the sense that structures very dissimilar from the native one have energies
much higher than the native energy. This property is crucial for protein
structure prediction. The effective free energy function is also able to estimate
the folding free energies of a set of small proteins folding with two-state
thermodynamics, with reasonable agreement with experimental data?.

The scoring function consists of three elements: the effective energy function
described above, a chain entropy term estimated in Ref.? and a term penalizing
gaps in the alignment. Gaps in secondary structure elements are strictly
forbidden. Gaps in the structure are allowed only if the two residues that are
shortcut are close in space and the angles characterizing their pseudo-peptidic
bond lie within a predefined range. Gaps in the sequence are allowed only on
the surface of the protein, which is identified by the fact that the number of
contacts per residue is smaller than a threshold. Allowed gaps receive an
energetic penalty GO plus a penalty G1 for each residue in the gap.

To speed up the computation, each structure in the NRDB90 non-redundant
subset of the PDB was preprocessed to produce its contact map and the list of
allowed shortcuts in the structure. Secondary structure was obtained from the
DSSP file® when available, otherwise from the PDB file. The few structures for
which no secondary structure assignment could be obtained were discarded.
Preprocessing, together with the fact that the code uses mostly integer
arithmetic, speed up considerably the computation.

To search for the optimal alignment, we use a stochastic version of the
deterministic Build-up algorithm developed by Park and Levitt for searching
low energy configurations of discrete protein models*. The algorithm is very
efficient at finding high-scoring alignments, although it is not guaranteed to
find the best optimum.

The algorithm starts by generating all possible gapless alignments of length [
between the query sequence and the test structure and stores the M alignments
with maximum score. At each subsequent step, an attempt is made to add a new
residue to each of the M alignments. There are three possibilities: either the
residue is aligned to the next structural position, or it is aligned introducing a
gap in the structure (if allowed), or the residue is not aligned, initiating a gap in

the sequence. All possible continuations are generated, and the M best scoring
alignments are selected and used as seeds for the next step. The algorithm is
iterated until no other residue can be added.

Some tricks are used to improve the efficiency of the algorithm: 1) The
algorithm is first applied using a small value M=50 to scan rapidly the whole
database. The 200 proteins with the best alignments are then stored in memory
and used for a second more accurate search with M=800. 2) Instead of using the
deterministic algorithm described above, we select the M alignments at each
step based on the sum of their score plus a random number. The relative
importance of the randomness is large in the first steps, allowing the algorithm
to visit a larger fraction of the alignment space instead of constructing very
similar alignments. The randomness decreases as the alignments get longer, so
that the choice of the complete alignment is made on the basis of the
deterministic score alone. 3) Since the construction of the starting fragment is
the most delicate step, the algorithm is applied using two or three different
values of the length of the initial fragment.

Each candidate structure receives the score of its best alignment. The best
scoring structure is used as prediction. The goodness of the prediction is
estimated through the normalized energy gap, a parameter measuring the
difference between the best score and the score of an alternative structure in
units of the best score, divided by the structural distance between the best
scoring structure and the alternative structure. If the minimal value of the
normalized energy gap over all alternative structures is large (larger than 0.2),
the prediction is reliable, if it is small alignments with very different structure
have scores quite similar to the best one and the reliability is very low.

1. Bastolla, U. et al. (2000) A statistical mechanical method to optimize
energy functions for protein folding. Proc. Natl. Acad. Sci. USA 97, 3977-
3981

2. Bastolla, U. Testing the thermodynamics of a minimal model of protein
folding, in preparation

3. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers 22 (12), 2577-2637

4. Park, B.H. and Levitt, M. (1995) The complexity and accuracy of discrete
state models of protein structure. J. Mol. Biol. 249, 493-507
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PROTINFO (serv) - 232 models for 64 3D targets

Refining comparative models using a graph-theoretic
approach

T. Liu and R. Samudrala
University of Washington
{tianyun,ram } @compbio.washington.edu

We evaluated the ability and effectiveness of a novel graph-theoretic approach
to find the optimal interactions in a protein structure, given a variety of side-
chain and main-chain conformational choices for each position. Sampling of
side-chain and main-chain conformations was accomplished by exhaustively
enumerating all possible choices from a population of initial models. The best
combinations of these possibilities were selected through an all-atom scoring
function' aided by the graph-theoretic approach?.

For each CASP6 target, several models were generated using 3D-Jury server
(http://Biolnfo.PL/Meta)® combined with our comparative modeling server,
PROTINFO-CM (http://protinfo.compbio.washington.edu)*. Additional models
were obtained from the CAFASP4 server after scrutinizing the alignments to
gain extra variability in sequence alignments and templates. Models were
inspected for missing or incorrect parts, typically for loops. If reasonable
alternative loops could be built using our in-house software, they were added to
the pool as well. Side-chain possibilities were also constructed using the
program SCWRL®. Care was taken to assure that models were superimposed
based on their secondary structure so that the average a-carbon root mean
square deviation (CRMSD) between each model was less than 5 A.

After a set of models was superimposed, the next step required the
determination of the crossover points where mixing between different parent
structures could occur. Crossover points were defined by the ranges of main-
chain where the a-carbon was less than 1.0 A from each other, and were not
permitted inside secondary structure elements.

We then used a graph-theoretic clique-finding approach to assemble the
sampled side-chain and main-chain conformations. A complete description of
the method is given elsewhere?. The idea of this approach is to obtain optimized
mosaic models by shuffling them in a rational way. Thus the key point is the
choice of an appropriate scoring function. We used an all-atom conditional
probability discriminatory function (RAPDF)" to evaluate the cliques, with the

highest scoring ones representing the optimal combinations of the different
side-chain and main-chain possibilities.

In the final step, all models from the above approach were refined with
ENCAD®. The effectiveness of this methodology to improve the model
accuracy remains to be investigated.

1. Samudrala,R., Moult,J. (1998) An all-atom distance dependent conditional
probability discriminatory function for protein structure prediction. J Mol
Biol 275, 893-914.

2. Samudrala,R., Moult,J. (1998) A graph-theoretic algorithm for comparative
modelling of protein structure. J Mol Biol 279, 287-302.

3. Ginalski,K., Elofsson,A., Fischer,D., Rychlewski,L.. (2003) 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics.
19: 1015-1015.

4. Hung,L-H., Samudrala,R. (2003) PROTINFO: Secondary and tertiary
protein structure prediction. Nucleic Acids Research 31, 3296-3299.

5. Bower M.J., Cohen F.E., Dunbrack R.L. (1997) Prediction of side-chain
orientations from a backbone-dependent rotamer library: A new homology
modelling tool. J Mol Biol 267, 1268-1282.

6. Levitt,M., Hirshberg,M., Sharon,R., Daggett,V. (1995) Potential energy
function and parameters for simulations of the molecular dynamics of
proteins and nucleic acids in solution. Comp Phys Comm 91, 215-231.

PROTINFO-AB (serv) - 160 models for 32 3D targets
Generating, selecting and refining protein structures de novo

L-H. Hung, S.C. Ngan, and R. Samudrala
University of Washington
{lhhung,ngan,ram } @compbio.washington.edu

We have implemented a new tri-partite protocol for the automated prediction of
protein structure from sequence alone. Structures are generated using a
simulated annealing search phase that minimizes a target scoring function.
Moves are derived from a synthetic function that produces ¢/c angular
distributions similar to the empirically observed ones. In contrast to fragment
based methods, this is accomplished without copying any angles or coordinates.
After the search phase, a local minimization protocol further reduces the target
score. In cases where there are strands or constraints, a pre-condensation phase

Abstracts - 115


http://compbio.washington.edu/papers/samudrala_2003c.pdf
http://compbio.washington.edu/papers/samudrala_2003c.pdf
http://protinfo.compbio.washington.edu/
http://BioInfo.PL/Meta

allows strands to pair and constraints to be satisfied. A series of composite
functions based on different combinations of 14 individual scoring functions is
used to choose a set of best conformers. A novel iterative density protocol is
then used to choose the best structures from this set. Finally, the best
conformers are used to guide the generation of new conformers, thus iteratively
refining the predicted structure. As of this abstract submission, T0236 model 5
is an example of the protocol where a structure better than most of the fold
recognition models (cCRMSD of 1.97 A for residues 1-50, 5.42 A for all 84
residues) is produced.

Generation of structures is accomplished through a search phase where a
composite energy function is minimized by Monte-Carlo simulated annealing.
In contrast to methods that replace fragments from known structures, the
present protocol uses a function that generates ¢/ angles that reflects the
distribution observed in the PDB, and does not copy any angles or coordinates.
All residues in a given protein sequence are first classified by the encompassing
triplet sequence and the triplet secondary structure. A histogram is then
constructed from the ¢/c angles of matching triplets of the same secondary
structure in the PDB. (A bin size of 10 degrees by 10 degrees is used and only
the angles in the central residue of the triplet are plotted). The mean ¢/c angle
in each bin and the standard deviation are recorded. To choose a ¢/G pair during
the simulation, a bin is first chosen using the frequencies observed in the
histogram. The angles are then chosen using a normal distribution that fits the
mean and standard deviation of the observed distribution within the bin.

In addition to the main search phase we have also added a minimization phase
using Brent’s method and small random moves which typically result in a
further 10% reduction in the target score. A pre-condensation phase,
implemented late in CASP, encourages pairing of strand residues and
satisfaction of other constraints resulting in 10-100 fold increase in the number
of paired strands formed.

The search target function is a compromise between the speed of evaluation and
the best correlation to the distance from the native structure. We keep the 10
best conformers per seed for analyses using 14 energy-like scoring functions
encompassing physical energy functions (vdw, electrostatic, solv), general
empirical functions (Shell, MJ, hcf, Sol, and Rad ) and PDB-based empirical
functions (RAPDF, Coord, Conseq and Curv). Due to the diversity of both the
functions and the proteins that are being evaluated, it is difficult to derive a
single weighting scheme that produces an optimal composite function. Instead,
the best linear combinations of these functions were determined by logistic
regression on large sets of decoys. 19 groups of these linear combinations were

used to filter the initial set of conformers. Typically, 100,000 — 200,000
conformers are reduced to about 1000-2000 at this stage

Energy-like scoring functions alone are still very inconsistent at picking out the
best structures. Fortunately, one of the most powerful scoring functions is the
completely statistical density function, which is the (negative) total RMSD to
the other conformations in the set and is a measure of the distance of a
conformer to the center of the distribution. Unfortunately, the largest
contributions to the density scores come from the outliers that can skew the
correlation of density to the distance to the true center of the distribution,
reducing the effectiveness of the function. Thus, we have implemented a new
iterative density function that measures the density, removes the worst outlier
(the conformer with lowest density) and then repeats the process until there are
no more outliers in the set. The center of this trimmed set is then selected (and
the centers of the largest k-means clusters for the final selection of 5 for CASP)
and is taken as the best.

Finally, if there is a good cluster of conformers it is possible to generate a better
set of conformers near the conformational center. This is done by incorporating
the RMSD to the best conformers into the target function and/or using internal
distance constraints derived from these conformers and repeating the generation
stage. Selection of the best conformers proceeds as before and the spread of the
final set of 5 conformers is reduced to 2-4 A cRMSD.
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PSWatch - 3 models for 3 3D targets
Protein Structure Watch: making “predictions” easy

A.G. Murzin

MRC Centre for Protein Engineering
agm@mrc-lmb.cam.ac.uk

Protein Structure Watch is an informal protocol of gathering intelligence on
new protein structures asap, usually well in advance of official publication.
Developed as a SCOP pre-classification tool, this approach exploits new trends
in structural biology observed during classification of recent structures. Two
factors are of particular significance for CASP present and future. One is the
changing attitude of structural biologists, who now are keener than ever to
advertise and to publish their new structures sooner, the other is the increasing
duplication of their efforts, resulting in more than one structure for almost every
new protein family determined independently at about the same time.

This approach has been adapted for CASP6 to find publicly available
information on the structures of targets and their probable close and distant
homologues, focusing mainly on the targets without a close homologue in PDB
at the beginning of the prediction season. The main goal of this exercise was to
estimate a combined damage to the pool of such targets from the leaks of
structural information and duplicated structure determinations. An additional
goal was to demonstrate the potential effect of privileged access to unpublished
structures. Many, but not all, findings have been documented in my comments
to CASP6 targets on the FORCASP site and are summarized in my CASP6
“Methods” paper there.

Pushchino - 194 models for 62 3D targets

Threading the use of multiple homology and secondary
structure prediction information

M.Yu. Lobanov', D.N. Ivankov', S.0O. Garbuzynskiy',
N.S. Bogatyreva', O.V. Galzitskaya', LI. Litvinov?,
M.A. Roytberg®, A.V. Finkelstein'

'Institute of Protein Research RAS
’Institute of Mathematical Problems in Biology RAS
afinkel@vega.protres.ru

For creating bunches of reliable homologous sequences we used PSI-BLAST".
Secondary structure of targets was predicted by PsiPred®. Secondary structure
of 3D templates was calculated by DSSP>.

To divide the target by domains we used alignments of HMMer
SUPERFAMILY®, alignments of PSI-BLAST and our program® (see abstract of
group “Oka”).

Threading was done by our program SCF_THREADER® with the scoring
function that takes into account the following factors: similarity of sequences
(by GON250), similarity of secondary structures (see table below), 3D-
structure dependent gap penalties, 3D constrains of gaps in sequences threaded
onto a template.

DSSP

H G I E B S T -
H -08 -004 -004 341 219 2.18 1.09 24
E 344 1.72 1.72 -145 0.02 1.64 284 0.86
Cc 227 -0.31 -031 098 -065 -0.83 -0.76 -0.79

PsiPred

For evaluation of the results we used all threading parameters stated above and
energies of long range contacts. Besides, in some cases we also used results of
SUPERFAMILY and PSI-BLAST servers to select the best templates. Finally, a
visual inspection of the best results presented by the program
SCF_THREADER was done to reject incompact structures, as well as
structures with a single -strand or other structural defects.

The current version of program SCF_THREADER differs from the previous
one in CASP5 by (1) more detailed parameters for secondary structure
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comparison, (2) more detailed 3D gap penalties, (3) the use of long range
interaction energies for evaluation of the final alignments.

1. Altshul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25
(17), 3389-3402.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292 (2), 195-202.

3. Cabsch,W., Sander,C. (1983) Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers. 22 (12), 2577-637.

4. Gough,J., Karplus,K., Hughey,R., Chotia,C. (2001) Assignment of
homology to genome sequences using a library of hidden markov models
that represent all proteins of known structure J. Mol. Biol. 313 (4), 903-
919.

5. Galzitskaya,0.V. & Melnik,B.S. (2003). Prediction of protein domain
boundaries from sequence alone. Protein Sci. 12, 696-701.

6. Rykunov,D.S. (2000) Search for the most stable folds of protein chains: ITI
improvement in fold recognition by averaging over homologous sequences
and 3D structures. Proteins 40 (3), 494-501.

RAGHAVA-GPS - 124 models for 60 3D / 63 FN targets

Prediction of Genome Ontology (GO) class of a protein from
dipeptide composition Gaussian method

G. P. S. Raghava
Institute of Microbial Technology
Sector-39A, Chandigarh, INDIA

raghava@imtech.res.in

Functional annotation of proteins is one of the major challenges in era of
genomics, as number of proteins whose sequence is known is growing with
exponential rate due to advancement in DNA sequence techniques. Even the
genomes of important pathogens like M. Tuberculosis, is partially annotated,
most o the proteins are assigned theoretical proteins. Though attempts have
been made in past to predict function but progress performance is not very high.
In this study we have made an attempt to predict class of proteins as per
Genome ontology (GO) classification. Genome ontology is one of the major
source of information from where one can obtained the information of class of

protein. In GO database the annotation of proteins are at three level i)
Biological functions; ii) Biological Process and iii) cell. However, a large
number of method already developed in past to predict the class of proteins are
limited to predict few classes of proteins. In this study we create the dataset of
proteins for each class of GO. It was observed that most of the GO class have
very limited number of proteins thus it is difficult to develop rediction method
for these classes. In order to avoid this problem we only keep families which
have 50 or more proteins. These proteins were obtained from UNIPROT
database where function of these proteins is manually annotated as per GO
classification. We trained our method using Gaussian technique available in
LNKNET software. The dipeptide compostion was used as input pattern of
proteins. In order to predict the functional class of a query sequence (CASP6
targets), first dipeptide composition of query sequence is calculated then we
predict the class of protein using rules derived for each class using Gaussian
routine of LNKnet software.

Tertiary structure of proteins using a de novo method design for prediction of

small bioactive peptides.
We developed a method for predicting tertiary structure of bioactive peptides.

The tertiary structure prediction of such peptides can aid in understanding of
biological function and protein structure prediction. Our strategy for prediction
of tertiary structure of small peptides is based on the observation that B-turn is
an important and consistent feature of small peptides in addition to regular
structures. It has been found that 75.3% of total peptides analyzed in present
study have at least one B-turn. For this reason, it should be possible, given their
sequences, to make accurate predictions about their structure using both the
regular and irregular secondary structure information, mainly of B-turns. Thus
regular and irregular secondary structures, particularly B-turns information can
play a vital role in prediction of tertiary structure of small bioactive peptides. A
representative data set comprising of three-dimensional structures of 77
biologically active peptides have been obtained from PDB' and other databases
such as PSST  (http:/pranag.physics.iisc.ernet.in/psst) and  PRF
(http://www.genome.ad.jp/). The data set has been restricted to those
biologically active peptides that consist of only natural amino acids and are
linear with length varying between 9-20 residues. We have analyzed these 77
biologically active peptides. Out of 77 peptides, 58 peptides have been found to
contain at least one B-turn. At residue level, about 34.9% of total peptide
residues fall in B-turns, higher than the number of helical (32.4%) and B-sheet
residues (6.9%). Based on these observations, four different models have been
generated using predicted secondary structure information. The first model I,
has been build up by assigning all the peptide residues the extended
conformation (¢ = W = 180°). Second model II, has been build by using the
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information of regular secondary structures (helices, P-strands and coil)
predicted from PSIPRED?. In third model III, secondary structure information
including B-turn types predicted from BetaTurns has been used®. The fourth
model IV has main-chain ¢, ¥ of model III and side chain angles assigned
using standard Dunbrack backbone dependent rotamer library. The models have
been refined further by energy minimization with dynamics simulations using
AMBER version6. It has been noted that the backbone averaged rmsd values
before and after energy minimization are 10.8A, 7.8A, 5.5A & 5.5A and 6.4A,
5.0A, 4.4A and 4.3A for models I, II, III and IV respectively. The results
indicate that secondary structures, particularly B-turns can provide valuable
information for tertiary structure prediction. Based on above study, we have
developed a web server PEPstr which allows the tertiary structure prediction of
small bioactive peptides using the following steps i) prediction of regular
secondary structure and B-turns using BetaTurns; ii) generation of conformation
by assigning dihedral angles corresponding to secondary structure information;
iii) placement of side chain angles using Dunbrack backbone dependent
rotamer library; and iv) energy minimization using AMBER. The server Pepstr
is accessible from http://www.imtech.res.in/raghava/pepstr/. In CASP6 we used
above method for predicting structure of protein.

1. Bernstein,F.C., Koetzle,T.F., Williams,G., Mayer,E.F., Bryce,M.D.,
Rodgers,J.R., Kennard,O., Simanouchi,T. and Tasumi,M. (1977) The
Protein Data Bank: a computer based archival file for macromolecular
structures. J. Mol. Biol. 112, 535-542.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Kaur,H. and Raghava,G.P.S. (2003) Prediction of B-turns in proteins from
multiple alignment using neural network. Protein Sci. 12, 627-634.

4. Kaur,H. and Raghava,G.P.S. (2004) A neural network method for
prediction of B-turn types in proteins using evolutionary information.
Bioinformatics (in press).

RAGHAVA-GPS-mango (serv) - 171 models for 57 FN targets

MANGUO: prediction of Genome Ontology (GO) class of a
protein from its amino acid and dipeptide composition using
nearest neighbor approach

G. P. S. Raghava
Institute of Microbial Technology
Sector-39A, Chandigarh, INDIA

raghava@imtech.res.in

One of the major challenges in era of genomics is to predict the function of
proteins. As number of proteins whose sequence is known is growing with
exponential rate due to advancement in DNA sequence techniques. This has
pose a major challenge to the boinformatician to develop strategy to predict the
function of protein. Fortunately, function of a large number proteins have been
deduced using experimental techniques, one may obtained the information
about manually annotated proteins from SWISSPROT database. Recently
initiatives were taken to provide the uniform definition of class of protein.
Genome ontology is one of the major source of information from where one
can obtained the information of class of protein. In GO database the annotation
of proteins are at three level i) Biological functions; ii) Biological Process and
iii) cell. However, a large number of method already developed in past to
predict the class of proteins are limited to predict few classes of proteins. In this
study we create the dataset of proteins for each class of GO. These proteins
were obtained from UNIPROT database where function of these proteins is
manually annotated as per GO classification. For each class of GO we create
the average composition of proteins belongs to that class. Lets a given GO class
have 200 proteins than we compute overall composition of each of 20 the
natural residues. This residue composition represents the class. In order to
predict the functional class of a query sequence (CASP6 targets), first
composition of query sequence is calculated then we compute the Euclidian
distance between composition of query sequence and each class of GO. The
class having minimum Euclidian distance were assigned as class of query
proteins.

It has been shown in past that dipeptide composition have more information
than simple composition because order of neighbor is also considered. Thus we
implement our approach using dipeptide composition, where dipeptide
composition of proteins were used to calculate Euclidian distance between
query protein and GO class of proteins instead of residue composition. We also
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compute the overall difference (residue composition and dipeptide
composition) in query and GO class of proteins. In summary we used
composition, dipeptide composition and comination of both for predictiog GO
class of target proteins.

RAGHAVA-GPS-rpfold (serv) - 165 models for 48 3D targets

A server for predicting fold of protein from its sequence using
secondary structure and PSIBLAST profile

G. P. S. Raghava
Institute of Microbial Technology
Sector-39A, Chandigarh, INDIA

raghava@imtech.res.in

A web server RPFOLD has been developed for searching known fold in
protein. This server uses the freely available tools for prediction like
PSIBLAST, PSIPRED, SSEARCH etc. First sequence similarity search is
performed using SSEARCH (FASTA Package) where query sequence is
searched against all the protein sequence in protein data bank (PDB. Thus we
obtain set A of proteins whose structures are known and have similarity with
query sequence. All the proteins in set A have similarity score obtained from
SSEARCH. In next step we performed similarity search using sequence profile.
First query protein sequence was searched against non-redundant database
using 3 iterations of PSIBLAST and profile was generated. Thus we obtained
sequence profile corresponding to query proteins. The sequence profile of query
protein was used as input to perform sequence similarity search against proteins
in PDB. This way protein that have remote similarity were also obtained. We
create set B of proteins who have similarity with query sequence and were
obtained from sequence profile search using PSIBLAST. In third step we
performed structure similarity search instead of sequence similarity search. In
this case first we obtained secondary structure of all protein in PDB where
secondary structures were assigned using DSSP then we predict the secondary
structure of query protein using PSIPRED. Predicted secondary structure was
searched using FASTA against database of secondary structure of proteins in
PDB. We create set C of proteins who have secondary structure similarity with
secondary structure of query proteins.

This way we obtain three sets (A, B & C) of proteins of known folds who have
similarity with query sequence obtained using different similarity search
criteria. All the proteins in three sets have similarity scores. Finally we combine

three sets and ranked based on score and weightage. Clustal-W was used to
align query sequence with predicted secondary structure information and target
protein in PDB with assigned secondary structure information to get final
alignment and re-ranking of hits.

RANKPROP - 64 models for 64 3D targets

Fold recognition by protein ranking on the protein similarity
network

Martial Hue', William Stafford Noble? and Jean-Philippe Vert'
1. Centre de Geostatistique, Ecole des Mines de Paris,
2~ Departement of Genome Science, Universiyt of Washington
hue@cg.ensmp.fr, noble@gs.washington.edu, Jean-Philippe. Vert@mines.org

1. Introduction

Our participation to CASP focuses on the Comparative Modeling and Fold
Recognition tasks. For each target we submitted a list of putative homologs
with known structure aligned to the target. The originality of our approach is
the method used to predict putative homologs from sequence information only.

We implemented the method of Noble et al.l that, for each target, performs a
ranking, by decreasing similarity, of all sequences in a large database using the
global structure of the protein similarity network. This method was shown to
outperform PSI-BLAST for the recognition of homologies at the SCOP super-
family level, and our main motivation was to test its relevance for the problem
of structure prediction when homology recognition at the super-family level is
useful, i.e., mainly for targets classified as “Fold Recognition” targets.

2. Method

Given a target sequence, the goal is to prepare a prediction file in the AL
format, i.e., to propose a list of sequences in PDB aligned to part of the target
sequences (with no overlap between the proposed alignments). Our approach
consists in 1) computing a ranking of a large set of protein sequences with
respect to the target using the global protein similarity network, 2) reading this
ranking from top to bottom, and 3) for each sequence with known structure
(i.e., in PDB), aligning the target sequence using a hidden Markov model
containing the hit sequence (with the HMMER software).

Description of the Protein Similarity Network. The Protein Similarity Network
used was obtained from the Biozon database (www.biozon.org) provided by
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Golan Yona. This network can be logically viewed as a weighted graph, with
vertices corresponding to protein sequences and weighted edges corresponding
to similarities, more precisely E-values computed by the program BLAST. The
list of sequences on which the computation is performed contains a large
number of amino acid sequences, 933075 at the beginning of the CASP
competition, 933116 at the end, since some of the targets did not belong to the
graph. They are numbered from 1 to 933116. The whole graph is distributed in
94 files, for a total of roughy 30 gigabytes. Each query sequence of our ranking
algorithm requires the query to be a node in the graph, so each time a CASP
target was not already in the graph, we first added it.

Algorithm. We implemented the algorithm described in Noble et al. (2004) to
rank the sequences in the network with respect to a given query. Let n be the
number of vertices of the graph, i the index of the target sequence, W the
similarity matrix, of size n*n, defined by

W, =exp(—Evalue;/o)

it is a number between 0 and 1. If the E-value is small, the similarity is closer to
1. chas the role of a threshold on the weights of the edges : E-values larger
than ¢ are negligeable. S is the normalized similarity matrix, so that the sum of
each line is 1, i.e.

S=D'w

where D is a diagonal matrix, with P:=2;W;_ Given a target i, let us define Y a
n-vector equal to 1 on the i-th component, and O elsewhere. We perform 10
iterations of:

F(t+1)=«SF(t)+(1-x)Y

with F(0)=Y_ «is a parameter between 0 and 1. Therefore for each t, F(t) sums
to 1. If «=1 this is a diffusion. If «=0, at each iteration, F(t) is constant, equal
to Y. In the experiments we took

The scores yielded by this “diffusion” are sorted; hence we have a ranking of
the vertices of the graph.

Submission file. To make the submision file in AL format, the next steps are :

-- Extract the ranked sequences from SCOP/PDB (usually SCOP domains)

-- Define a vector U of bits, of the length of the target sequence, corresponding
to the aligned letters so far.

-- Take the best ranked of these, and align the target onto it using HMMER.
HMMER has an implementation of profile hidden Markov models for all SCOP
superfamilies that allow robust alignments of a sequence to a superfamily.

-- Take the next best ranked SCOP entry (that belongs to a different superfamily
from the first one) and align it also, and check that the positions aligned are
different from the positions aligned with the first hit.

Only alignments of 8 consecutive letters in the target are accepted, with
possibly a gap of 1 letter.

-- Iterate if necessary to find all domains, until the 2000-th sequence of the
ranking.

-- Output the concatenation of these alignments and submit the file.

Parameters. The algorithm depends on two parameters «<(0.1)and ¢ . The values
chosen were «=0.95 gnd oe(1e-4,0.01,0.1} |

Conclusion. Our main motivation was to test the relevance of the new ranking
algorithm for the detection of remote homologies. We will therefore check in
details the results obtained for the “fold recognition” targets, which typically
require efficient recognition at the super-family level. Our method is fully
automatic and no human processing was performed; we did not participate as a
server simply because the server was not ready at the beginning of the
competition.

1. Weston,J., Elisseeff,A., Zhou, D., Leslie,C.S. & Noble,W.S. (2004). Protein
Ranking : From local to global structure in the protein similarity network.
Proceedings of the National Academy of Science 101 (17), 6559-6563.

2. Zhou,D., Weston,J.,, Gretton,A., Bousquet,O., Schoelkopf,B. (2003)
Ranking on data manifodls. Proceedings of NIPS.

RAPTOR (serv) - 292 models for 64 3D targets
Regression-based approaches to fold recognition

Jinbo Xu and Ming Li
School of Computer Science, University of Waterloo
{j3xu, mli}@uwaterloo.ca

Protein structure prediction by protein threading technique has demonstrated a
great success in recent CASPs (Critical Assessment of Structure Prediction)
Protein threading makes a structure prediction by finding the optimal alignment
between the target sequence and each of the available protein structures (also
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called templates) in Protein Data Bank (PDB), and then choosing the best
overall template as the basis on which the structure of the target sequence is
built. The algorithm for finding the optimal sequence-template alignment has
been researched extensively. However, how to choose the best template based
on alignments is also critical to the success of protein threading. Fold
recognition requires certain criteria to identify the best template for one target
sequence. The sequence-template alignment score cannot be directly used to
rank the templates due to the bias introduced by the residue composition and
the number of alternative sequence-template alignments. So far, there are two
strategies used by the structure prediction community for fold recognition:
recognition based on Z-scores, and recognition by machine learning methods.
Most of the current prediction programs use the traditional Z-score to recognize
the best-fit templates, whereas several programs such as GenTHREADER and
PROSPECT-I use a neural network to rank the templates. The neural network
method treats the template selection problem as a classification problem. Z-
score was proposed to cancel out the bias caused by sequence residue
composition and by the number of alternative sequence-template alignments.

The Z-score method has the following two drawbacks: (i) It takes a lot of extra
time to calculate Z-scores, especially the alignment number-corrected Z-scores.
In order to calculate the alignment number-corrected Z-score for each threading
pair, the target sequence has to be shuffled and threaded many times. In order to
save time, many prediction programs like PROSPECT-I only calculate the
composition-corrected Z-score. Even though this, the computational efficiency
hinders the Z-score method from genome-scale structure prediction. (ii) Z-score
is hard to interpret, especially when the scoring function is the weighted sum of
various energy items such as mutation score, environmental fitness score,
pairwise score, secondary structure score, gap penalty and score induced from
NMR data. For example, when the sequence is shuffled, shall we shuffle the
position specific profile information and the predicted secondary structure type
at each sequence residue? If we choose to shuffle the secondary structure, then
the shuffled secondary structure arrangement does not look like a protein's.
Otherwise, if we choose to predict the secondary structure again, the whole
process will take a very long time.

In our previous paper, we have very briefly introduced the SVM classification
method for fold recognition. Although classification-based methods run much
faster and have better sensitivity than the Z-score method, they still have some
problems. The similarity between two proteins could be at fold level,
superfamily level or family level. Classification-based methods can only treat
the three different similarity levels as a single one. Multi-class SVM cannot be
used here since the relationship among the three similarity levels is hierarchy.
That is, if two proteins are in a family, then they are also in a superfamily and

have the same fold. Classification-based methods cannot effectively
differentiate one similarity level from another. The other problem is that even if
SVM classification can predict two proteins to be similar in at least fold level, it
is possible that the alignment accuracy between them is really bad. A template
with only the same fold as the target sequence might be ranked higher than a
template in the same family as the target, which is not what we expect.

We have developed two regression-based approaches (SVM regression and
Gradient Boosting) to directly predict the alignment accuracy of a given
sequence-template alignment. The predicted alignment accuracy has a high
correlation coefficient with the real alignment accuracy. Then, we use the
predicted sequence-template alignment accuracy to rank all the templates for a
given sequence. Experimental results show that the predicted alignment
accuracy has a much better sensitivity and specificity than composition-
corrected Z-score method and a much better computational efficiency. Both
regression-based methods are also better than other classification and the
alignment number-corrected Z-score methods in terms of sensitivity. In
addition, The alignment accuracy is also easier to interpret than the
classification results.

1. XuJ. (2004) Protein Fold Recognition by Predicted Alignment
Accuracy. Submitted to IEEE Trans. On Computational Biology and
Bioinformatics.

2. Jiao,F. and Xu,J. (2004) Protein Fold Recognition Using Gradient
Boosting. Submitted to Bioinformatics.

Rohl - 78 models for 51 3D targets
Generating optimal 3D models from Robetta alignments

F.D. Khatib, J. Samayoa, D.L. Bernick, C. Lowe, C. Gorringe and

C.A. Rohl
University of California at Santa Cruz, USA
rohl@ucsc.edu

Our structure predictions for CASP6 focused on the problem of using a given
alignment to construct an optimal three-dimensional model of a query. In
particular, we were interested in assessing methods that could be incorporated
into the comparative modeling strategy utilized by the automatic structure
prediction server, Robetta'. Consequently, we restricted our predictions to
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those query sequences for which the Robetta server made predictions using a
parent of known structure, and in general, we limited our consideration of
possible parent structures and alignments to the parents and alignments reported
by the Robetta server. Because we relied solely on the parent structures and
alignments reported by the Robetta server, the quality of our models are
expected in large part to be determined by the quality of those alignments.
Consequently, we are interested primarily in assessing the quality of our
predictions relative to those of the Robetta server. Given a particular parent and
limited set of possible alignments, were we able to generate a higher quality
model than the automated server? = While our approach is similar to the
homology-based modeling strategy employed by the Robetta server, significant
differences include: 1. re-ranking of Robetta alignments using a consensus
scoring method, 2. application of a filter for detecting knotted structures, 3.
increased sampling of conformations for structurally variable regions
corresponding to gaps in the alignment, 4. de novo construction of initial
conformations for long internal gaps using only local structural information
from the fixed template, 5. refinement of the models by optimization of an all-
atom energy function, and 6. manual intervention for some targets.

The initial step in our protocol was to reevaluate the alignments utilized by the
Robetta server to attempt to improve the relative rankings of these alignments.
Each of alignments reported by Robetta for its top five predictions was assigned
a score equal to the total number of occurrences of every aligned residue pair in
any of five alignments or in the default alignment provided by the K*sync
algorithm?. The score for each alignment was normalized by the number of
aligned pairs and then used to rank the alignments. In general, only the top-
ranked alignment was considered for further modeling. In cases where the top
two or three alignments had comparable scores, each of the alignments were
used for further modeling and the final selection was made on the basis of
manual assessment of final model quality. Given an alignment, aligned
residues were modeled by extracting coordinates of corresponding residues
from the parent structure to generate a fixed template structure. Conformations
for gapped regions were constructed using fragment-assembly protocols within
the Rosetta structure prediction suite that have been adapted to model
structurally variable regions in homologous proteins®. An initial library of
conformations for gapped regions 17 residues or shorter were selected from a
database of protein structures on the basis of sequence and secondary structure
similarity and geometric fit to the template. Initial conformations for internal
gapped regions 12 residues and longer were constructed de novo by fragment
assembly in the presence of only sequentially adjacent template residues to
ensure geometric fit. When sufficient initial conformations that met the steric
constraints of the template could not be identified or constructed, template
regions were manually trimmed back to enlarge the gapped region. Typically,

such regions represented deletions relative to the parent structure. These initial
conformations for internal gapped regions were screened for steric clashes with
the template and knots, and then randomly assembled onto the template
structure. Unaligned terminal segments were added to the models by fragment
assembly and the resulting models were then optimized for agreement with the
atom-based Rosetta energy function using both modified fragment replacement
and small perturbations of torsion angles in both aligned and unaligned
regions®. In some cases, as noted in the REMARKS section of the predictions,
models were manually sculpted using the Protein Shop package® and then re-
optimized within Rosetta. Other instances in which alternate strategies were
undertaken for particular targets are also noted in the remarks section of the
submitted models.

1. Kim,D.E., Chivian,D., Baker D. (2004) Protein structure prediction and
analysis using the Robetta server. Nucleic Acids Res. Suppl 2, W536-31.

2. Chivian,D., Kim,D.E., Malmstrom,L.. (2003) Automated prediction of
CASP-5 structures using the Robetta server. Proteins 53 Suppl 6, 524-33.

3. Rohl,C.A.,, Strauss,C.E.M., Chivian,D., Baker,D. (2004) Modeling
Structurally Variable Regions in Homologous Proteins using Rosetta.
Proteins 55, 656-677.

4. Rohl,C.A. (2004) Structure Estimation from Minimal Restraints Using
Rosetta. Methods in Enzymsology. In press.

5. Kreylos,O., Max,N., Crivelli,S. (2002) ProtoShop: Interactive Design of
Protein Structures, in: Moult,J., Fidelis,K., Zemla,A, Hubbard,T. eds.
Proceedings of CASP5 - Fifth Meeting on the Critical Assessment of
Techniques for Protein Structure Prediction. A213-A214.

Rokko - 228 models for 64 3D targets

De novo structure prediction by the SimFold energy function
with the multi-canonical ensemble fragment assembly

Y. Fujitsuka'”, G. Chikenji*", S.J. Park®, W. Jin?, N. Koga',
T. Furuta®, and S. Takada'*
' — Grad School, Sci & Tech Kobe Univ, *— Faculty of Sci, Kobe Univ,
3- Interdisciplinary Grad School of Sci & Eng, Tokyo Inst Tech
stakada@kobe-u.ac.jp

The team Rokko primarily focuses on de novo structure prediction for targets
that possibly have “new folds”. For all targets, we first refer the results of PDB-
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BLAST(4), many CASP servers, and 3D-jury(5) to filter out those that are
likely to have good structural templates. For targets that might have “new
folds”, we prepare the fragment candidates of every 10 residues and perform
multicanonical ensemble fragment assembly simulation(3) using our in-house
developed energy function, SimFold(1,2). Models are chosen by clustering
low-energy structures and by human inspection.

Here, we briefly describe 1) generation of fragment candidates, 2) energy
function SimFold, 3) conformational sampling by the multi-canonical ensemble
fragment assembly (FA), and 4) how we did in CASP6 including domain
parsing, final model selection, and models for CM & FR targets.

1) Generation of fragment candidates: For the query sequence, the n-residue
(n=10, 16, 21) PSSMs of PSI-BLAST are used to retrieve fragment candidates
of every 10 residues from 2100 proteins that have known structures and share
<20% sequence identity. For retrieval, two scores, the correlation coefficient
and a Kurtosis-weighted dot product are used. Comparing the consensus of
secondary structure predictions with the secondary structures of templates, we
prepare 100 initial fragments for each 10 residues of the target, which is
followed by reduction via clustering. As a result, the number of fragments for
conserved sites is small, whereas that for the diverse site is large.

2) SimFold, the energy function(1,2): The protein is represented by a coarse-
grained model, in which side chain atoms are replaced by a center of
interactions. The interaction potential, which we call SimFold contains van der
Waals interaction, secondary structure propensity, the hydrogen bond
interaction, the hydrophobic interaction and the pair-wise interaction. The latter
three depend on degree of burial of interacting atoms. No protein specific
potential such as secondary structure prediction based potential is used in the
energy function. Parameters in SimFold are optimized by Z-score optimization
method.

3) Multicanonical ensemble fragment assembly: For conformational sampling,
we use a variant of fragment assembly (FA) method called "reversible FA
method" which we have recently developed (an earlier version in ref.3). Our FA
is different from what has been developed by Baker's group. The most
important difference between conventional FA and ours is that the conventional
FA protocol does not fulfill the detailed balance condition, but our algorithm
does. Thanks to this property, we could combine reversible FA with the multi-
canonical ensemble Monte Carlo method which is known to be highly powerful
conformational sampling method for protein systems. Indeed, this approach is
used in all targets that are likely to have “new folds” helping conformational
sampling very significantly especially for longer targets.

4) How we did in CASP6:

a) Domain parsing by Donuts (DOmaiN parsing UTility Software):Donuts is
a tool that parses domain regions from an amino acid sequence. First, it
searches any homologs in structural database with PDB-BLAST followed by
3D-Jury. For part of sequence that has no homologs, search is done with
rpsblast against the Conserved Domain Database(6,7). Finally, the method of
Galzitskaya(ref:8) that predicts domain boundaries by finding regions having
small side chain entropy, is performed.

b) Model selection: We first selected structures with energy lower than a
cutoff and with the contact order higher than a cutoff from ensemble obtained
by multi-canonical ensemble FA simulations. The resulting structures are
then clustered. If whole-length structures are not well clustered, the
substructures are clustered. The representatives of larger clusters are chosen
as models based on human inspection.

¢) Models for targets that are likely to be CM & FR: We combine PDB-
BLAST or 3D-Jury’s alignment with simple loop insertion to make
candidates, which is followed by visual inspection to choose the final models.

*Both of them equally contributed to the work.

1. Takada,S. (2001) Protein Folding Simulation With Solvent-Induced Force
Field: Folding Pathway Ensemble of Three-Helix-Bundle. Proteins 42, 85-
98.

2. Fujitsuka,Y., Takada,S., Luthey-Schulten,Z.A., and Wolynes,P.G. (2004)
Optimizing Physical Energy Functions for Protein Folding. Proteins 54,
88-103.

3. Chikenji,G., Fujitsuka,Y., and Takada,S. (2003) A reversible fragment
assembly method for de novo protein structure prediction. J.Chem.Phys.
119, 6895-6903.

4. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25 3389-3402.

5. Ginalski,K., Elofsson,A., Fischer,D., Rychlewski,L.. (2003) 3D-Jury: a
simple approach to improve protein structure predictions, Bioinformatics
22,1015-1018.

6. Marchler-Bauer,A., et al, (2003) CDD: a curated Entrez database of
conserved domain alignments. Nucleic Acids Res. 31, 383-387.

7. Marchler-Bauer,A., et al (2003) CDD: a database of conserved domain
alignments with links to domain three-dimensional structure. Nucleic Acids
Res. 30, 281-283.

8. Galzitskaya,O.V. and Melnik,B.S., (2003) Prediction of protien domain
boundaries from seaquence alone. Protein Science 12, 696-701.

Abstracts - 124



RokKy (serv) - 279 models for 63 3D targets

Structure prediction server that integrates PDB-BLAST, 3D-
Jury, and the SimFold fragment assembly simulator

W. Jin', T. Furuta', S.J. Park®, N. Koga’, Y. Fujitsuka®, G.

Chikenji®, and S. Takada'?
! — Faculty of Sci, Kobe Univ, ?— Interdisciplinary Grad School of Sci & Eng,
Tokyo Inst Tech, 3- Grad School, Sci & Tech Kobe Univ
stakada@kobe-u.ac.jp

The server Rokky performs the fragment assembly simulated annealing with
SimFold energy function for parts of the query sequence that are likely to be
new fold, whereas other parts are modeled by either PDB-BLAST or 3D-Jury
with variable loops constructed from a library. Individually modeled domains
are, if possible, docked to have models of the whole sequence. The Rokky is
still premature, has very much evolved through the CASP6 summer and so
methods used are somewhat different for targets submitted in different weeks.
Here, we briefly describe 1) job flow, 2) loop modeling, 3) generation of
fragment candidates, and 4) fragment assembly with SimFold and model
selection. The energy function, SimFold is described in the method of
corresponding human prediction team Rokko.

1) Job flow: Rokky is a server which predicts protein 3D-structures
automatically. For all targets, the Rokky first performs PSI-BLAST and PDB-
BLAST using nr and PDB databases, respectively. When the template with e-
value smaller than 0.001 is found in PDB-BLAST, the Rokky uses its alignment
and makes model structures by inserting loop structures in alignment gaps.
Otherwise, the Rokky submits the target sequence to 3D-Jury meta server and
obtains the results. When 3D-Jury-score higher than 30.0 is found, the Rokky
uses 3D-Jury’s template and its alignment and makes model structures after
loop insertion in alignment gaps. For the rest, the Rokky performs the fragment
assembly simulated annealing with SimFold energy function for parts of the
unaligned sequence and choose 5 models in sampled structures based on
clustering analysis.

2) Loop modeling: Generic loop library was constructed for n-residues
(4=<n=<30) that are sorted by the end-to-end distance. For each gapped loop in
the query sequence, two-residues outside the gapped region in both ends (4
residues in total) are best-fitted to all members in the corresponding part of the
library and the loop that has minimal RMSD in these 4 residues are used as a
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loop model.

3) Generation of fragment candidates: For every 10-residue in the query
sequence, the correlation coefficient of 20x10 dimensional fragment vectors
made of the PSSM from PSI-BLAST retrieves 10-residue fragment candidates
from 2100 template proteins that have known structures. The collection of 20
fragment candidates for each site of the target overlapping is filtered by
Ramachandran plot if PSI-PRED says the site is confidential helix.

4) Fragment assembly (FA) with SimFold and model selection: The server
Rokky performs the FA simulated annealing simulation with SimFold using
fragment candidates generated by 3) for the targets that has no apparent
template. A randomly chosen fragment with the length of 4 aa to 9 aa are
replaced with another fragment randomly chosen from the candidate list by the
Metropolis judgement at each step. Selection temperature is gradually
decreased to obtain low-energy structures. This FA simulated annealing runs are
repeated as many samples as possible till a few hours to the deadline (48
hours). The sampled structures that have secondary structure more than a cutoff
are treated by the cluster analysis with the group average method, in which
centers of the five largest clusters are chosen as final models.

1. Takada,S. (2001) Protein Folding Simulation With Solvent-Induced Force
Field: Folding Pathway Ensemble of Three-Helix-Bundle. Proteins 42, 85-
98.

2. Fuyjitsuka,Y., Takada,S., Luthey-Schulten,Z.A., and Wolynes,P.G. (2004)
Optimizing Physical Energy Functions for Protein Folding. Proteins 54,
88-103.

3. Chikenji,G., Fujitsuka,Y., and Takada,S. (2003) A reversible fragment
assembly method for de novo protein structure prediction. J.Chem.Phys.
119, 6895-6903.

4. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25 3389-3402.

5. Ginalski,K., Elofsson,A., Fischer,D., Rychlewski,L.. (2003) 3D-Jury: a
simple approach to improve protein structure predictions, Bioinformatics
22,1015-1018.

6. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202

Rost - 54 models for 33 3D / 11 FN targets

A comprehensive manual assessment approach for structure
and function predictions of fold recognition CASP6 targets

Kazimierz O. Wrzeszczynski®, Avner Schlessinger’, Yana

Bromberg®, Marco Punta' and Burkhard Rost'

! Department of Biochemistry and Molecular Biophysics, Columbia University,
New York, NY, ? Integrated Program in Cellular, Molecular, and Biophysical
Studies, Columbia University, New York, NY, > Department of Biomedical
Informatics, Columbia University, New York, NY.
rost@columbia.edu

The approach utilized multiple methods in the manual selection process toward
a target to template alignment prediction for fold recognition (or difficult
comparative modeling - CM/FR) CASP6 targets. In order to classify targets as
fold recognition or difficult comparative modeling we mainly relied on two
criteria, 1) low sequence conservation (PSI-BLAST' E-value >10e-3 and 35%
sequence identity) to current PDB? templates and 2) all identified PDB
templates comprised a large variety of folds as classified by SCOP?. The initial
template selection for each CASP6 target was performed using PSI-BLAST
alignment and the CAFASP (http://www.cs.bgi.ac.il/~dfischer/CAFASP4/)
PDB-Blast output. Additional template identification was approached via a
multi-step process applying many of the publicly available sequence and
structure alignment tools in particular AGAPE®, 3D-Jury®, FFAS03®, along with
the secondary structure prediction method ProfSec’ and two function domain-
identifying servers Pfam® and CHOP®. Manual inspection through visualization
of each alignment was then performed for the selection of the final target to
template prediction.

We primarily considered results from our in-house alignment method AGAPE
(note that this method has been publicly available since the beginning of
CASP6). High consideration was also given to the 3D-Jury method or to the
various automated fold recognition servers found through CAFASP, specifically
those that were able to identify a template structure that encompassed a
majority of the target sequence. Finally, a six iteration PSI-BLAST alignment to
PDB entries was also considered to identify structural templates when
significant structural or functional motifs were aligned between the CASP6
target and the PDB entry. All possible templates were then submitted to
AGAPE and FFASO3 for additional pairwise alignment of the target and
template. Once several templates were under consideration each initial
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alignment (AGAPE, PSI-BLAST or other fold recognition sever) was further
scrutinized through manual inspection of the aligned predicted secondary
structure (using ProfSec for the target) with each template. Pfam domain
alignment was used to identify family conserved residues. An extensive
literature search for functional (such as catalytic, metal or ligand binding) or
structural important residues (such as disulfide or salt bridges) for each
template was performed and greater template preference was given when those
corresponding residues correctly aligned with the target. Further manual visual
inspection using GRASP2' and VMD" was performed to check for any
inconsistencies in biophysical properties (i.e. exposed hydrophobic residues,
hydrogen bond distances, etc.) for each possible model or alignment. Each
target to template alignment was then manually adjusted to fit the above given
parameters for the final prediction submission.

Function prediction was performed using a combination of methods
encompassing domain function identification, motif searches, homology
detection, literature searches and catalytic residue alignment. An initial, general
function assignment was made through domain detection using CHOP and
Pfam and compared with homologues found through PSI-BLAST alignment
often identifying the predicted Gene Ontology' categories. More intricate
function prediction whenever possible was developed mainly through
annotation transfer from literature search for functional residues in the
identified specific structural template as aligned with the target sequence.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Berman,H.M., Westbrook,J., Feng,Z., Gilland,G., Bhat,T.N., Weissig,H.,
Shindyalov,I.N., & Bourne,P.E. (2000). The Protein Data Bank. Nucleic
Acids Res. 28, 235-242.

3. Murzin,A.G., Brenner,S.E., Hubbard,T., & Chothia,C. (1995). SCOP: a
structural classification of proteins database for investigation of sequences
and structures. J. Mol. Biol. 247, 536-540.

4. Przybylski,D., Rost,B. (2004). Improving fold recognition without folds. J.
Mol. Biol. 341, 255-269.

5. Ginalski,K., Rychlewski,L. (2003). Detection of reliable and unexpected
protein fold predictions using 3D-Jury. Nucleic Acids Res. 31, 3291-3292.

6. Rychlweski,L., Jaroszewski,L., Li,W., & Godzik, A. (2000) Comparison of
sequence profiles. Strategies for structural predictions using sequence
information. Protein Sci. 9, 232-241.

7. Rost, B. (1996) PHD: predicting one-dimensional protein structure by
profile-based neural networks. Methods Enzymol. 266, 525-39.

8. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V., Griffiths-Jones,S.,
Khanna,A., Marshall, M., Moxon,S., Sonnhammer,E.L., Studholme,D.J.,
Yeats,C., & Eddy,S.R. (2004) The Pfam protein family database. Nucleic
Acids Res. 32, D132-D141.

9. Liu,J., Rost,B. (2004) CHOP: parsing proteins into structural domains.
Nucleic Acids Res. 32, W569-W571.

10. Petrey,D., Honig,B. (2003). GRASP2: vizualization, surface properties and
electrostatics of macromolecular structures and sequences. Methods
Enzymol. 374, 492-509.

11. Humphrey,W., Dalke, A., & Schulten, K. (1996). VMD - Visual Molecular
Dynamics. J. Mol. Graph. 14, 33-38.

12. Harris,M.A., Clark,J., Ireland,A., Lomax,]J., etc. al; Gene Ontology
Consortium. (2004). The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Res. 32, D258-D261.

rost_ PROFcon (serv) - 64 models for 64 RR targets
PROFcon - a new neural network-based contact predictor

M. Punta*?and B. Rost*?

' -CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia
University, New York, NY 10032, USA, - Columbia University Center for
Computational Biology and Bioinformatics (C2B2), New York, NY 10032,

USA,,? - NorthEast Structural Genomics Consortium (NESG), Department of

Biochemistry and Molecular Biophysics, Columbia University, New York, USA
punta@cubic.bioc.columbia.edu

We introduce a novel contact prediction method (named PROFcon) that
combines information from alignments, one-dimensional predictions, from the
region between two contacting residues, and the average properties of the entire
protein chain. The method is based on a simple feed-forward back-propagation
neural network (NN). We train the NN on a large number of proteins (748) and
validate the method’s performance on sets that differ in protein length, number
of aligned homologous sequences, and structural class. PROFcon performance
is rather robust as a function of protein length and decreases in the absence of a
proper number of aligned homologous sequences (sparse evolutionary profiles).
The best accuracy is achieved for proteins belonging to the alpha/beta SCOP™
structural class. In the following we give a more detailed description of dataset
selection and of the features used as input to the NN.
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Data sets and cross-validation. The EVA server evaluating structure prediction
methods® maintains a continuously updated subset of sequence-unique PDB
chains (no pair of proteins in this set has HSSP-value above 0*®). In particular,
we use the December 2003 EVA release, a set of 3201 protein chains of known
structure.

From this initial list we remove all non-X-ray structures, all membrane and
coiled-coil proteins and proteins with physical chain breaks®. Then, we divide
the X-ray-solved protein list into three sets. For the purposes of training, we
select structures with resolution <2.0 A. For the validation process (i.e.
optimization of all NN parameters) we use structures with resolution in the
interval 2.5-3.0 A and finally, for testing, structures in the interval 2.0-2.5 A.
Due to computational limitations, we reduce the test set to include only proteins
of length maximum 400 aa. Training, validation and test sets contain 748, 466
and 633 proteins, respectively.

Definition of contact. Two aa are considered two be in contact if their C atoms
- C, for glycines — are closer than 8 A.

NN architecture overview. We train a standard feed-forward NN with back-
propagation and momentum term’. We address the extremely unequal
distribution of true (contact) and false (non-contact) by balanced training’.
Since the NN ‘sees‘ the symmetric pairs ij and ji as two different samples, the
actual PROFcon output value for the ij pair is obtained as the average over the
ij and ji NN output®. The NN uses 738 input, 100 hidden, and 2 output nodes
(contact, non-contact).

Detailed specification of input. The pairs are characterized through: 1) local

information, 2) connecting segment information, 3) protein information.

1) Local information: ij centered windows and pair-specific features. For each
residue pair ij in a protein, the network incorporates information from aa
comprised in two windows of size 9 centered around i and j (corresponding to
intervals [i-4;i+4] and [j-4;j+4]). Each sequence position within the two
windows is characterized by 29 nodes: 20 for the evolutionary profile (i.e.
frequency of occurrence of the 20 aa types at that position, as obtained from
multiple sequence alignments®?), one additional node to account for the N and
C terminal residues’, 4 for the predicted secondary structure (three values per
residue for helix-strand-other + one value for prediction reliability), 3 for the
predicted solvent accessibility (two values for buried-exposed + one value for
prediction reliability) and, finally, 1 for the conservation weight'. Alignments
are obtained through PSI-BLAST" filtering the aligned sequences at 80%
sequence identity (i.e. any two sequences in the multiple sequence alignment
have <80% sequence identity). We predict secondary structure and solvent

accessibility using PROFphd*. Note that we train and test on predicted rather
than observed 1D values. As the two windows together account for 18
positions, we need a total of 522 nodes for their description. Two more features
are introduced to better characterize the central residues i and j. These are: pair
type (hydrophobic-hydrophobic, polar-polar, charged-polar, opposite charges,
same charges, aromatic-aromatic, other') (7 nodes) and pair complexity
(whether or not the two residues are in a low-complexity region, according to
SEG'" (2 nodes).

2) Connecting segment information: central window, length and average
properties. The segment’s central positions have been shown to be the most
informative for contacts®. So, we introduce a window of size 5 spanning the
interval [int(i-j|/2)-2; int(]i-j|/2)+2]. Sequence positions within this window are
characterized in the same exact way as positions in the ij-centered windows (i.e.
29 nodes each). Further, we use 11 nodes for segment length description,
corresponding to sequence separations 6, 7, 8, 9 and to intervals 10-14, 15-19,
20-24, 25-29, 30-39, 40-49, >49 (values chosen by intuition not by
optimization). Note that the encoding of segment length was necessary in order
to qualitatively reproduce the observed distribution of contact probability
versus sequence separation (the shorter the sequence separation, the higher the
probability of being in contact)'. Finally, we add in nodes encoding for
segment’s average properties: 20 nodes for aa composition, 3 nodes for
secondary structure composition and one node for the fraction of aa in the
segment in a low-complexity region. Overall, we use 180 nodes for the
description of the segment.

3) Protein information: length and average properties. We use 20+3 nodes for
the average aa and secondary structure composition of the entire protein, plus 4
nodes to describe the protein length (intervals 1-61, 61-120, 121-240, >241;
again, values are chosen by intuition).

1. Murzin,A.G., Brenner,S.E., Hubbard,T.J.., & Chothia C. (1995). SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. J Mol Biol 247, 536-40.

2. Andreeva, A., Howorth,D., Brebber,S.E., Hubbard,T.J., Chothia,C. &
Murzin,A.G. (2004). SCOP database in 2004: refinements integrate
structure and sequence family data. Nucleic Acids Res 32 Database issue:
D226-9.

3. KohlLYY,, Eyrich,V.A., Marti-Renom,M.A., Przybylski,D.,
Madhusudhan,M.S., Eswar,N., Grana,O., Pazos,F., Valencia,A., Sali,A. &
Rost,B. (2003). EVA: evaluation of protein structure prediction servers.
Nucleic Acids Res 31(13), 3311-3315

4. Rost,B. (1999). Twilight zone of protein sequence alignments. Protein Eng
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SAM-T04-hand - 375 models for 64 3D / 56 RR targets

Merging fold-recognition, new-fold and comparative modeling

methods

K. Karplus, S. Katzmann, G. Shackelford, M. Koeva, J. Draper,

B. Barnes, M. Soriano, R. Hughey
University of California, Santa Cruz
karplus@soe.ucsc.edu

The SAM-T04 human predictions for CASP6 use a very similar fold-
recognition method to the SAM-T02 method in CASP5 ™.

We start with a fully automated method:
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Use the SAM-T2K and SAM-T04 methods for finding homologs of the
target and aligning them.
Make local structure predictions using neural nets and the multiple
alignments. Different neural nets are used for the SAM-T2K alignments
and the SAM-T04 alignments. We currently use 7 local-structure alphabets:
o DSSPp
0o STRIDE
0 STR2 - an extended version of DSSP that splits the beta strands
into multiple classes (parallel/antiparallel/mixed,edge/center)
0 ALPHA - a discretization of the alpha torsion angle: C,(i-1), Cy(i),
Coi+1), Co(i+2)
0 BYS - adiscretization of Ramachandran plots, due to Bystroff
0 CB_burial 14_7 - a 7-state discretization of the number of Cg
atoms in a 14 Angstrom radius sphere around the Cg
0 DSSP_EHL2 - CASP's collapse of the DSSP alphabet.
DSSP_EHL2 is not predicted directly by a neural net, but is
computed as a weighted average of the other backbone alphabet
predictions.
We make 2-track HMMs with each alphabet (1.0 amino acid + 0.3 local
structure) and use them to score a template library of 6400 (T04) or 9900
(T2K) templates. We also used a single-track HMM to score not just the
template library, but a non-redundant copy of the entire PDB.
We also made a few 3-track HMMs (AA, STR2, CB_burial_14_7) for
finding and aligning more remote homologs.
One-track HMMs built from the template library multiple alignments were
used to score the target sequence (for early targets, only T2K template
library was searched this way).
All the logs of e-values were combined in a weighted average (with rather
arbitrary weights, since we did not have time to optimize them), and the
best templates ranked. Ranking was separate for predictions from the T2K
and T04 multiple alignments.
Alignments of the target to the top templates were made using several
different alignment methods (mainly using the SAM hmmscore program,
but a few alignments were made with Bob Edgar's MUSCLE profile-
profile aligner).
Generate fragments (short 9-residue alignments for each position) using
SAM's "fragfinder" program and the 3-track HMM.
Then the "undertaker" program (named because it optimizes burial) is used
to try to combine the alignments and the fragments into a consistent 3D
model. No single alignment or parent template was used, though in many



cases one had much more influence than the others. The alignment scores
were not passed to undertaker, but were used only to pick the set of
alignments and fragments that undertaker would see.

After the initial automatic run was finished, the results were examined by hand,
and various tweaks were made to the undertaker cost function to improve the
models. Many of the tweaks consisted of adding specific Hbonds, SSbonds, or
distance constraints (often as strand-pairing constraints), to make the model
look better to us.

Undertaker uses a genetic algorithm with about 28 different operators to
minimize its cost function. The cost function has many components, including
various definitions of burial and compactness, sidechain rotamer preferences,
steric clashes, chain breaks, predicted local backbone conformation, hydrogen
bonding, disulfide bonds, and user specified constraints. The relative weights of
these components were tweaked for each target, as we have not found a
generally applicable set of weights.

Because undertaker does not (yet) handle multimers, we sometimes added
"scaffolding" constraints by hand to try to retain structure in dimerization
interfaces, and sometimes did modeling of double-length chains for dimers.

For multiple-domain models, we sometimes broke the sequence into chunks
(often somewhat arbitrary overlapping chunks), and did the full method for
each subchain. The alignments found were all tossed into the undertaker
conformation search. In some cases, we performed undertaker runs for the sub-
chains, and cut-and-pasted the pieces into one PDB file (with bad breaks) and
let undertaker try to assemble the pieces.

Preliminary analysis of the results indicates that getting a good template and
alignment is still overwhelmingly the most important step in getting a good
model.

1. Karplus,K., Karchin,R.,, Draper,J.,, Casper,J. Mandel-Gutfreund,Y.,
Diekhans,M., and Hughey,R. (2003) Combining local-structure, fold-
recognition, and new-fold methods for protein structure prediction.
Proteins: Structure, Function, and Genetics 53 (S6), 491-496.

SAMUDRALA - 286 models for 64 3D targets

Refining comparative models using a graph-theoretic
approach

T. Liu and R. Samudrala
University of Washington

{tianyun,ram } @compbio.washington.edu

We evaluated the ability and effectiveness of a novel graph-theoretic approach
to find the optimal interactions in a protein structure, given a variety of side-
chain and main-chain conformational choices for each position. Sampling of
side-chain and main-chain conformations was accomplished by exhaustively
enumerating all possible choices from a population of initial models. The best
combinations of these possibilities were selected through an all-atom scoring
function ' aided by the graph-theoretic approach .

For each CASP6 target, several models were generated using 3D-Jury server
(http://Biolnfo.PI./Meta)® combined with our comparative modeling server,
PROTINFO-CM (http://protinfo.compbio.washington.edu)*. Additional models
were obtained from the CAFASP4 server after scrutinizing the alignments to
gain extra variability in sequence alignments and templates. Models were
inspected for missing or incorrect parts, typically for loops. If reasonable
alternative loops could be built using our in-house software, they were added to
the pool as well. Side-chain possibilities were also constructed using the
program SCWRL>. Care was taken to assure that models were superimposed
based on their secondary structure so that the average o-carbon root mean
square deviation (CRMSD) between each model was less than 5 A.

After a set of models was superimposed, the next step required the
determination of the crossover points where mixing between different parent
structures could occur. Crossover points were defined by the ranges of main-
chain where the a-carbon was less than 1.0 A from each other, and were not
permitted inside secondary structure elements.

We then used a graph-theoretic clique-finding approach to assemble the
sampled side-chain and main-chain conformations. A complete description of
the method is given elsewhere?. The idea of this approach is to obtain optimized
mosaic models by shuffling them in a rational way. Thus the key point is the
choice of an appropriate scoring function. We used an all-atom conditional
probability discriminatory function (RAPDF)' to evaluate the cliques, with the
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highest scoring ones representing the optimal combinations of the different
side-chain and main-chain possibilities.

In the final step, all models from the above approach were refined with
ENCAD®. The effectiveness of this methodology to improve the model
accuracy remains to be investigated.

1. Samudrala,R., Moult,J. (1998) An all-atom distance dependent conditional
probability discriminatory function for protein structure prediction. J Mol
Biol 275, 893-914.

2. Samudrala,R., Moult,J. (1998) A graph-theoretic algorithm for comparative
modelling of protein structure. J Mol Biol 279, 287-302.

3. Ginalski,K., Elofsson,A., Fischer,D., Rychlewski,L.. (2003) 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics.
19, 1015-1015.

4. Hung,L-H., Samudrala,R. (2003) PROTINFO: Secondary and tertiary
protein structure prediction. Nucleic Acids Research 31, 3296-3299.

5. Bower,M.J., Cohen,F.E., Dunbrack,R.L.. (1997) Prediction of side-chain
orientations from a backbone-dependent rotamer library: A new homology
modelling tool. J Mol Biol 267, 1268-1282.

6. Levitt,M., Hirshberg,M., Sharon,R., Daggett,V. (1995) Potential energy
function and parameters for simulations of the molecular dynamics of
proteins and nucleic acids in solution. Comp Phys Comm 91, 215-231.

SAMUDRALA-AB - 200 models for 40 3D targets
Generating, selecting and refining protein structures de novo

L-H. Hung, S.C. Ngan, and R. Samudrala
University of Washington
{lhhung,ngan,ram } @compbio.washington.edu

We have implemented a new tri-partite protocol for the automated prediction of
protein structure from sequence alone. Structures are generated using a
simulated annealing search phase that minimizes a target scoring function.
Moves are derived from a synthetic function that produces ¢/c angular
distributions similar to the empirically observed ones. In contrast to fragment
based methods, this is accomplished without copying any angles or coordinates.
After the search phase, a local minimization protocol further reduces the target
score. In cases where there are strands or constraints, a pre-condensation phase

allows strands to pair and constraints to be satisfied. A series of composite
functions based on different combinations of 14 individual scoring functions is
used to choose a set of best conformers. A novel iterative density protocol is
then used to choose the best structures from this set. Finally, the best
conformers are used to guide the generation of new conformers, thus iteratively
refining the predicted structure. As of this abstract submission, T0236 model 5
is an example of the protocol where a structure better than most of the fold
recognition models (cCRMSD of 1.97 A for residues 1-50, 5.42 A for all 84
residues) is produced.

Generation of structures is accomplished through a search phase where a
composite energy function is minimized by Monte-Carlo simulated annealing.
In contrast to methods that replace fragments from known structures, the
present protocol uses a function that generates ¢/c angles that reflects the
distribution observed in the PDB, and does not copy any angles or coordinates.
All residues in a given protein sequence are first classified by the encompassing
triplet sequence and the triplet secondary structure. A histogram is then
constructed from the ¢/c angles of matching triplets of the same secondary
structure in the PDB. (A bin size of 10 degrees by 10 degrees is used and only
the angles in the central residue of the triplet are plotted). The mean ¢/c angle
in each bin and the standard deviation are recorded. To choose a ¢/c pair during
the simulation, a bin is first chosen using the frequencies observed in the
histogram. The angles are then chosen using a normal distribution that fits the
mean and standard deviation of the observed distribution within the bin.

In addition to the main search phase we have also added a minimization phase
using Brent’s method and small random moves which typically result in a
further 10% reduction in the target score. A pre-condensation phase,
implemented late in CASP, encourages pairing of strand residues and
satisfaction of other constraints resulting in 10-100 fold increase in the number
of paired strands formed.

The search target function is a compromise between the speed of evaluation and
the best correlation to the distance from the native structure. We keep the 10
best conformers per seed for analyses using 14 energy-like scoring functions
encompassing physical energy functions (vdw, electrostatic, solv), general
empirical functions (Shell, MJ, hcf, Sol, and Rad ) and PDB-based empirical
functions (RAPDEF, Coord, Conseq and Curv). Due to the diversity of both the
functions and the proteins that are being evaluated, it is difficult to derive a
single weighting scheme that produces an optimal composite function. Instead,
the best linear combinations of these functions were determined by logistic
regression on large sets of decoys. 19 groups of these linear combinations were
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used to filter the initial set of conformers. Typically, 100,000 — 200,000
conformers are reduced to about 1000-2000 at this stage

Energy-like scoring functions alone are still very inconsistent at picking out the
best structures. Fortunately, one of the most powerful scoring functions is the
completely statistical density function, which is the (negative) sum of RMSD to
the other conformations in the set and is a measure of the distance of a
conformer to the center of the distribution. Unfortunately, the largest
contributions to the density scores come from the outliers that can skew the
correlation of density to the distance to the true center of the distribution,
reducing the effectiveness of the function. Thus, we have implemented a new
iterative density function that measures the density, removes the worst outlier
(the conformer with lowest density) and then repeats the process until there are
no more outliers in the set. The center of this trimmed set is then selected (and
the centers of the largest k-means clusters for the final selection of 5 for CASP)
and is taken as the best.

Finally, if there is a good cluster of conformers it is possible to generate a better
set of conformers near the conformational center. This is done by incorporating
the RMSD to the best conformers into the target function and/or using internal
distance constraints derived from these conformers and repeating the generation
stage. Selection of the best conformers proceeds as before and the spread of the
final set of 5 conformers is reduced to 2-4 A cRMSD.

SBC - 90 models for 64 3D targets
Use of Pcons, ProQ and Pmodeller in CASP6

Bjorn Wallner, Tomas Ohlson, Bob McCallum, Arne Elofsson

1_ Stockholm Bioinformatics Center
bjorn@sbc.su.se, tomasoh@sbc.su.se, maccallr@sbc.su.se, arne@sbc.su.se

We have submitted automatic and manual predictions using similar techniques

as in CASPS5. Predictions have been collected by meta-servers’, and consensus
predictions®. We have used the latest versions of the Pcons consensus predictor,
Pcons 5, and the homology modeling counterpart, Pmodeller 5. The fifth
version of Pcons and Pmodeller have been upgraded since CASP5°. The new
versions have been designed to be more flexible, by the use of a standardized
method to include the performance of individual methods. A backbone only

version of ProQ* has been included in Pcons5 to evaluate structure quality,
while Pmodeller5 uses the old version of ProQ.

There are two difference between Pcons5 and Pmodeller5. Firstly Pconsb
submits the alignment as it is received by the fold recognition server, while
Pmodeller5 uses a homology modeling program, MODELLER or nest, to build
an all atom model of the targets. Secondly, the scoring function to choose the
models differs slightly with a higher emphasis on ProQ in Pmodeller than in
Pcons.

Due to the last minute changes in CASP and CAFASP organization we had to
use two different meta-servers as the input to Pcons and Pmodeller. The Pcons5
and Pmodeller 5 server predictions are based on the genesilico meta-server and
used five fold recognition methods, while prediction based on the bioinfo meta-
server, SBC-Pcons5 and SBC-Pmodeller5 (submitted as manual predictions due
to the CASP/CAFASP mess), utilized up to twenty different fold recognition
servers. These predictions are identical in all aspects except that they have used
the results from different fold recognition servers as their input. This gave an
unexpected possibility to study the importance on the choice of servers for
consensus predictions. In our benchmarks based on earlier CASP and
LiveBench’ results we predict that the difference should be limited.

Our manual predictions have focused on two questions, (i) can we use multiple
templates to improve the results from Pcons/Pmodeller and (ii) can we improve
the Pcons approach with the use of intermediate sequence searches. To answer
these questions we set up a system that allowed us to extract homologs
submitted to the meta-server and easily build models full atom models by the
use of one or several of the alignments. Models from all servers that provided
alignments were automatically built and evaluated using ProQ and other
evaluation tools. We have used several different homology modeling programs,
but found that for practical use only MODELLER could be used to build
models based on multiple templates. Furthermore, we found that the use of
multiple templates seemed to improve the models in just a few cases. . The use
of intermediate sequence searches provided extra support for the choice of
target sequences for several targets.

We have submitted predictions as entries:

1. CASP-SERVER ENTRIES:
Pcomb (5945-6111-1223 and 1461-7232-1594 for late entries)
Pcons5-genesilico (7154-1189-4551 and 7082-5331-3841 )
Pmodeller5-genesilico (8015-1578-6073 and 4916-7057-1687)

2. Automatic submissions in the Manual category
Pcons5-bioinfo (6533-6220-4531)
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Pmodeller5-bioinfo (1391-7191-5375)
3. Manual predictions
SBC (5551-1003-7444)
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Scheraga - 170 models for 34 3D targets

Physics-based protein-structure prediction using the UNRES
and ECEPP/3 force fields - test on CASP6 targets
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The structures of the target proteins were predicted for the most part with a
hierarchical algorithm consisting of three major stages, in which the tertiary
structure is predicted at low resolution and then refined“?. Some of the
predictions for the o-helical targets (T0198 and T0221) were carried out using
only the all-atom ECEPP/3 force field® with surface-solvation models and the
electrostatically-driven Monte Carlo (EDMC) method as a search technique®.

In stage 1 of our hierarchical approach, the protein is represented by a
simplified low-resolution united residue (UNRES) model, in which the atoms
of the peptide group and side chain of each amino-acid residue are replaced
with two centers of interactions: the united peptide group (p) located in the
middle between two consecutive o-carbon atoms and the united side chain
(SC). The lengths of the virtual C*...C* and C“...SC bonds are held fixed, but
the virtual-bond angles, the virtual-bond dihedral angles, and the orientations of
the C°...SC virtual bonds are variable. The interactions of this simplified
model are described by the UNRES potential derived from the generalized
cumulant expansion of a restricted free energy (RFE) function of polypeptide
chains’. The cumulant expansion enabled us to determine the functional forms
of the multibody terms in UNRES. The individual energy terms were
subsequently parameterized by using the quantum-mechanical ab initio energy
surfaces of model systems and the potential was fine-tuned by applying our
novel hierarchical optimization method targeted at decreasing the energy while
increasing the native-likeness of structures of the training proteins®.

Our conformational space annealing (CSA) method with recent modifications
to treat both o— and B-structure® was used to search for the lowest-energy
families of UNRES conformations. To speed up the search in the case of larger
proteins, information from secondary structure prediction by PSIPRED® was
used in the generation of the initial structures; however, the search was carried
out in an unrestricted manner with the UNRES energy function. For very large
o-helical proteins, a search with our simplified approach” in which o-helices
are represented as cylinders was carried out and, for the lowest-energy
structures thus obtained, the conformational search was completed with the
UNRES force field. For targets T0231 and T0234, as a test, one set of
UNRES/CSA searches was started from templates provided by the 3D Jury
metaserver®; the resulting structures turned out to have low UNRES energies
and were, therefore, included among the submitted models.

The five families with the lowest UNRES energy obtained in stage 1 were
chosen as models 1-5 and converted to all-atom models in stage 2 by using our
energy-based method for the reconstruction of an all-atom polypeptide chain
from its C*trace and side-chain-centroid coordinates®'. Finally, in stage 3, the
all-atom structures were refined by minimizing their energies with the all-atom
ECEPP/3 force field® subject to C*-distance constraints of the parent UNRES
models.

1. Liwo,A. et al. (2004) Parameterization of backbone-electrostatic and
multibody contributions to the UNRES force field for protein-structure
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backbone with defined side-chain centroids. Biophys. Chem. 100, 261-280.

Schulten-Wolynes - 20 models for 11 3D targets

Evolutionary profiles derived from QR factorization of
multiple sequence and structural alignments

A. Sethi, J. Eargle, P. O'Donoghue, T. Pogorelov, R. Amaro and Z.

Luthey-Schulten
University of Illinois at Urbana-Champaign
zan@uiuc.edu

Selection of scaffolds for modeling of the target structures was achieved using a
combination of profile searches: a single sequence search against HMMPFAM'
profiles and a profile search using our evolutionary profiles of the target

sequence against the NCBI-NR database using HMMer? and BLAST® or
PSIBLAST?®. The complete evolutionary profiles of the scaffold proteins are
nonredundant profiles composed of sequences and structures selected using our
multidimensional sequence QR*® algorithm to efficiently represent the
evolutionary space of the sequences and structures in the protein family or
superfamily. The evolutionary profiles for the target sequences typically
contained proteins with sequence identity > 30%. As the evolutionary profile
for the template is composed of a combination of sequences and structures of
distant homologs, it allows broader diversity of the sequences. In many cases,
the template profile contained sequences from beyond the family to include
superfamily members.

The evolutionary profiles for target and template sequences were aligned using
profile to profile alignment of CLUSTALW’. The secondary structure of the
template predicted from PSIPRED? was used to improve the alignment of the
template profile to that of the scaffold semi-automatically. Three-dimensional
models of the target protein were made using the Modeller 6v2° package based
on the improved alignments. The models were generated using the loop refine
routine and constraints were applied on secondary structure, when neccessary.
This strategy appears to work best for templates within the same family or
related superfamilies as the target.

1. Bateman,A., Coin,L., Durbin,R., Finn,R.D., Hollich,V., Griffith-Jones,S.,
Khanna,A., Marshall, M., Moxon,S., Sonnhammer,E.L.L., Studholme,D.J.,
Yeats,C. & Eddy,S.R. (2004). The Pfam protein families database. Nucleic
Acids Res. 32, D138-D141.

Durbin,R., Eddy,S., Krogh,A. & Mitchison,G. (1998). Biological Sequence
Analysis: Probabilistic models of proteins and nucleic acids. Cambridge
University Press.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

4. O'Donoghue,P. & Luthey-Schulten, Z. (2003). On the evolution of
structure in aminoacyl tRNA-synthetases. Microbiol. Mol. Biol. Rev. 67,
550-573.

O'Donoghue,P. & Luthey-Schulten,Z. Evolutionary profiles derived from
the QR factorization of multiple structural alignments gives an economy of
information. J. Mol. Biol. Submitted.

6. Sethi,A., O'Donoghue,P. & Luthey-Schulten,Z. Evolutionary profiles
derived from the QR factorization of multiple sequence alignments gives
an economy of information. In preparation.

Thompson,J.D., Higgins,D.G. & Gibson,T.J. 1994. CLUSTALW:
improving the sensitivity of progressive multiple sequence alignment
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through sequence weighting, positions-specific gap penalties and weight
matrix choice. Nucleic Acids Res. 22, 4673-4680.

8. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

9. Marti-Renom,M.A., Stuart,A., Fiser,A., Sanchez,R., Melo,F. & Sali,A.
(2000). Comparative protein structure modeling of genes and genomes.
Annu. Rev. Biophys. Biomol. Struct. 29, 291-325.

Shiroganese - 64 models for 64 3D targets
Structure prediction with match-node profiles via HMMs

M. Sato' and K. Horimoto®
!~ Department of Systems and Information Engineering Graduate School,
Maebashi Institute of Technology, - Laboratory of Biostatistics, Institute of
Medical Science, University of Tokyo
maki@maebashi-it.ac.jp

We will shortly describe the framework of our prediction method. First, the
profile of the target sequence is constructed based on the HMM model.
Secondly, the similarity of the target profile is searched against a profile
database, and the profile with the highest score is detected. Thirdly, the profile
alignment between the target and the highest-score profiles is converted to the
corresponding sequence-sequence alignment. Finally, based on the alignment, a
3D model is built by a standard homology modeling method.

One of the most significant features in our method is to adopt a novel profile,
referred to as match-nodes profile®. The match-node profile is constructed via
profile of hidden Markov models (HMMs)'. The profile of a representative
HMM is composed of three types of nodes; match node, delete node, and insert
node. The three nodes in the HMM profiles represent the probability
distribution of amino acid residues, deletions, and insertions at each site in
multiple alignment, respectively. We extract the match-node profile, from the
series of probability distributions in the match-nodes, which can describe
essential characteristics of the multiple alignment.

To build the HMM, we adopt SAM-T2K® with w0.5 script. In the construction
of the template profile library by SAM-T2K, we utilize the PDB40D°® and the
non-redundant (NR) database from NCBI’. Each sequence in PDB40D is
regarded as a template sequence, and its similarity is searched against the NR
database from NCBI. The SAM-T2K automatically builds the HMMs

corresponding with the template sequences in PDB40D. The HMM of target
sequence is also built in the same way. Finally, the match-node profile is
extracted from the HMM built by the above procedure; 4289 profiles are stored
in the present template profile library

As for the scoring scheme of similarity between the profiles, we adopt the log
average scoring based on Bayesian theory*, which is one of the most suitable
for the profile-profile comparison. With the log average scoring, the profiles are
locally aligned by the dynamic programming procedure. Using the above
procedure, we search the similarity of target profile against the template profile
library to detect the profile with the highest score.

To construct the 3D model, the alignment between the target and the highest-
score profile is converted to the alignment between the respective sequences
through the most probable path on the HMM in the highest-score profile. Thus,
we obtain the set of the highest-score sequence, structure, and alignment. Based
on the results, MozingerZ (MZ), a homology modeling package.?, is performed
to build a 3D-model of the target sequence.

We would like to thank Dr. Koji Ogata for providing the MozingerZ program
and helpful advice to build 3D-models.

1. Karplus,K., Barrett,C., and Hughey,R. (1998) Hidden Markov Models for
Detecting Remote Protein Homologies, Bioinformatics 14, 846-856.

2. Ogata,K., Leplae,R., Wodak,S.J., An Energy Based Predictions for Multi-
loops of Proteins, in preparation.

3. Sato,M., Sugaya,N., Murakami,H., Imaizumi,A., Aburatani,S., Akutsu,T.
and Horimoto,K. (2004) Detection of Remote Homologs Based on
Hiddend Markov Model Profile. Res. Comm. Biochem. Cell Mol. Bio., in
press.

4. von Ohsen,N., Sommer,]. and Zimmer,R. (2003) Profile-profile alignment:

a powerful tool for protein structure prediction, Pac. Symp. Biocompt.,

252-263.

http://astral.stanford.edu/

http://www.soe.ucsc.edu/research/compbio/sam.html

7. ftp://ftp.ncbi.nhi.gov/blast/db/nr.Z
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SHORTLE - 113 models for 53 3D targets

Homology modeling and new fold prediction by emphasizing
local interactions

Q. Fang and D. Shortle
The Johns Hopkins University School of Medicine, Baltimore, MD USA
dshortl1@jhmi.edu

The foundation of our approach is modeling the energetics of local side-chain
interactions with the peptide backbone and with neighboring side-chains using
four statistical potentials based on a common reference state. (1) Psb1 is the
propensity of a side-chain at position i to adopt specific values of phi, psi, and
chil'. (2) Psb234 is a distance-dependent potential reflecting interactions of the
side-chain at i with the six closest peptide-bonds beyond those covered by Psb1
(3) PssR is a distance-dependent potential for interactions of the side-chain at i
with side-chains at positions i+1 to i+4 and (4) Pss® is a dihedral-angle
potential between CB-CA(i)-and the subsequent CA-CB bonds at positions i+1
to i+4. All four terms include specification of the secondary structure of
residue i as turn, helix, or strand. The reference state is a large ensemble of
high resolution crystal structures with side-chains averaged to reflect the
frequency of the 20 amino acids in the sequences of the same ensemble of
proteins. In effect, all four terms are independent components of the
probability P(sequence/structure)>®, Individually each term is estimated to
average between -0.15 and -0.4 kcal/mole per residue. In combination they
appear to contribute an average of 0.6 kcal/mole of free energy per residue to
the stabilization of the native structure relative to the same structure with
averaged side chains. Thus correct modeling of these interactions should
substantially focus the conformational search to a subspace that includes the
native state.

For targets identified by the PSI-BLAST and the bioinfo.pl/meta servers as
having a structural homologue with greater than 20% sequence identity, the
sequence alignment was inferred from a combination of PSI-BLAST and 3D-
Jury output. Segments of the target sequence containing turns/loops plus
flanking helices/strands were constructed de novo by recombination of 4-, 5-,
and 6-residue pieces of high resolution crystal structures selected for their low
local interaction energies. (No use was made of the amino acid sequence of
these pieces of protein structure.) When the constructed fragment superposed
well with confidently aligned helices/strands in the template, they were saved
and later clustered to identify the turn geometry with the highest entropy*. In

15% of cases, the alignment was readjusted because of difficulty obtaining
good superposition based on the initial sequence alignment.

In the second step, the predicted phi/psi/chil angles of turns were included as
structural restraints, along with the phi/psi/chil angles and CB-CB distances
taken from the well-aligned region of the structural homologue. In simulated
annealing runs using CNS?® (version 1.0) in torsion angle dynamics mode, 1000
steps were taken at 2000-10,000 degrees, followed by 1000 steps of cooling to
room temperature and a default minimization. With this protocol, between 1000
and 5000 all-atom conformations of the target’s three dimensional structure
were generated on a small LINUX computer farm. The best 10% of
conformations, as scored by sum of z-score of a finely binned all-atom potential
and the local potentials described above, were then clustered and for 90% of the
targets predicted, the cluster center was submitted as the first model for
submission; the conformation with the best all-atom potential was submitted as
the second model. In a few cases, when the score of the conformation with best
all-atom potential was much lower than that of the cluster center, this lowest
energy conformation was submitted as model #1.

Targets lacking readily identifiable structural homologues were tackled as new
fold challenges. The secondary structure was predicted by comparing the
results of PSIPRED and PROFSEC with three secondary structure profiles
generated by threading overlapping pieces of target sequence of length 6, 9, and
12 residues®, selecting for the 20-30 fragments of native structure with (1) the
lowest Psb1 + Psb234 scores, (2) the lowest PssR+Pss® scores, and (3) the best
exposure/burial propensity scores. When the PSIPRED/PROFSEC results
disagreed with these profiles, either the secondary structure was left unspecified
or that segment of secondary structure was alternately treated as a strand and
later as a helix.

Using the predicted secondary structure with some fraction of residues
unspecified, fragments of the target corresponding to 2 or 3 segments of helix
and/or strand (i.e., including 1 or 2 turns, 25-45 residues in length) were
constructed by recombination of overlapping 4-, 5-, or 6-residue pieces of high
resolution crystal structures selected for low local interaction energies. For
each bump-free recombinant, three non-local energy terms were scored: the
radius of gyration, an empirical pair potential energy’, and a simple statistical
potential for the distance and torsion angle defined by the ends of the secondary
structures separated by each turn. After setting modest cutoffs for these scores
based on a short initial run, approximately 300-2000 fragments were generated
for each segment of the target, and then clustered by CB-CB distance matrix
error. Nine non-overlapping clusters, each containing of 5% of the ensemble,
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were visually inspected, along with the most compact and lowest non-local
energy scoring fragments.

Depending on the level of convergence and therefore the confidence in the
structure of a given segment, between 1 and 1000 fragments for each of 2 to 4
segments overlapping by a single helix/strand were recombined, with selection
for compact, non-bumping conformations with good side-chain pair potential
scores. These larger recombinants were scored, clustered, and visually
inspected as above, and again, depending on the degree of convergence, a
variable number of representative fragments were selected for the next round of
recombination. The final structure was either manually assembled from large
fragments or manually adjusted from a full-length recombinant, to enforce
protein-like compactness and patterns of secondary structure interaction. A
final short restrained MD run using CNS was carried out to eliminate steric
overlap and restore proper covalent bond lengths and angles at sites of breakage
during manipulation.

For most targets, a single global structure (topology) was inferred from
inspection of the ensembles of fragments and recombinants. In these cases,
only a single model was submitted; submission of additional models with
different topologies would amount to educated, but nonetheless unsupported
guesses. However, for several targets (primarily all beta proteins), no clear
topology could be inferred, so 3 to 5 promising recombinants were submitted
without manipulation or refinement by CNS.

1. Shortle,D. (2002) Composites of Local Structural Propensities: Evidence
for Local Encoding of Long Range Structure. Protein Science 11, 18-26.

2. Simons,K.T., Ruczinski,I., Kooperberg,C., Fox,B.A., Bystroff,C. and
Baker,D. (1999) Improved recognition of native-like protein structures
using a combination of sequence dependent and sequence-independent
features of proteins. Proteins 34, 82-95.

3. Shortle,D. (2003) Propensities, probabilities, and the Boltzmann
hypothesis. Protein Science 12, 1298-1302.

4. Shortle,D., Simons,K.T. and Baker,D. (1998) Clustering of low energy
conformations near the native structures of small proteins. Proc. Natl.
Acad. Sci. USA 95, 11158-11162.

5. Brunger,A.T., Adams,P.D., Clore,G.M., DeLano,W.L., Gros,P., Grosse-
Kunstleve,R.W., Jiang,J.-S., Kuszewski,J., Nilges,N., Pannu,N.S,,
Read,R.J., Rice,L.M., Simonson,T. and Warren,G.L. (1998).
Crystallography and NMR system (CNS): A new software system for
macromolecular structure determination, Acta Cryst. D54, 905-921.

6. Fang,Q. and Shortle,D. (2003) Prediction of Protein Structure by
Emphasizing Local Side-Chain / Backbone Interactions in Ensembles of
Turn Fragments. Proteins 53, 486-490.

7. Bryant,S.H. and Lawrence,C.E. (1993) An empirical energy function for
threading protein sequence through the folding motif. Proteins 16, 92-112.

Softberry - 122 models for 63 3D / 59 DR targets
SoftPM: Softberry tools for protein structure modeling

V. Solovyev ?, D. Affonnikov?, A. Bachinsky?, I. Titov,

V. Ivanisenko? and Y. Vorobjev?
I~ Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 OEX,UK;
2-Softberry Inc., 116 Radio Circle, Suite 400; Mount Kisco, NY 10549, USA
victor@cs.rhul.ac.uk

We developed a suite of programs SoftPM (Software for protein modeling) that
was used to analyze CASP6 models. Initial step in 3D modeling is selection of
a template structure for a query sequence, or selection of a set of most similar
fragments if we study a new fold, and obtaining template-query sequence
alignment. This step is performed by Ffold program. Ffold alignment is made
taking into account sequence similarity, secondary structures of both query and
template protein, and solvent accessibility of a template protein. Secondary
structure of a query protein is predicted by PSSFinder program. Secondary
structure and accessibility for a template is calculated by SSENVID program. As
a result, a set of aligned template-query sequence pairs is obtained. Each
alignment generates a model structure, and usually up to 2-4 template-query
pairs are selected for further modeling.

Building side chain and loop coordinates for a query protein based on a
template structure and sequence alignment is performed by Getatoms program.
To generate a set of side chain conformations for side chain structure
prediction, the program uses backbone-independent rotamer library. Rotamers
for each residue are ranked according to their frequency of occurrence
(statistical potential) and energy of interaction with backbone (VDW scoring
potential'). Unfavorable conformations are then filtered out using several
single-residue criteria, pairwise VDW interaction energy, and Goldstein DEE
algorithm?®. For remaining rotamers, an optimization procedure is performed to
obtain a conformation with minimal VDW energy. The loop modeling
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procedure in Getatoms program is as follows. A large set of loop main chain
conformations satisfying geometrical loop closure criteria is generated and
ranked according their sterical energy of interaction with other parts of protein
molecule. Top set of the conformations is subjected to the side chain
optimization procedure as described above. A conformation with minimal
energy is selected as loop model. This procedure is applied consequently for all
the loops modeled.

Models output by Getatoms program are further refined by Hmod3dMM
program, which performs energy minimization using AMBER force field**.
Hmod3dMM consists of two modules. The first module prepares a molecule
topology file, which is then used as an input for molecular mechanical
minimization module. Energy minimization is first performed in vacuum, and
afterwards the resultant structure is further minimized in water. To handle
water-water solvent interactions, Hmod3dMM employs special routines that are
considerably faster than the standard ones.

At the final stage, all models are evaluated by Hmod3Dmd program, which
performs general MD simulation of a protein model structure in an implicit
solvent via the simulated annealing protocol in the NTE or NTV ensemble.

In the absence of significant homology with known protein structures the
structure of query protein is modeled using the Cover3D and Abini3D
programs. Cover3D uses Ffold results to cover a query sequence with short
similar protein fragments with known 3D structure. It outputs several variants
of such coverage, which are used by Abini3D to compute a putative 3D model
of target sequence. Abini3D finds optimal conformation of a set of 3D-
fragments representing a target sequence. First, it removes the disordered
regions from the coverage and generates a set of distinctive partially compact
conformations, which are then optimized by genetic algorithm using simplified
model of amino acid residues. Then, the algorithm optimizes the energy
function derived from statistics on known tertiary structures. Finally, Abini3D
restores loop structures and outputs the atomic coordinates of optimal
conformation. Resulting models are subjected for further refinement using
Hmod3dMM program. Then all the models are ranked according to Hmod3Dmd
criteria. The top ranked model is selected as a final solution.

1. Northrup,S.H., Pear,M.R., Morgan,J.D., McCammon,J.A., Karplus,M.
(1981) Molecular dynamics of ferrocytochrome c. Magnitude and
anisotropy of atomic displacements. J. Mol. Biol. 153, 1087-1109.

2. Goldstein,R.F. (1994) Efficient rotamer elimination applied to protein side-
chains and related spin glasses. Biophys J. 66, 1335-1340.

3. Allen,M.P, Tildesley,D.J. Computer Simulations of Liquids (1987) Oxford
University Press, Oxford.

4. Weiner,S.J., Kollman,P.A., Nguyen,D.T., Case,D.A. (1986) An All Atom
Force Field for Simulations of Proteins and Nucleic Acids. J. Comput.
Chem. 7, 230-252.

Prediction of intrinsic disordered regions in protein sequences

A.G. Bachinsky?*? and V.V. Solovyev'?

!-Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 OEX,UK; - Softberry Inc., 116 Radio Circle, Suite 400
Mount Kisco, NY 10549, USA; 3 - SRC VB “Vector”, Koltsovo, Novosibirsk
region, 630558, Russia
victor@cs.rhul.ac.uk

Identification of disordered regions in proteins is very important for their
structure prediction and functional characterization, as many intrinsically
unstructured protein regions play key roles in cell signaling, regulation and
cancer. Here we present a new algorithm of identification of disordered regions
in proteins, Pdisorder.

Training data.
All disordered data used here (649 sequences containing 61237 disordered

positions) were downloaded from http://disorder.chem.wsu.edu. Ordered data
were prepared as follows: fragments with accurately determined 3D structures
were selected from non-redundant set of PDB sequences (2,017 fragments
containing 309,454 ordered aminoacid residues). Propensity of each amino acid
residue to be in a disordered regions was calculated as Qq(i)=(Pq(i)- Po(i))/

(Pa(i)+Po(i)), where P(i) and Py(i), are frequencies for i-th type of aminiacid

to be in disordered or ordered regions. Promising composition-based attributes’
as well as a number of property-based attributes including all properties of
AAindex (http://www.genome.ad.jp) were tested together with the propensities
on their significance for discrimination of disordered regions.

Recognition procedure.
After testing many approaches, a combination of neural network (NN), linear

discriminant function (LDF) and a smoothing procedure was selected for
recognition of disordered and ordered residues in proteins. At the first stage, we
compute features in a sliding window of 31 residues for neural network (21
inputs, 3 layers of neurons, 10 neurons in each layer, 1 output) and for the
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linear discriminant function (46 inputs). The Vi=(Lj+Ij+R;)/3 value is used for
determining if the i-th position belongs to an ordered region; where L, [j, Rj

are outputs of the neural net for windows starting at positions i, i-15 and i-30. If
the value is very high or very low, the position is assumed to be “possibly
ordered” — ‘o’ or “possibly disordered” — ‘d’. For intermediate values (‘p’), an
attempt to use the same outputs of LDF to improve assignment is made. At the
second stage, we apply a smoothing procedure that computes chances for the
positions of query sequence to be in ordered regions. Assignment of short
sequences of “possibly disordered”, “possibly ordered” or “unknown” positions
is changed depending on sequences surrounding them. The main result of the
procedure is a set of long uniform regions with minimum presentation of
unknown positions.

Table 1. Estimates of accuracies of different approaches.

IDiscriminator DIS ORD AVER
INN 73.1 93.9 90.5
ILDA 72.4 85.9 83.7
INN+LDA 76.3 90.6 88.2
INN (+LDA) 83.4 93.8 92.1
ILDA (+NN) 72.4 85.9 83.7

DIS: Disordered positions, ORD: Ordered positions, AVER: Average accuracy.
NN: Only neural net is used, LDA: Only linear discriminant is used, NN+LDA:
average values of both outputs are used, NN (+LDA): LDF outputs are used for
correction of “unknown” assignments of NN outputs, LDA (+NN): NN outputs
are used for correction of “unknown” assignments derived of LDF outputs.

The accuracy of our disorder regions predictor Pdisorder on several test sets is
higher than that for the other disorder fragments identification programs such as
PONDR? and GlobPlot?.

1. LiX., Obradovic,Z., Brown,C., Garner,E., Dunker,A. (2000) Comparing
predictors of disordered protein. Genome Informatics 11,172-184.

2. Li,X., Romero,PM., Rani,M.A., Dunker,A., Obradovic,Z. (1999)
Predicting protein disorder for N-, C-, and internal regions. Genome
Informatics 10, 30-40.

3. Linding,R., Russell,R.B., Neduva,V. and Gibson,T.J. (2003) GlobPlot:
exploring protein sequences for globularity and disorder. Nucleic Acids
Research 31(13), 3701-3708.

SSEP-Align (serv) - 501 models for 63 3D / 61 DP targets
SSEP - secondary structure elements and profiles

J.E. Gewehr, A.R. Macri and R. Zimmer

Practical Informatics and Bioinformatics Group, Institut fiir Informatik,
Ludwig-Maximilians-Universitdt Miinchen,
Amalienstr. 17, D-80333 Munich, Germany
{jan.gewehr, alessandro.macri, ralf.zimmer} @bio.ifi.Imu.de

Material

Our template library of domains with known structure is a subset of the
ASTRAL compendium' The subset which was filtered for 95% sequence
identity (ASTRAL95) can be obtained from the ASTRAL website
(http://astral.berkeley.edu/). For generating profiles we used the NR database
(http://www.ncbi.nlm.nih.gov/) and PSIPRED? which relies on PSI-BLAST®,

Pattern searches were performed with InterProScan on the InterPro database
collection®. We utilized the MaxSprout® server for postprocessing of our C-
alpha models to obtain a structure description suitable for CASP submission.

Domain Detection
The SSEP domain prediction server consists of three consecutive steps:

1. Finding Potential Domain Boundaries: Given a target sequence s and a
template library of domains, we align each domain sequence with appropriate
windows on s with secondary structure element alignment®. After discarding
insignificant hits, we extract potential domain boundaries from the start and end
points of the top-scoring windows.

2. Similarity Scoring of Domain Regions: We define a potential domain region
as a subsequence of s that starts and ends with two boundaries. For each region
I, we compute a similarity score by aligning each template domain against r,
using a combination of secondary structure element alignment and log average
profile-profile alignment on both sequence and secondary structure profiles’.
We also add significant InterPro patterns found on the target s to the set of
potential domain regions.

3. Combining Multiple Domain Regions: We rank all valid combinations of
non-overlapping domain regions according to a simple combination score based
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on the previously computed similarity scores and penalties for unclassified
regions. As result we return the five top scoring combinations.

Structure Prediction

The domain prediction is further used to predict the three-dimensional
structure. For each potential domain the corresponding segment of the profile is
aligned to each ASTRAL profile and the results are ranked according to their
score. Depending on the scores and scoregaps between the highest ranking
alignments five alternatives are chosen; e.g. in the case of a high score gap to
all other domain combinations and high scores for all profile-profile alignments
of detected domains within the combination, all five candidates may just be
variants of the same alignment. The candidates are then assembled from the
corresponding pdb-style-files and stripped down to their C-alpha-coordinates.
The full structure for each segment was then reconstructed via MaxSprout.

Whenever the domain detection does not come up with a significant hit and the
segments for profile-profile alignment are thus unavailable, we apply once
again PSI-BLAST as a means to grab at least partial alignments not covering
whole domains. The partial alignments are then used to build models via
MaxSprout from C-alpha coordinates.

1. Chandonia,J.M., Hon,G., Walker,N.S., Lo Conte,L., Koehl,P., Levitt, M. &
Brenner,S.E (2004). The ASTRAL compendium in 2004. Nucleic Acids
Res. 32, D189-D192.

2. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

4. Mulder,J. et al. (2003). The InterPro Database, 2003 brings increased
coverage and new features. Nucleic Acids Res. 31, 315-318.

5. Holm,L. & Sander,C. (1991). Database algorithm for generating protein
backbone and side-chain co-ordinates from a C alpha trace application to
model building and detection of co-ordinate errors. J. Mol. Biol. 218, 183-
194.

6. McGuffin,L.J., Bryson,K. & Jones,D.T. (2001). What are the baselines for
protein fold recognition? Bioinformatics 17, 63-72.

7. Ohsen,N.v., Sommer,l., Zimmer,R. & Lengauer,T. (2004). Arby: Automatic
Protein Structure Prediction using Profile-Profile Alignment and
Confidence Measures. Bioinformatics 20, 2228-2235.

Strx_Bix_Geneva - 15 models for 15 3D targets
Human intervened comparative modeling in CASP6

Y.L. Yip"? and H. Scheib'?
! — Structural Bioinformatics Group, Department of Structural Biology and
Bioinformatics, University of Geneva, Switzerland
?— Swiss Institute of Bioinformatics
holger.scheib@isb-sib.ch

Template selection. PSI-BLAST" and, if necessary, 3D-PSSM? were run with
standard parameter settings to identify suitable template structures. In cases
where multiple templates were available for a target, the quality of several
template structures was assessed from their ‘header’ entries focusing on i.e.
resolution, number of residues in experimental structure, no missing residues or
atoms. The Coa atoms of the remaining structures were superimposed in
SPDBV® to investigate whether templates might exist in more than one
conformational state.

Target to template alignment. The target sequence and the selected template
structure(s) were aligned in the SPDBV comparative modeling environment.
Target to template(s) alignment was guided by ClustalW* multiple sequence
alignments, secondary structure prediction from both Jpred® and Predict Protein
servers® as well as literature analysis. All alignments were carried out
interactively in SPDBV and potential loop anchor points were already
identified at this step.

Model building. Models of the structurally conserved regions (all backbone
without loops) were built in SPDBV.

Loop building. Loops were generated semi-automatically applying the “Build
Loop...” and “Scan Loop Database...” options in SPDBYV, respectively. Anchor
points were identified from the target to template alignment. Each loop was
evaluated according to a simple clash score, overall packing of the protein and
biological impact, if one was obvious.

Model refinement and evaluation. Models were refined energetically applying
100 to 200 steps of Steepest Descent using the SPDBV implementation of the
GROMOS96 force field’. Unfavorable side chain conformations were identified
using the “Amino Acids Making Clashes...” and “Amino Acids Making
Clashes With Backbone...” options together with a force field energy report.
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Problematic backbone conformations were identified applying the
Ramachandran plot implemented in SPDBV. We routinely applied SCWRL3.0°
to optimize side chain placement, but in most cases discarded the results.
“Scwrled” and “unscwrled” models were evaluated using Anolea®, Z-packing
by the WhatCheck server. In both cases, the “unscwrled” models yielded
better results for most targets.

NOTE: We regarded CASP6 as ideal for teaching and training “on the job™.
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Taylor - 193 models for 64 3D targets
Dynamic domain threading
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Each target sequence was scanned across the non-redundant protein sequence
databank using PSI-BLAST1 followed by QUEST2 then aligned with
MULTALS3. Cutoffs were adjusted until between 10 and 20 maximally disparate
sequences remained in the alignment. Secondary structure for each sequence in
the alignment was predicted with PSI-PRED4 using just the sequences in the
alignment as a mini-database.

To find potential templates, the PSI-BLAST profile was rescanned against the
PDB sequences and the target sequence was scanned against a reduced PDB
sequence set using TUNES and genTHREADERG. All PDB hits were taken as
possible templates, plus any that had been identified by QUEST in the original
scan. Typically 30 templates were used (10 TUNE, 10 genTHREADER, a
maximum of 10 from PSI-BLAST and any others from QUEST).

Complete models for the target were constructed using the program RAMBLE7
which is a simple random-walk based approach previously used to construct
'decoy' proteins then modified to incorporate suitable torsion values in
predicted secondary structure segments. In this application, a further constraint
is imposed to 'encourage’ the selected residue position to lie close to given
target points. This is a development from the model construction in the MST8
program used in previous CASPs in which the template positions were retained
and 'random' connecting loops (or termini) 'grown' where necessary.

For each template, every buried position in a secondary structure was taken as a
starting point from which the chain was grown over the template (using
predicted secondary structure where no other guide was available). This was
repeated for each predicted secondary structure variant (one for each sequence
in the alignment) and repeated five times with different random number seeds.
From each starting position, the template was also restricted to a number of
residues that matched the target length using an Ising-based domain definition
method9. The selected positions were then matched to the target alignment
using a scoring scheme similar to that used previously in the MST program.
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Depending on the number and size of templates and the number of sequences,
the method usually produced between 5,000 to 10,000 models. For clear
homologues this gives a dense covering of minor variations whereas for ab-
initio prediction (where the selection of templates is effectively random) there
is much greater variation. The same method was run on all targets, irrespective
of their degree of difficulty.

The resulting alpha-carbon models were ranked using a variety of structure
evaluation methods. These included the correlation of conserved

hydrophobicity with solvent exposure (as estimated by POPS 10 on the CA
positions), the statistical (artificial neural net) method TUNE, the 3D pattern-

based method SPREK 11 and the CAO12 method which is based on correlated
amino acid changes in the multiple sequence alignment.

All models were ranked on a combination of these scores and the best assessed
visually. For clear homologues, the top 3 ranked models were taken usually
without any “user” interference. For the more difficult targets, typically, the top
10 models were considered with some being rejected if they contained any
unprotein-like features. The top 3 selections (sometimes more for uncertain
results) were then converted to full main-chain models using the CA2MAIN
program (Taylor, unpublished) and submitted.
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Coarse-grained protein models and global optimization
approaches to protein structure prediction

Matthew S. Lin, Brian Carnes', Devin Hendricks',
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1 UCSF/UCB Joint Graduate Group in Bioengineering, 2Department of
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The ab initio protein structure prediction problem is to predict the three-
dimensional topology of the native state of a protein given its sequence of
amino acids. Within an ab initio framework, a quantitative description of the
free energy surface describing both the proteins' intramolecular forces and the
intermolecular interactions with aqueous solvent is required. Because the
energy landscape of a realistic-sized protein has thousands of parameters and an
enormous number of local minimizers that are potential false traps for the
global optimum or very low-lying free energy minimum of the target native
structure, global optimization is a promising approach to searching the free
energy surface. This year we used two radically different energy functions and
global optimization strategies, one that we introduced in CASP5' and
continued to use for the first half of CASP6, and a new strategy based on
coarse-grained protein models developed in the Head-Gordon group which
were deployed in the second half of the CASP6 competition *°,

The first global optimization approach used is our method known as Stochastic
Perturbation with Soft Constraints (SPSC)"*, which uses Psi-Pred server
predictions of secondary structure'® as mathematical constraints on the
optimization search. We do not use a tertiary structure template, or use tertiary
structure predictions for generating the terms of the physics-based energy
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function'®. The SPSC algorithm is a two-phased approach in which the first
phase generates starting structures that are local minima containing predicted
secondary structure, and the second phase improves upon the starting structures
using both global and local optimizations. All starting structures in the first half
of CASP6 were generated with an inverse kinematics (IK) tool developed by
Kreylos and co-workers", which allows for interactive manipulation of local
and global dihedral angle moves, consistent with the Psi-Pred predictions. It
was used to form o—helices, as well as an exhaustive enumeration of all
possible B—sheet topologies for proteins with predicted strands, including those
described in [12], but do not contain any significant tertiary structure. Phase II
improves those configurations through global minimizations in a sub-space of
the torsion angles of amino acids predicted to be coil. The global optimization
produces a number of local minimizers in the subspace chosen, and those
conformations are locally minimized in the full variable space. The new
minimizers obtained from the local minimizations are merged into the current
list, are clustered and ordered by energy value, and the second phase starts
again. The process repeats for a number of iterations, until no further progress
is made in energy lowering. Local and global optimization algorithms run in
parallel on the IBM/SP cluster using up to 512 processors, or across a local
cluster of G5s, Alphas, and x86 machines. The parallelization uses a new load
balancing technique that is general for large tree search problems using a
hierarchical approach®,

Our description of the protein intramolecular interactions uses the AMBER96
molecular mechanics energy function. For intermolecular interactions, the use
of an explicit water potential is computationally expensive in the context of
global optimization, and is possibly not needed in structure prediction if the
physics of hydration can be adequately described by coarse-grained models.
Our research group has studied a critical influence of aqueous solvent on
protein conformation, namely hydrophobic interactions, using both
experimental solution scattering and simulation'*'®, The benefits of our
hydrophobic hydration function are (1) it is a well-defined model of the
hydrophobic effect, (2) it is described by a continuous potential that is more
computationally tractable than solvent accessible surface area models, and (3)
its novelty in the context of structure prediction of the extra stabilization at a
longer length scale for the hydrophobic interaction that is not described by
surface area solvation models'*"°.

We have recently tested the model on the publicly available Decoys 'R’ Us
database'” and the one created by the Baker group'® to examine the ability of our
energy function to detect the native protein structure from a large set of
misfolded or “decoy” structures'. We analyzed the performance of our energy
function on 20 different proteins (seven o—helical, five B—sheet, and eight o/f3

proteins), half selected from the Decoys R’ Us database and the other half from
the Baker decoy sets. The potential energy of each protein’s native structure
was either the lowest or within the lower 5™ percentile'. The result shows that
our energy function can discriminate the native protein structure from a large
number of decoy structures.

For targets predicted in the second half of CASP6, we expanded our global
optimization strategy to include predictions based on simulated annealing of a
coarse-grained protein model developed in the Head-Gordon laboratory®®. For
the last 4 targets we relied exclusively on the new approach. The protein chain
is modeled as a sequence of beads of three types, hydrophilic, hydrophobic, and
neutral, designated by L, B and N, respectively. The pair-wise interaction
between beads is attractive for B-B interactions, and repulsive for all other bead
pairs (although the strength of the repulsive interactions depend on the bead
types involved). In addition to pair-wise non-bonded interactions, the other
contributions to the potential energy function include bending and torsional
degrees of freedom. Inspired by a simple 2D-model of water®®*, an additional
interaction representing hydrogen bonds between [B-strands was added to beads
predicted to be in a B-sheet, regardless of bead type®. Note that while the non-
bonded potential is symmetric with respect to inversion, the dihedral
interactions are not symmetric with respect to indice permutations, and we do
not find mirror image states.

The general mapping between 20-letter codes provided by CASP and the 3-
letter code of the coarse grained model relied on standard interpretations of
amino acids as hydrophobic, hydrophilic, or small/neutral. Although there is
ambiguity in the mapping from a 20-letter to a 3-letter code, in general the
mapping used in Table I of [7] is a good approximation to the original
sequence. The model requires assignment of secondary structure, which again
is based on the Psi-Pred server. For each target, a maximum of 100 simulated
annealing trajectories each with 3 heating/cooling/quench phases were run for a
maximum of 24 million timesteps to generate many low energy configurations.
These configurations are C, traces that were then converted to an all-atom
model by using CHARMM?, and a limited memory BFGS local minimization
is then used to relieve bad contacts and to improve secondary structure
hydrogen-bonding. The structures obtained from the local minimizations are
merged into the current list, are clustered and ordered by energy value and
examined for good secondary structure content.

Because we chose to focus our efforts on new fold targets, we used BLAST*?
and 3D-PSSM** servers' results to determine which targets met our criteria for
probable new folds or sufficiently difficult fold recognitions. We submitted
predictions on 30 targets ranging in size from 53 to 417 amino acids.
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TOME - 453 models for 63 3D targets
Combined use of @TOME and ViTO at CASP6
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A meta-server, named @TOME (http://abcis.cbs.cnrs.fr/atome), has been
previously developed for fold-recognition. It was evaluated during the former
CASP experiment (summer 2002) in all the categories ranging from easy
comparative modeling to ab initio predictions. While both a fully automatic
procedure and an expert mode were evaluated at CASP5, we focused, during
CASP6, on the expert mode and more specifically on the use of a new software:
ViTO'. The latter combined an multiple-sequence alignment editor and a 3D
visualization tool. This feature facilitates refinement of structural alignments
produced by fold-recognition programs. It also allows refined analysis of three-
dimensional models produced by SCWRL 3.0 or MODELLER 6.2}
(automatically by @TOME or after manual refinement of the alignments).
Furthermore, we attempt to improve theoretical models by variations of some
parameters in MODELLER scripts (deviation of models, secondary-structure
restraints, ...). Similarly, modeling in the context of the quaternary structure
was attempted when possible (predicted conservation of the same oligomery for
the target and for the template). Best models were chosen according to their
scores computed by three evaluation programs: PROSA*, Verify3D® and
ERRAT®.
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Combining neural network and support vector machine
classifiers to predict protein domain boundaries
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Protein structural domains have become an area of increased interest in
structural biology and related disciplines. It is no surprise that techniques to
predict aspects of domains, such as the boundaries between them, are emerging.
Although exact definitions of domains, boundaries, etc. are still emerging’,
work can be done on the basis of existing definitions. For example, the CATH?
database of protein domain assignments provides labeled structural domain data
at the amino acid level. Proteins in the CATH database can be considered as
either having one or more domains. A domain boundary is defined as the
transition between two different domains in a protein. The focus of our work is
the prediction of these domain boundaries in multiple-domain proteins.

Our method is based in the machine learning tradition. Using labeled data, we
train a learner on the task of interest. For our data, we collected protein domain
information from CATH database entries. The data was screened for quality
and manually labeled. Each amino acid in an included protein chain contained
as input information a window of that residue and its immediate five neighbors
in each direction. The output information was whether or not that residue was
part of a boundary region between two structural domains.

The protein chains represented were randomly divided into training and testing
sets. Training data was used for the actual training of the predictor. The test
data was not used for the training, but rather to gauge when the predictor was
performing best on data which it had not previously seen. This provided a
simple form of cross-validation in an effort to produce a predictor that was
general — that is, not over-fitting to its training data.

In order to increase performance, two separate learners were trained and their
combined result was used for predictions. An error-backpropagation artificial
neural network and a support vector machine were used as our automated
classifiers. Each classifier was independently trained using the training data.
The basic neural network used a general back-propagation algorithm?®. In

Abstracts - 145



situations where the number of instances of one class (non boundary residues)
is much larger than that of the other class (boundary residues), the Meta-Cost
algorithm* can be used to improve prediction performance, in effect by
increasing the penalty cost of missed boundary region predictions (false
negatives). The “boundary” and “no boundary” signals were implemented as
two neural network output units, from which the greater signal became the final
prediction.

We used the SVM-Light® software implementation as our support vector
machine classifier. A key decision in SVM classifier design is the kernel to use.
For this work, we chose a polynomial kernel function. Since the outputs from
the SVM classifier are positive or negative real numbers, the final prediction of
a boundary was determined by an output signal greater than the estimated
median.

For each protein chain predicted, a single output format was created. For each
residue in the chain sequence, its amino acid was listed as were the
boundary/non-boundary predictions for that position from both the ANN and
the SVM. This gave a readily human-readable and interpretable format of the
sequence and the boundary classification predictions. A human expert them
made the final predictions based on his interpretation of the predictions of the
two classification methods. The human prediction is the current output of the
classification system.

The human expert consciously restricts his efforts to interpreting the machine
predictions — e.g. filling in gaps in predicted boundaries, deleting short,
unsupported boundary regions — rather than making a de novo prediction of the
boundaries. The rationale for this is that we are currently implementing a
mixture of experts model® to automate the combination of the ANN and SVM
classifiers. The human expert provides the predictions until the mixture of
experts model is finished, and will be a control against which to compare the
mixture of experts model.

The human expert predictions we currently use are, of course, not absolutely
blind, as the human may have previously seen PDB, CATH, etc. data for the
predicted protein chain in the past, but a good faith effort is made to keep the
predictions uncontaminated. For example, the human expert does not refer to
any of the known structural data or other sources for the predicted protein
chains.

We applied our system to a test set, containing 25 new sequences, and collected
statistics for prediction accuracy. The artificial neural network by itself predicts
a boundary region at a Q-observed accuracy of 37.50% and a correlation

coefficient of 0.08 (Calculated as per Rost and Sander, 1993”). The support
vector machine alone predicts a boundary region at a Q-observed accuracy of
76.75% and a correlation coefficient of 0.43. Finally, the application of a
human expert yielded a Q-observed accuracy of 62.93% and a correlation
coefficient of 0.41.

Our results show that protein structural domain boundaries can be predicted
from amino acid sequence with respectable accuracy. Surprisingly, the best
predictions were gotten using the SVM predictor alone. This beat both the
ANN alone, and the human expert who was able to examine the predictions
from both automated methods. The human expert, however, predicted more true
positives than that of the SVM predictor, but the total accuracy was decreased
by a larger amount of false positives. As we mentioned, we are in the process
of replacing the human expert with an automated mixture of experts model to
combine the results of the ANN and SVM classifiers.
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UGA/IBM-PROSPECT - 324 models for 64 3D / 26 FN targets
Fold recognition using PROSPECT

J. Guo', W.J. Chung', K. Ellrott', R. Zhou?, D. Gelonia?,
B.D. Silverman®, A.K. Royyuru?, A. Curioni®, A. Logean?, Y. Xu'
! — Computational Systems Biology Laboratory, Department of Biochemistry

and Molecular Biology, University of Georgia, Athens, GA, USA;

2_ Computational Biology Center, IBM Thomas J. Watson Research Center
Yorktown Heights, NY, USA, *— Computational Biochemistry and Material
Science, IBM Zurich Research Lab, 8003 Rueschlikon, Switzerland
xyn@bmb.uga.edu

We have made predictions for all 76 valid targets using our protein structure
prediction pipeline PROSPECT-PSPP'. The core of the pipeline is our newly
improved fold recognition program, PROSPECT-III (manuscript under
preparation), which solves the sequence-structure alignment problem using an
integer programming method. Some of the top models from PROSPECT
prediction were then screened using several different scoring functions and
refined with the replica exchange molecular dynamics method (REMD).

PROSPECT employs both sequential and structural information for fold
recognition and threading alignment. As in our previous version of
PROSPECT?, the evolutionary information is used not only in profile-profile
sequence alignment score, but also in calculating the singleton and pair-wise
energies, which greatly improves the performance on both fold recognition and
alignment accuracy. Here, we employed an integer programming algorithm for
finding an optimal threading alignment between a target sequence and
structural templates measured by our energy functions. The advantage of using
integer programming is that it can rigorously treat pair-wise and multi-body
contact energy and allow variable gaps, and do so in a fairly efficient fashion in
terms of actual computing time. A z-score is calculated for each optimal
alignment through randomly shuffling the target sequence. The initial threading
was done using a representative list from PISCES®,

A typical prediction for each target starts with running the automatics prediction
pipeline. If the prediction reliability is high and the quality of the model is
good, as in most homology modeling cases, structural models were submitted
with no or little human intervention. For other targets, additional information
will be considered for template selection and alignment adjustments.

For some of the targets, the initial models were screened and refined if needed.
Four different scoring functions were used in the screening process: (1)
OPLSAA/PB energy, which is the minimized total energy of the protein using
the OPLSAA force field and the Poisson-Boltzmann continuum solvent model;
(2) Hydrophobic Score, which is defined as the surface area under the
normalized second-order hydrophobic moment profile using an ellipsoidal
description of protein shape*; (3) Correlation Score, the correlation coefficient
between the distance of a residue from the center of the protein and its
hydrophobicity; (4) mScore or mega Score, a combination of three scoring
functions based on different grounds: a statistics based pairwise Co-Ca
distance dependant potential of mean force, a physics based non-bonded
interaction energy of the GROMOS force field, and a phenomenological based
Hydrophobic Score described above. Selected models were further refined with
REMD method, which couples molecular dynamics trajectories with a
temperature exchange Monte Carlo process for efficient sampling of the
conformational space. In this method, replicas (total 12 in our implementation)
are run in parallel at a sequence of temperatures ranging from the desired
temperature to a high temperature at which the replica can easily surmount the
energy barriers. From time to time the configurations of neighboring replicas
are exchanged based on a Metropolis criterion. Because the high temperature
replica can traverse high energy barriers, this provides a mechanism for the low
temperature replicas to overcome the quasi-ergodicity they would otherwise
encounter with a single temperature replica. The sampled conformations are
then clustered and ranked based on the minimized total energy. The force field
used in sampling is again the OPLSAA force field with the Poisson-Boltzmann
continuum solvent model.

1. Guo,J-T. Ellrott,K. Chung,W.J. Xu,D. Passovets,S. XuY. (2004).
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Structure Prediction. Nucleic Acids Res. 32, W522-525.
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Eng. 16, 641-650.
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VENCLOVAS - 25 models for 25 3D targets

Comparative modeling by the consensus of sequence-structure
mapping and structure assessment

C. Venclovas and M. Margelevi¢ius
Institute of Biotechnology, Graiciiino 8, Vilnius, Lithuania
venclovas@ibt.lt

In CASP6 we focused on those target proteins, for which evolutionary related
proteins having known structure could be detected independently of the level of
sequence similarity. In other words, our method could be classified as a
template-based modeling.

Structural templates
PDB templates were identified by running either BLAST or PSI-BLAST!

searches against the PDB sequence database or non-redundant NCBI sequence
database respectively. If no significant matches to PDB entries were detected
then consensus results reported by the GeneSilico fold recognition meta-server
(http://genesilico.pl/meta)” were consulted to identify potential structural
templates. If available, multiple templates usually were used to generate three-
dimensional (3D) models. The selection of the structural templates was done
attempting to represent observed conformational variations within the protein
family/superfamily in an unbiased way.

Sequence-structure alignments
For high homology targets, where structural template(s) were among closely

related sequences, alignments were derived directly from BLAST or PSI-
BLAST results with some manual adjustments around insertions/deletions. For
distant homology targets, two methods were used to generate and preliminary
assess the alignment confidence in a region-specific manner. In the first
method, results of an initial PSI-BLAST search were used in our intermediate
sequence search procedure (PSI-BLAST-ISS)?. In this procedure, a set of
sequences that bridge sequence space between target sequence and template(s)
were used to initiate additional PSI-BLAST searches against the non-redundant
sequence database. Target-template sequence alignments were then extracted
from search results and their consistency was analyzed. For regions where one
dominant alignment variant was produced, the alignment was considered
reliable, while the regions where the consistency of target-template alignment
was lacking were deemed unreliable. In the second method, publicly available
3D models for a particular target that were submitted to CASP6 by automatic

servers were each superimposed with one of the templates using DaliLite*.
Next, the structure-based multiple sequence alignment between the template
and model sequences was constructed from obtained pairwise superpositions.
The region-specific alignment reliability was then assessed as in the first
method. Results by both methods were contrasted and consensus regions were
considered to be reliably aligned. For the remaining regions alternative
alignment variants were evaluated at the level of 3D models. Models based on
these alternative alignments were assessed by several methods including
Prosall profiles and Z-scores®, Verify3D profiles® and visual inspection. One of
the main numerical indicators used to monitor the model quality upon
evaluation of alternative alignments and exact placement of insertions/deletions
was Prosall Z-score, which was targeted to exceed the value for the best server-
generated model.

Generating 3D structures
From given sequence-structure alignments models were generated

automatically with MODELLER’. In most cases side chains were rebuilt using
SCWRLE. No energy minimization procedures were used.
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Wolynes_Schulten - 81 models for 21 3D

Ab initio structure prediction with associative memory
Hamiltonians

M.C. Prentiss', C. Zong', G. Papioan®, Z. Luthey-Schulten® and
P.G. Wolynes'
1— University of California, San Diego, 2— University of North Carolina,
Chapel Hill, 3-University of Illinois, Urbana-Champaign
pwolynes@chem.ucsd.edu

We initially selected sequences for ab initio prediction if there was no obvious
scaffold found by automated comparative modeling servers. For the selected
sequences, we used an Associative Memory Hamiltonian (AMH), with
optimized parameters. The optimization procedure is used to pursue an energy
landscape that discriminates the native state, while avoiding kinetic traps. The
AMH energy function most often used in the submitted prediction included a
nonpairwise additive potential based on solvent mediated interactions'.
Different parameters have been optimized for proteins with all alpha and those
with mixed all alpha-beta secondary structure units>®. The alpha-beta energy
function includes a sequence specific hydrogen bond term as well as a term that
mimics the liquid crystal phase ordering of the beta strands*. We averaged the
AMH potential over multiple sequence homologues when they were available.
In most cases, information from secondary structure prediction was used to bias
independent secondary structure units to their predicted structures. Molecular
dynamics simulated annealing was used to select low energy candidate
structures.  Also constant temperature runs near the predicted folding
temperature were used to generate candidate structures. Subsequently, a
smaller subset of structures was selected for submission by evaluating the size
of the hydrophobic core and the hydrophilic surface area. Further selection
criteria included visual inspection, agreement with the preliminary secondary
structure prediction and low energies predicted from a second optimized
contact energy function.

1. Papoian,G.A. et al. (2004) Water in Protein Structure Prediction. Proc.
Nat. Acad. Sci. U.S.A. 101, 3352-3357.
2. Eastwood,M.P. et al. (2002) Statistical Mechanical Refinement of Protein

Structure Prediction Schemes: Cumulant Expansion Approach. J. Chem.
Phys. 117, 4602-4615.

3. Hardin,C. et al. (2002) Associative Memory Hamiltonians for Structure
Prediction Without Homology:Alpha-Beta Proteins. Proc. Nat. Acad. Sci.
U.S.A. 100, 1679-1684.

4. Hardin,C. et al. (2000) Associative Memory Hamiltonians for Structure
Prediction Without Homology:Alpha-Helical Proteins. Proc. Nat. Acad.
Sci. U.S.A. 97, 14235-14240.

Wymore - 32 models for 19 3D targets

Comparative modeling using alternative alignments, statistical
potentials and replica exchange simulations

Adam Marko, Stuart Pomerantz, Troy Wymore
Biomedical Initiative Group, Pittsburgh Supercomputing Center,
Pittsburgh, PA
wymore@psc.edu

We have developed a protein structure prediction pipeline that is currently
applicable for comparative modeling targets. This pipeline consisted of 1)
generating hundreds of alternative alignments between target and template 2)
using these alignments to generate structures 3) scoring these structures with a
statistical potential and 4) visually examining lowest energy structures in an
effort to pick the one closest to native. Programs were written in Perl to enable
the flow between modeling programs. For variable regions in some targets we
carried out a multi-scale modeling strategy combining lattice-based
representations for sampling with all-atom models for ranking.

For all CASP6 targets, we first performed a BLAST' search through the
non-redundant database. The sequences with significant E-
values were collated and sequence profiles were constructed
with the MEME? program. The MEME profiles were then used
with the MAST® program to search for both additional
sequences and structural templates. In a few instances we
used 3D-PSSM* to help identify templates. If we were satisfied
with the list of related sequences and structural template(s),
we performed a multiple sequence alignment with the T-coffee®
program to make an initial determination on the level of
difficulty in modeling the structure.
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Based on the T-coffee alignment and time constraints, we
constructed 100-500 alternative alignments between template
and target using the program probAS. This program uses a
probabilistic backtracking procedure that generates ensembles
of suboptimal alignments with correct statistical weights. This
ensemble of alignments and the one from the T-coffee program
were used to build structures using MODELLER version 6.2°.
The structures were then scored using the sum of CA-CA, CB-
CB and surface statistical potentials in Prosall®. Typically, up to
20 of the lower energy models were visually examined with a
graphics program. For some target predictions that were not
subsequently refined, we would minimize several structures
identified as favorable through Prosall with an all-atom
molecular mechanical (MM) distance-dependant dielectric
potential and then score them with an all-atom MM-Generalized
Born potential using the MMTSB? toolset and submit the lowest
energy structure. Almost all predicted structures were
minimized with restraints using the MMTSB toolset.

For six highly variable regions ranging in size from 5-16
residues, we performed lattice-based replica exchange
simulations using MONSSTER™ through the MMTSB toolset. The
lowest temperature structures from the final rounds of
simulation (typically the last 100-1000 structures) were rebuilt
to complete all-atom models and clustered according to
distance RMSD. The clusters were minimized and ranked with
the same potentials as described above. Finally we would
generally choose the lowest energy structure from the cluster
exhibiting the lowest average energy or from a highly
populated low energy cluster. All modeling tasks were greatly
facilitated by use of the MMTSB toolset. Our goals were to
demonstrate improvement in our comparative models over
those constructed from a T-coffee alignment and assess our
sampling and scoring procedures both in sequence and 3D
space.
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YASARA - 28 models for 9 3D targets
WHAT IF YASARA folds a protein?

E. Krieger, S.B. Nabuurs, C.A.E.M. Spronk and G. Vriend
CMBI, Center for Molecular and Biomolecular Informatics,
Radboud University Nijmegen, the Netherlands
Elmar.Krieger@cmbi.ru.nl, www.YASARA.org

The homology modeling module of the YASARA/WHAT IF Twinset integrates
functions provided by both programs and a variety of fold recognition and
secondary structure prediction servers into a fully automatic method for protein
structure prediction.

Initial alignments were collected from the 3D-Jury system on the CAFASP
website'. A consensus secondary structure prediction was obtained from
PSIPRED? and SAM-TO02®. Alignments were pooled and sent through
secondary- and tertiary structure-based correction filters. Loops and structured
N- and C-termini were added with YASARA's loop modeler, side-chains were
completed by WHAT IF* and SCWRL". These models were submitted with the
‘UNREFINED' keyword.
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In the refinement stage, the conformational space available to the models was
sampled with CONCOORD?®, then hundreds of all-atom molecular dynamics
simulations in aqueous solution (Particle Mesh Ewald electrostatics’) were run
with YASARA to 'home in' further to the target. This was done with the new
YASARA force field, a third-generation self-parameterizing energy function®
obtained in crystal space from the YAMBER force field®. Models were ranked
based on the WHAT IF/YASARA ColonyMorphScore, a scoring function that
combines various checks done by WHAT IF" with the energy assigned by the
YASARA force field.

Due to the huge computational requirements, the entire procedure was run in
parallel using the Models@Home distributed computing system'. Thanks to
everyone working here at the CMBI in Nijmegen, Netherlands, for choosing the
Models@Home screensaver.

More information is available at www.yasara.org and www.cmbi.ru.nl/whatif
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Zhou-SP? (serv) - 320 models for 64 3D targets

Fold recognition by combining sequence profiles derived from
evolution and from depth-dependent structural alignment of
fragments in CASP6

Hongyi Zhou and Yaoqi Zhou
HHMI Center for Single Molecule Biophysics
Department of Physiology & Biophysics, State University of New York
Buffalo, NY 14214

hzhou2@buffalo.edu, ygzhou@buffalo.edu

Recognizing the structural similarity of proteins without significant sequence
identity (fold recognition) has proven to be a challenging task. One way to
detect structural similarity is to identify remote sequence homology via
sequence comparison. Advances have been made from the pairwise to multiple
sequence comparison, from sequence-to-sequence, sequence-to-profile to
profile-to-profile comparison. Another way to detect structural similarity is to
take full advantage of known protein structures. For example, the sequence-to-
structure threading assesses the compatibility of a sequence with each known
structure by a pairwise score function or single-body structural profile. In recent
work, attempts were made to optimally combine the sequence and structure
information for a more accurate/sensitive fold recognition. Most focused on
combining sequence information with threading techniques.

One intuitive approach to incorporate structural information is to use structural
alignment. Application of structural alignment to fold recognition has been
mostly limited to the derivation of substitution matrices. The direct
incorporation of sequence profiles generated from structural alignment,
however, does not appear to be useful for remote homology detection. For
example, Gough et al." found that hidden Markov models (HMM) generated
from structural alignment yielded poorer results than HMMSs generated
independently. Tang et al.> showed that the combination of sequence profiles
derived from structural alignments for protein-core regions with the sequence
profiles from sequence alignment and secondary structural profiles does not
further improve fold recognition sensitivity by profile-profile alignment. This
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highlights the difficulty of harnessing structural information in a combined
approach for optimal fold-recognition alignment>*. In fact, recently completed
LiveBench 8 and 9 tests suggested that the top performers of the fold-
recognition servers of single methods are sequence-based profile-profile
alignment methods such as BasD/mBas/BasP, SFST/STMP, FFAS03, and
ORFeus/ORFeus2. Not a single method using structural information was made
to the top four®.

We are developing a novel, combined approach based on sequence profiles
generated from structural alignment. In this approach, fragments rather than
whole proteins are used for structural alignment. The use of fragments has
following advantages over the use of whole protein for structural alignment.
First, there is a sufficient coverage for all possible structures of short fragments
in the existing structures in protein data bank. The large number of fragments
contained in protein data bank leads to a statistically significant sequence
profile. In contrast, sequence profiles generated from structural alignment of
whole proteins require that all proteins have a sufficient number of structurally
similar proteins with low sequence identity — a condition that is difficult to
meet. Second, the use of fragments allows producing a reliable sequence profile
for all regions of a protein. In structural alignment of whole proteins, however,
many regions (loop regions, in particular) are not aligned. Third, unlike
structural alignment of proteins, structural alignment of fragments is more
likely to have a unique solution because their structural topologies are relatively
simple.

Another unique feature of the new approach is that alignment of two fragments
is not only characterized by their structural difference (rmsd) but also by their
positions from solvent (residue depth). This partially remedies the loss of the
information on the environment surrounding the fragments.

The sequence profile (SP) derived from depth-dependent structure alignment of
fragments allows a simple integration with evolution-derived sequence profile
(SP) and secondary-structural profile (SP) for an optimized fold-recognition
alignment by efficient local-local dynamic programming, secondary-structure-
dependent gap penalty, and a sophisticate empirical ranking method. The
resulting method (called SP?) is found to make a statistically significant
improvement in both the sensitivity of fold recognition and the accuracy of
alignment compared to the method based on evolution-derived sequence
profiles alone (SP) and the method based on evolution-derived sequence profile
and secondary structure profile (SP?). SP* was tested in SALIGN benchmark
for alignment accuracy® and Lindahl‘, PROSPECTOR 3.07, and LiveBench 8.0
benchmarks® for remote-homology detection and model accuracy. SP? is found
to be the most sensitive and accurate single-method server in all benchmarks

tested where other methods are available for comparison (although its results
are statistically indistinguishable from the next best in some cases and the
comparison is subjected to the limitation of time-dependent sequence and/or
structural library used by different methods.). SP? participates CASP6 as a
server located at http://theory.med.buffalo.edu. The new approach proposed
here hopefully will stimulate more new ideas in attacking the challenging fold
recognition problem.
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Zhou-SPARKS2 (serv) - 320 models for 64 3D targets
Application of SPARKS 2.0 fold recognition server in CASP6

Hongyi Zhou and Yaoqi Zhou
HHMI Center for Single Molecule Biophysics
Department of Physiology & Biophysics, State University of New York
Buffalo, NY 14214
hzhou2 @buffalo.edu,yqzhou@buffalo.edu

SPARKS is a method that combines Sequence, secondary structure Profiles
with A single-body Residue-level Knowledge-based Score for fold recognition.
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While there exist many fold recognition methods that integrate sequence
information with threading techniques, SPARKS uses an elaborate knowledge-
based score that contains a torsion-angle term for backbone interaction and a
combined buried surface and contact-energy term for residue-residue and
residue-solvent interactions. Most other methods used a much simpler single-
body or profile energy score that takes into account of solvent exposure or
contact score only. The use of a single-body energy score allows the use of
efficient dynamic programming for optimal fold-recognition alignment. This is
in contrast to the pairwise score function which would require extensive
computing time and/or additional approximations (such as frozen
approximation) for optimal alignment. SPARKS was tested in ProSup, Lindahl
benchmark and LiveBench'.

SPARKS 2.0 improves over SPARKS in following areas. First, a local-local
dynamic programming rather than a global-local method is used. This improves
the alignment between two sequences with very different sequence lengths.
Second, a gap penalty that depends on the secondary structure is introduced.
This allows a more accurate sequence alignment. Third, an empirical method
for ranking templates is introduced. This method uses 1) the difference between
an alignment score of the query sequence and a template sequence and that of
the reversed query sequence and the template, 2) structural similarity score
between top-ranked models, and 3) scores normalized by “true” alignment
length (excluding ending gaps) and full alignment lengths (including all gaps).
SPARKS 2.0 was tested on SALIGN benchmark for alignment accuracy? and
Lindahl®, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks® for remote-
homology detection and model accuracy. The accuracy and sensitivity of
SPARKS 2.0 (Table I) were found to be slightly worse than SP* (a different fold
recognition method that harnesses structural information without the need of
threading, see a separate abstract by Zhou and Zhou). However, it is one of the
best methods that combine sequence profiles with threading for fold
recognition. Thus, its result will be useful for consensus methods.

Table I. The results of various benchmark testing.

PROSPECTOR
SALIGN? Lindahal® 3.0° LiveBench 8
Method AlignAccu. | Accu.’ | Sens.’ | Accu.’ | Sens.” | Accu.’ | Sens.
Other® 56.4%° 520.1° | 925° 41.91° | 112°
SPARKS 53.1% 325.9 611 529.0 979 38.33 99
SPARKS2 54.9% 349.2 655 591.0 1041 40.7 119
Sp? 56.6% 349.2 665 601.9 1066 42.2 120

* Accuracy by total MaxSub score of first ranked models'
> Sensitivity by number of models with MaxSub score >0.01.

‘The known best performance in the corresponding benchmark by other
methods.

4SALIGN is trained and tested by CE alignment.”? SPARKS and SP3 are not
trained by CE alignment. Thus, matching the performance of SALIGN by
SPARKS2 and SP3 is remarkable.

‘PROSPECTOR 3.0

The best single method server (BasD). Other consensus methods such as
SHOTGUN have higher accuracy and sensitivity.

1. ZhouH., Zhou,Y. (2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition. Proteins 55, 1005-1013.

2.  Marti-Renom,M.A., Madhusudhan,M., Sali.A. (2004) Alignment of protein
sequences by their profiles. Protein Sci. 13, 1071-1087.

3. LindahLE., Elofsson,A. (2000) Identification of related proteins on family,
superfamily and fold level. J. Mol. Biol. 295, 613-625.

4. Skolnick,J., Kihara,D., Zhang,Y. (2004) Development and large scale
benchmark testing of the PROSPECTOR 3.0 threading algorithm. Proteins
55, 502-518.

5. http://Biolnfo.PL; Bujnicki,J.M., Elofsson,A., Fischer,D., Rychlewski,L.
(2001) Livebench-1: Large-scale automated evaluation of protein structure
prediction servers. Protein Sci. 10, 352—-361.
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Accelrys - 27 models for 16 3D / 1 FN targets
ChiRotor and Looper for side-chain and loop optimization

D. Singh, Taisung Lee, V. Spassov, L. Yan and D. Haley-Vicente
Accelrys Inc., 9685 Scranton Rd., San Diego, CA 92121
dhv@accelrys.com

CASP6 target homology models were predicted using a suite of tools available
in Discovery Studio® (DS) Modeling and Insight II® modeling and
simulations packages (Accelrys, Inc)*®. Several models have been further
optimized by two new methods developed at Accelrys, ChiRotor and Looper®*,
for side-chain and loop optimization, respectively. ChiRotor is a fast
conformational search algorithm that combines rotamer searches with an energy
evaluation to calculate optimal side-chain conformations for all or part of a
protein with an average RMSD of ~1A for the core residues. Looper is an fast
algorithm that performs a hierarchical search of low energy loop structures to
provide a ranked list of loop fragments with a high level of accuracy.

1. Discovery Studio Modeling

(http://www.accelrys.com/dstudio/ds modeling/) Accelrys Inc.

2. Insight IT (http://www.accelrys.com/insight/) Accelrys Inc.
3. Spassov,V.Z., Yan,L. (2004) ChiRotor: A side-chain prediction algorithm

based on side-chain backbone interactions. To be submitted.
4. Spassov V.Z., Yan,L. (2004) Looper: A CHARMm based algorithm for
loop prediction using hierarchical structural optimisation. In preparation.

BAKER - 433 models for 64 3D/ 63 RR /58 FN

Novel approaches to protein structure prediction at CASP6

P. Bradley, G. Cheng, D. Chivian, D. Kim, L.. Malmstrom, J. Meiler,
K. Misura, Bin Qian, J. Schonbrun, A. Zanghellini, D. Baker*
University of Washington
dabaker@u.washington.edu

See methods section

High resolution refinement can be successful in low
dimensional search spaces

Bin Qian, Ora Furman, Chu Wang and David Baker
University of Washington
dabaker@u.washington.edu

Accurate high-resolution refinement of protein structure models is a formidable
challenge because of the delicate balance of forces in the native state, the
difficulty in sampling the very large number of alternative tightly packed
conformations, and the inaccuracies incurrent force fields. Indeed, energy-based
refinement of comparative models generally leads to degradation rather than
improvement in model quality, and hence, most current comparative modeling
procedures omit physically based refinement. However, despite their
inaccuracies, current force fields do contain information that is orthogonal to
the evolutionary information on which comparative models are based, and
hence, refinement might be able to improve comparative models if the space
that is sampled is restricted sufficiently so that false attractors are avoided. We
have found that full atom refinement canimprove model accuracy both in high
resolution protein-protein docking calculations where the space searched
consists of the sidechain torsion angles and the rigid body degrees of freedom,
and in comparative model refinement where the search space is defined by side
chain torsion angles and variation of the backbone along evolutionarily favored
sampling directions given by the principal components of the variation of
backbone structures within a homologous family.

Membrane Protein Structure Prediction with ROSETTA

Jack Schonbrun, Vladimir Yarovoy, David Baker
University of Washington
dabaker@u.washington.edu

Membrane proteins are the among the most important targets for structure
prediction. Though they number less than 1% of the structures in the Protein
Databank, they are estimated to account for 20-30% of all open reading
frames. In an attempt to model these proteins, we have derived a new statistical
potential and implemented it in ROSETTA. We calculated environment
dependent amino acid propensities based on observed frequencies in a set of
solved membrane protein structures. The environment of a residue is now a
function of two parameters: depth within the membrane, and number of
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neighbors. The score and search are also modified to bias the results toward
helical bundles. By taking advantage of the mostly local topologies of known
structures, we have had some success is producing low-resolution native like
models.

BAKER-ROBETTA (serv) - 320 models for 64 3D targets
BAKER-ROBETTA_04 - 320 models for 64 3D targets

The Robetta and Robetta_04 protocols

Dylan Chivian', David E. Kim', Lars Malmstrom',

Jack Schonbrun', Carol A. Rohl* & David Baker”
1- University of Washington, Seattle, WA
2- University of California, Santa Cruz, CA
dabaker@u.washington.edu

See methods section

BAKER-ROBETTA-GINZU (serv) - 64 models for 64 DP targets

The Ginzu homologue identification and domain parsing
protocol

Dylan Chivian, David E. Kim, Lars Malmstrom, & David Baker"
University of Washington, Seattle, WA
dabaker@u.washington.edu

See methods section

BAKER-ROSETTADOM (serv) - 64 models for 64 DP targets
The RosettaDOM domain parsing protocol

D.E. Kim, D. Chivian, L. Malmstrom and D. Baker

University of Washington
dabaker@u.washington.edu

See methods section

Casplta - 348 models for 64 3D/ 63 DP / 63 DR / 64 FN
The Victor/FRST function for model quality estimation

S.C.E. Tosatto'
' — Dept. of Biology and CRIBI Biotech Centre, University of Padova
silvio@cribi.unipd.it

The Victor/FRST (Function of Rapdf, Solvation and Torsion potentials)
function is a statistical scoring function used to estimate the quality of a protein
structure. It is implemented as the weighted linear combination of three
different components covering the major aspects of structure quality estimation.

The first component is an implementation of the RAPDF" statistical pairwise
potential. This potential of mean force discriminates between residue specific
non-bonded interactions at the atomic level, e.g. the C, of an Isoleucine is a
different type from the C, of a Glycine. It is used with published parameters. A
simple solvation potential is derived in analogy to the one described for
GenTHREADER?. The relative solvent accessibility is estimated as the number
of other Cs atoms within a sphere of radius 10 A centered on the residue’s Cg
atom. The reference state for this distribution is generated from the TOP500
database®. This database of high resolution crystal structures is used to estimate
the relative probability of encountering a number i (i = 0,...,40) of Cs atoms
surrounding each of the 20 amino acids. The energy for a given structure is
calculated with the standard log scale for mean force potentials. A similar
scheme was also used to parameterize the torsion angle potential. All (0,y)
angle combinations, discretized in 10x10 degree bins, present in the TOP500
database? are used to estimate the reference state for each of the 20 amino acids.
The same log scale formula is applied to derive an energy for a given structure.
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Since the three components have different orders of magnitude and cannot be
related directly to the same scale, weighting factors are used before summing
the partial energies. These factors were optimized on the CASP-4 decoy set*
optimizing the linear correlation between total energy and GDT_TS score® as
target function. The final scoring fuction was submitted to CAFASP-4 in the
MQAP (Model Quality Assessment Program) category.

1. Samudrala,R., & Moult,J. (1998) An all-atom distance-dependent
conditional probability discriminatory function for protein structure
prediction. J. Mol. Biol. 275, 895-916.

2. Lovell,S.C., Davis, LW, Arendall,W.B.r, de Bakker,P.I, Word,J.M.,
Prisant,M.G., Richardson,J.S., & Richardson,D.C. (2003) Structure
validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50,
437-450.

3. Jones,D.T. (1999) GenTHREADER: an efficient and reliable protein fold
recognition method for genomic sequences. J. Mol. Biol. 287, 797-815.

4. URL:http://predictioncenter.llnl.gov/download_area/CASP4/MODELS_SU
BMITTED/

5. Zemla,A. (2003) LGA: A method for finding 3D similarities in protein
structures. Nucleic Acids Res. 31, 3370-3374.

CBRC-3D - 319 models for 64 3D / 22 FN targets

Comparative modeling and fold recognition using FORTE
series

K. Tomii, T. Hirokawa, and C. Motono
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-43 Aomi, Koto-ku, Tokyo, Japan
k-tomii@aist.go.jp

See methods section

CHIMERA - 65 models for 64 3D targets

A versatile web user interface system for highly accurate
protein structure prediction: SKE (Sophia-kai-Ergon)
CHIMERA

M. Takeda-Shitaka, G. Terashi, D. Takaya, K. Kanou,

M. Iwadate and H. Umeyama
Kitasato University
shitakam@pharm.kitasato-u.ac.jp

See methods section

FAMD (serv) - 320 models for 64 3D targets

Full automatic homology-modeling servers including wisdom
and practice: SKE(Sophia Kai Ergon) FAMD

K. Kanou', M. Iwadate', G. Terashi', D. Takaya',
M. Takeda-Shitaka' and H. Umeyama'

! - Department of Biomolecular Desig
School of Pharmaceutical Sciences, Kitasato University
kanouk@pharm.kitasato-u.ac.jp

See methods section
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FAMS (serv) - 320 models for 64 3D targets

Full automatic homology modeling server including the
transformation of amino acid residues: SKE(Sophia Kai
Ergon) FAMS

M. Iwadate', K. Kanou', G. Terashi', D. Takaya',
M. Takeda-Shitaka' and H. Umeyama'

! - Department of Biomolecular Desig
School of Pharmaceutical Sciences, Kitasato University
iwadatem@pharm .kitasato-u.ac.jp

See methods section

Hamilton-Huber-Torda (serv) - 61 models for 61 RR targets
Protein contact prediction using patterns of correlation

N.A. Hamilton'2, K. Burrage!, M.A. Ragan?, A.E. Torda3

and T. Huber!

1— Advanced Computational Modelling Centre, The University of Queensland,
2— Institute for Molecular Bioscience, The University of Queensland,
3 — Zentrum fiir Bioinformatik, Universitdt Hamburg
n.hamilton@imb.uq.edu.au

See methods section

HOGUE-HOMTRAJ (serv) - 105 models for 45 3D targets

HomTraj: an automated structure rediction server with a
performance-monitoring test suite

K.A. Snyder’, H.J. Feldman', F. Wu' and C.W.V Hogue"’
! — The Blueprint Initiative, Mount Sinai Hospital, Toronto, Canada,
?— Department of Biochemistry, University of Toronto, Toronto, Canada
chogue@blueprint.org

HomTraj is a powerful fully automated web-based Homology Modeling
prediction service that will return up to five structure predictions from a given
query protein sequence. First, NCBI BLAST! (expect value 1e-20) is used to
identify homologous templates from the PDB. If this call fails, the Sequence
Alignment and Modeling (SAM2K) algorithm?® is used to identify more
remotely homologous structure templates from the PDB. The algorithm uses a
two-track Hidden Markov Model (HMM) to identify homology — one track for
sequence and one for secondary structure. A PsiPred® secondary structure
prediction is used as input for the secondary HMM track.

Next, using a modified version of our TRADES algorithm*, the backbone
alpha-carbon trajectory of the template was recorded, and a trajectory
distribution built with the new sequence of the target. Each gapless stretch of
alignment was replaced by a single fragment from the recorded trace. Where
gaps occurred in the alignment, fragments were built to span the gaps. Gaps
may be shifted a few residues left or right in order to minimize the energy of
the loop spanning the gap. Roughly 50 structures were generated using the
fragments obtained from the previous steps and our Foldtraj software, with
bump checking slightly reduced. Using a modified version of a statistical
residue-based potential®>, which we have termed "crease energy", the best
structure generated from each template was chosen and submitted. Structures
can be provided in either PDB or NCBI ASN.1 format.

In an effort to quantify the performance of HomTraj on a diverse group of
query proteins, a web-based test suite was recently developed. Using the test
suites” web interface a user may customize a program run, selecting the
appropriate HomTraj version and query test set. In addition, results from all
previous runs can be accessed for analysis.

Three query test sets, easy, medium and hard, were generated in order to
analyze the performance of HomTraj where the degree of template sequence
homology to the query varies from very high to very low. Test sets were
constructed from a set of 75 domains representative of diverse fold categories
from the ASTRAL SCOP 1.65 Genetic Domain Sequences database®. Domains
were subdivided into 3 levels of difficulty according to the E-value of top PDB
template alignments returned from BLAST hits. Queries with BLAST hit E-
values less than or equal to 1e-20 were classified as easy, those with E-values
less than 1e-3 and greater than 1e-20 were classified as medium and those with
E-values greater than le-3 were classified as hard. To enable efficient
searching for structure templates by HomTraj a static version of NCBI’s non-
redundant PDB database was generated by removing proteins with a high level
of sequence homology to the test set queries.
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During each test suite run, results from HomTraj’s subprograms are stored in
MySQL tables to enable fast and efficient access from the web-interface. Upon
completion of a test set, RMSD scores for each query, as well as an average
RMSD, is displayed to facilitate comparisons between different versions of
HomTraj. In this way, optimizations to the server can be accurately assessed
and quantified.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Karplus,K., Karchin,R., Barrett,C., Tu,S., Cline,M., Diekhans,M., Grate,L.,
Casper,J. & Hughey,R. (2001). What is the value added by human
intervention in protein structure prediction? Proteins Suppl. 5, 86-91.

3. Jones,D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292, 195-202.

4. Feldman,H.J. & Hogue, C.W.V. (2000). A Fast Method to Sample Real
Protein Conformational Space. Proteins 39, 112-131.

5. Bryant,S.H. & Lawrence,C.E. (1993). An Empirical Energy Function for
Threading Protein Sequence through the Folding Motif. Proteins 16, 92-
112.

6. Chandonia,J.M, Hon G., Walker N.S., Lo Conte L., Koehl P., Levitt M., &
Brenner S.E. (2004). The ASTRAL compendium in 2004. Nucleic Acids
Res. 32, D189-D192.

Huber-Torda - 242 models for 63 3D / 60 RR targets

Sequence to structure alignments with fragment compatibility
terms and an optimized substitution matrix

T. Huber', T. Lai? E. Mittag®, J.B. Procter?, H. Stehr?, S.

Miihlenmeister?, B. Otto,? A.E. Torda®
! — Dept of Mathematics, University of Queensland, Brisbane, Australia,
2_7BH, University of Hamburg, Bundesstr 43, D-20146, Hamburg, Germany
torda@zbh.uni-hamburg.de

The methods used in the "wurst" server!, combine the most mundane elements
of protein threading with some more entertaining ideas from score functions
and alignments.> The methods contain structure-based terms, but are free of
Boltzmann-based or z-score derived methods. These are combined with a
sequence based-term, but without standard substitution matrices.

The structure-based terms rely on a sequence to local-structure compatibility
function. To parameterise the term, more than 10° fragments of length 9 were
described by a set of continuous descriptors (for structural and solvation
properties) and discrete descriptors (for sequence). A classification across both
kinds of descriptor reduced this to a set of less than 500 classes. This is unlike
other fragment libraries in the literature in that two classes may be structurally
similar, but differ in sequence patterns. Because the classification method? is
based on Bayesian statistics, it directly provides a log-odds probabilities and is
easy to convert to a scoring matrix.

The next component was a sequence-based term using an unusual substitution
matrix. A classic simplex optimization method was used to adjust the 210
members of a substitution matrix using a cost function which measured the
quality of alignments or more specifically, the quality of the models produced
by alignments. For this parameterization, a calibration set of proteins was
collected consisting of pairs of similar structures with low sequence identity.
Each protein's sequence was aligned against that of its partner and the resulting
model compared to the original (correct) structure. The better the quality of the
model, the lower the cost function as summed over the calibration set.

Alignments were calculated using a standard dynamic programming method
applied to a matrix which was a linear combination of the sequence- and
structure-based terms, but with still more optimizations at the parameterization
stage. The final parameters used for CASP resulted from a simultaneous
optimization of the weighting of the two main terms, the gap penalties and the
elements of substitution matrix. Furthermore, the optimization was done using
sequence profiles rather than the sequences to be aligned

The net result is has some unusual properties. The substitution matrix is very
different to a BLOSUM matrix in that it has more weight on diagonal terms,
since it is optimized for profiles. The matrix used for CASP is even more
unusual in that it is adjusted to work best in the field due to the structural terms.
The final result is the machinery for producing very good sequence to structure
alignments in the face of low sequence identity.

Preliminary results already show some strengths and weaknesses of the
approach. The optimization procedure is very effective, but had an unexpected
side effect. The parameters were very tightly tuned to the properties of the
sequence profiles and produced poor alignments if a sequence did not have
some number of close sequence homologues. The framework used to create the
structural term is very well suited to sequence to structure alignments, but the
structural descriptors we chose are probably still not ideal. Finally, a huge
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weakness was in the ranking of the produced models and failing to reasonably
account for effects of sequence, structure and model size. Several good models
were produced, but only ranked in the top 10 to 20 guesses rather than first
place.

Some of these weaknesses have been repaired (after CASP). Some leave us
with something to do for the next year.

1. http://www.zbh.uni-hamburg/wurst

2. Torda,A.E.,Procter,J.B. & Huber,T. (2004) Wurst: A protein threading
server with a structural scoring function, sequence profiles and optimised
substitution matrices. Nucl. Acids Res. 32, W532-W535.

3. Cheeseman, P. & Stutz, J., Bayesian classification (autoclass): Theory and
results, in Advances in knowledge discovery and data mining, U. Fayyad,
et al., Editors. 1995, The AAAI Press: Menlo Park. p. 61-83.

IUPred - 57 models for 56 DR targets

Prediction of protein disorder based on the estimation of
pairwise interaction energy

Zsuzsanna Dosztanyi, Veronika Csizmok, Péter Tompa
and Istvan Simon
Institute of Enzymology, Biological Research Center, Hungarian Academy of
Science, Budapest, Hungary
zsuzsa@enzim.hu

See methods section

Jones-UCL - 251 models for 63 3D/ 64 DR / 26 FN

Improving the Quality of Fold Recognition Models Using the
nFOLD Method

L.J. McGuffin, J.S. Sodhi, K. Bryson and D.T. Jones
-Bioinformatics Unit, Department of Computer Science,
University College London, London WC1H 6BT
L.mcguffin@cs.ucl.ac.uk

We have developed a new fold recognition method, nFOLD, that extends the
new profile-profile version of mGenTHREADER'?, through the incorporation
of a number of extra inputs into the underlying neural network.

Three additional inputs are fed into the neural network which include: the
secondary structure element alignment (SSEA) score?, a new functional site
detection score (MetSite)® and a simple model quality checking algorithm,
MODCHECK?®. The nFOLD neural network is also trained directly on MaxSub?
score which allows for a greater assignment of confidence in model quality.
Although the SSEA score has been benchmarked previously as an extra neural
network input to mGenTHREADER?, this is the first time it has been included
in a fully automated method within a blind assessment.

The functional site predictions were calculated using a set of classifiers based
on the MetSite method?, which was initially developed in order to predict the
location of residues forming commonly occurring metal binding sites in low-
resolution structural models. The top ranking MetSite predictions were
extracted for the models generated from the mGenTHREADER profile-profile
alignments. Analysis of the MetSite scores showed a significant improvement
in distinguishing native and near native-like models from decoy hits.

The MODCHECK score was also used to directly assess the quality of the
models from the profile-profile alignments. The MODCHECK program has
been used previously for our CASP predictions®, however this is the first time it
has been implemented in a fully automated method.

1. Jones,D.T. (1999) GenTHREADER: An efficient and reliable protein fold
recognition method for genomic sequences. J. Mol. Biol. 287, 797-815.

2.  McGuffin,L.J. & Jones,D.T. (2003) Improvement of the GenTHREADER
method for genomic fold recognition. Bioinformatics. 19, 874-881.
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3. Sodhi,]J.S., Bryson,K., McGuffin,L.J., Ward,J.J., Wernisch,L.. & Jones,D.T.
(2004) Predicting metal binding sites in low resolution structural models.
J. Mol. Biol. 342, 307-320.

4. Jones,D.T. & McGauffin,L.J. (2003) Assembling novel protein folds from
super-secondary structural fragments. Proteins: Structure, Function and
Genetics 53 (S6), 480-485.

5. Siew,N., Elofsson,A., Rychlewski,L.. & Fischer,D. (2000) MaxSub: an
automated measure for the assessment of protein structure prediction
quality. Bioinformatics. 16, 776-85.

Keasar - 283 models for 58 3D targets

MESHI - a new object oriented package for molecular
simulations

N. Kalisman, A. Levi and C. Keasar
Department of Computer Science, Ben-Gurion Universiry, Israel
keasar@cs.bgu.ac.il

MESHI is a novel software package that handles many aspects of molecular
simulations. The motivation behind MESHI is twofold (1) to shorten the delay
between the emergence of a novel idea (say, while one is doing the dishes) and
the testing of its programmed manifestation. (2) to lower the “activation
barrier” of the code, i.e. reduce the time it takes a new developer to start writing
new modules. In order to achieve these goals, MESHI adheres to a strict Object
Oriented Design (OOD) and emphases clear code, even at the expense of some
computational efficiency. In CASP6 we tried to demonstrate that while still in
a stage of development, MESHI has already crossed the critical point where
useful molecular modeling is possible.

In practice, strict OOD implies that every aspect of molecular modeling is
represented by a class. Thus, MESHI is equipped with classes for molecular
elements (e.g. atoms and residues), geometric properties (e.g. distances and
angles), energy-terms (e.g. hydrogen-bonds), optimization-algorithms (e.g.
steepest-descent and LBFGS) and quite a few auxiliary classes (e.g. PDB
formatted line). These classes serve as handy building blocks to MESHI
applications like BEAUTIFY (the program we used for CASP6).

MESHI is written solely in Java, which is not the obvious language of choice
for a computationally intensive program. Its interpreted nature is inherently
slower than native binary code. Our experience is that java code is about two

times slower than equivalent C/Fortran code. We believe however, that the
most precious resource is the developer's time, as Moore's law does not apply to
it. The strict object oriented nature of Java forces a highly modular program
structure and helps in optimizing human effort. Further, Java’s garbage-
collection utility seems to remove a large family of bugs from our way. In
practice, the performance loss of Java is much lower than twofold. By profiling
one can easily identify the (typically few) bottlenecks where the program
spends most of its time. These parts of the program may be written with
emphasis on performance and/or compiled to a binary module.

Due of its low “activation barrier”, MESHI is handy as an educational tool. In
the last three years, students at the bioinformatics track of BGU did interesting
and substantial projects within MESHI. The projects were defined in terms of
interfaces and the students could focus in their specific tasks without diving
into the code too deeply.

MESHI is free for academic use, and is available at:
http://www.cs.bgu.ac.il/~keasar/meshi

KIAS - 675 models for 64 3D / 64 DP / 64 RR

Prediction of residue-residue contacts using
correlated mutation and hydrophobic packing score

Mee Kyung Song, Keehyoung Joo and Jooyoung Lee”
School of Computational Sciences, Korea Institute for Advanced Study
207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-722, Korea

jlee@kias.re.kr

See methods section
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Tertiary structure prediction for comparative modeling, fold
recognition and new fold targets in CASP6

Keehyoung Joo', Jejoong Yoo', Kyoungrim Lee', Hyung-Rae
Kim', Seung-Yeon Kim', Mee Kyung Song', Ju-Beom Song?,
Sang Bub Lee'?, Sung Jong Lee*, Jooyoung Lee"”
School of Computational Sciences, Korea Institute for Advanced Study
’Department of Chemistry, Kyungpook University, Korea;
3Department of Physics, Kyungpook University, Korea
*Department of Physics, Suwon University, Korea
jlee@kias.re.kr

See methods section

Luo - 268 models for 54 3D targets
Consistent scoring with AMBER/PB energy function

M.J. Hsieh and R. Luo
Department of Molecular Biology and Biochemistry
University of California, Irvine, CA 92697
rluo@uci.edu

See methods section

MacCallum - 128 models for 64 3D / 64 RR targets
SBC - 90 models for 64 3D targets

DRIP-PRED (serv) - 64 models for 64 DR targets
GPCPRED (serv) - 63 models for 63 RR targets

Striped sheets, contact maps, disorder and model selection

R.M. MacCallum, B. Wallner and A. Elofsson
Stockholm Bioinformatics Center, Stockholm University, Sweden.
maccallr@sbc.su.se

In this poster, we will provide more in-depth data and figures
for the methods already described in the following abstracts:

1. MacCallum & GPCPRED

Contact map prediction using PSI-BLAST profiles,
organising maps and genetic programming.

2. MacCallum

Meta-server model selection using contact map-based scoring.
3. DRIP-PRED

Order/Disorder prediction using PSI-BLAST profiles and self-
organising maps.

self-

We also hope to show some preliminary analysis of our
submitted predictions if target structures become available in
time.

MUMSSP - 9 models for 2 3D targets

How do the web facilities help predictors from head to toe of
homology modeling?

M.R. Saberi, A. Razzazan, H. Ramezani and A. Baratian
Medicinal Chemistry Division, School of Pharmacy, Mashhad University of
Medical Sciences, Mashhad, Po. Box: 91775-1365, Iran
saberimr@mums.ac.ir

See methods section
Panther - 55 models for 28 3D targets
Panther2 (serv) - 48 models for 47 3D targets

Prosite patterns for alignment validation and structural
clusters as templates

Hao Wang, Robert W. Harrison

Department of Computer Science, Georgia State University

One recurring critical problem revealed in CASP has been the ability to model
insertions and deletions in protein structure. Related to this is the inability of
potential based modeling approaches to correct for minor sequence alignment
errors. Threeapproaches were tested to see if they had potential to help
overcome these issues. The first approach was to extend the molecular
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mechanics potential by including a mean-force potential. The potential was
chosen by defining a set of most common nodal or “eigenstructures” together
with terms to represent the range of variation in the structure. These nodal
structures effectively span the space of allowed and observed peptide
conformations. The problem of modeling an insertion or deletion then becomes
the problem of identifying the correct nodal structure. The nodal structures
were chosen via K-nearest neighbors clustering to provide a uniform covering
of the space of structures. The second approach was to add a switching
hydrogen bond potential to help stabilize the backbone structure. This potential
was implemented with a Morse function. Finally, sequence alignments were
checked against a selected set of prosites patterns in order to validate the
alignment under the assumption that similar structures would have a similar
distribution of patterns. We also would expect that gain, loss, or shift in
position of a pattern was indicative of a missalignment.

PROFESY - 70 models for 14 3D targets

Protein structure prediction method based on fragment
assembly and conformational space annealing

Julian Lee', Seung-Yeon Kim* and Jooyoung Lee*"
'- Dept. of Bioinformatics and Life Science, Soongsil University,
2 - School of Computational Sciences, Korea Institute for Advanced Study
jlee@kias.re.kr

See methods section

Rokko - 228 models for 64 3D targets

De novo structure prediction by SimFold: benchmark test and
comparison with Rosetta

Y. Fujitsuka', G. Chikenji*, S.J. Park®, W. Jin’ N. Koga',
T. Furuta®, and S. Takada'”
! — Grad School, Sci & Tech Kobe Univ, *— Faculty of Sci, Kobe Uniyv, *-
Interdisciplinary Grad School of Sci & Eng, Tokyo Inst Tech
stakada@kobe-u.ac.jp

We have developed a method for de novo protein structure prediction and
compared its performance with Rosseta'. In our approach, first, we prepare the
fragment candidates of every 10 residues for each position of target proteins.
Then, we perform fragment assembly simulation with reversible replacement?
using our in-house developed energy function, SimFold**. We carried out a
small scale benchmark test on a set of proteins selected in Baker’s paper®. For
comparison, we also use Rosetta ab initio software with default parameters on
the same set. Relative performance depends on proteins; some are predicted
better by Rosetta, others by our approach, and the rest predictions are
equivalent. Overall comparison indicated that the method developed here
performs slightly better, on average, than Rosetta. We (Team ROKKO) also
applied our method to all the CASP6 targets that possibly have “new folds”. In
particular, we succeeded in predicting the correct fold of T0198 with ~8A
RMSD accuracy.

Our strategy consists of following four elements: 1) generation of fragment
candidates, 2) designing energy functions, 3) conformational sampling by the
fragment assembly (FA) and 4) selecting models.

1) Generation of fragment candidates: We used different methods in two
different purposes. a) For the benchmark test, fragment candidate are prepared
by Rosetta Fragment Selection software to make comparison as fair as possible.
b) For the CASP6 query, methods are described in the Method abstract of team
ROKKO.

2) SimFold, the energy function®': The protein is represented by a coarse-
grained model, in which side chain atoms are replaced by a center of
interactions. The interaction potential which we call SimFold contains van der
Waals interaction, secondary structure propensity, the hydrogen bond
interaction, the hydrophobic interaction and the pair-wise interaction. Some
more details are found in ROKKO’s method abstract.

3) Fragment assembly: For conformational sampling, we use a variant of
fragment assembly (FA) method called "reversible FA method" which we have
recently developed (an earlier version in ref.3). Our FA is different from what
has been developed by Baker's group®. The most important difference between
conventional FA and ours is that the conventional FA protocol does not fulfill
the detailed balance condition, but our algorithm does. This enables us
implementing powerful generalized ensemble methods such as replica-
exchange and multi-canonical ensemble methods. The latter was indeed used in
the CASP6. For benchmark comparison, simple simulated annealing is used.
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4) Model selection: We carried out cluster analysis for the structures generated
by FA simulations. For the benchmark test proteins, the 5 models are chosen
from the 5 largest clusters automatically. For the CASP6 targets, if whole-
length structures are not well clustered, the substructures are attempted to be
clustered. Then, the representatives of larger clusters are chosen as models
based on human inspection.

1. Simons,K.T., Kooperberg,C., Huang,E. & Baker,D. (1997) Assembly of
protein tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J. Mol. Biol.
268, 209-225

2. Chikenji,G., Fujitsuka,Y., and Takada,S. (2003) A reversible fragment
assembly method for de novo protein structure prediction. J.Chem.Phys.
119, 6895-6903

3. Takada,S. (2001) Protein folding simulation with solvent-induced force
field: Folding pathway ensemble of three-helix-bundle. Proteins 42, 85-98.

4. Fujitsuka,Y., Takada,S., Luthey-Schulten,Z.A., and Wolynes,P.G. (2004)
Optimizing physical energy functions for protein folding, Proteins 54, 88-
103.

5. Simons,K.T., Strauss,C., & Baker,D. (2001) Prospects for ab initio protein
structural genomics, Proc. Natl. Acad. Sci. USA. 306 1191-1199.

rost PROFcon (serv) - 64 models for 64 RR targets
PROFcon - a new neural network-based contact predictor

M. Punta’?and B. Rost"**

! _CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia
University, New York, NY 10032, USA, - Columbia University Center for
Computational Biology and Bioinformatics (C2B2), New York, NY 10032,

USA,,? - NorthEast Structural Genomics Consortium (NESG), Department of

Biochemistry and Molecular Biophysics, Columbia University, New York, USA
punta@cubic.bioc.columbia.edu

See methods section

SAM-T04-hand - 375 models for 64 3D / 56 RR targets

Human interaction with undertaker for the structure
prediction of targets T0212 and T0198

Martina Koeva and Kevin Karplus
University of California, Santa Cruz
martina@soe.ucsc.edu

We present two examples — T0212 and T0198 — of human intervention in the
protein structure prediction process through our interaction with the
“undertaker” program. Preliminary analysis of the results for these two targets
allows us to gain some understanding of the abilities and limitations of the
program, as well as to assess the human-added value to the quality of the
predictions.

Target T0212 consisted of approximately 126 residues and was annotated as
protein SOR45 from S.oneidensis. We used a fully automated method, which
involved the use of SAM-T04, SAM-T2K and undertaker’, to generate an initial
3D model for this target. Our initial alignment results did not suggest any
obvious templates (for comparative modeling) or folds (for fold recognition).
Based on the structural neighbors of our initial models and some of the
sequence alignments, we decided to pursue a jelly-roll like topology. Our
secondary structure predictions suggested that if we modeled T0212 as a
jellyroll, our models were going to have either an extra strand, or a missing
strand. We used undertaker to pursue both possibilities. The comparisons of our
results with the correct structure (PDB: 1tza) indicate that our top submitted
model, which represented the equivalence class of the “jelly-roll with a missing
strand” models scored the best from all of our submitted models with a GDT
score of 30.645%.

Target T0198, which corresponded to protein 1170B from Thermotoga
maritima had a sequence of length 235 amino acids. The initial sequence
alignments and secondary structure predictions suggested a helical up-and-
down bundle fold, which our initial 3D model generated by undertaker did not
reflect. We decided to pursue two different possible folds: an alpha-helical
sandwich, based on some of the structural neighbors of T0198, and a helical
bundle. We did not manage to use undertaker to successfully bundle the
predicted helices. We could not find a bundling pattern that allowed us to make
undertaker pack tightly the helices against each other, while exhibiting the
appropriate exposure/burial patterns. Undertaker seemed to favor mostly alpha-
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helical sandwich models. The comparison between our submitted models and
the correct structure (PDB: 1sum) has shown poor results and not much
improvement over the initial automatically generated model. Our best model,
which was not submitted, showed a GDT score of 21% and 12.54 Ang. RMSD.

1. Karplus,K., Karchin,R.,, Draper,J., Casper,J. Mandel-Gutfreund,Y.,
Diekhans,M., and Hughey,R. (2003) Combining local-structure, fold-
recognition, and new-fold methods for protein structure prediction.
Proteins 53 S6, 491-496.

Residue-residue contact prediction using mutual information
and neural networks

George Shackelford, Kevin Karplus
University of California, Santa Cruz
karplus@soe.ucsc.edu

We present a neural network predictor of residue-residue contacts that uses
statistical analysis of mutual information and local property values as inputs.
The results improves on earlier efforts*

Two problems with earlier efforts in using mutual information result from small
sample size and biased sampling due to over-representation of sub-family
sequences in the alignment. We show ways to deal with both these problems by
two statistical methods for correction of small samples and an aggressive
thinning of the sequences.

We use SAM-T04 to get the alignments®. For each pair we randomize the
contingency table while holding fixed the marginal sums, and build a histogram
of the mutual information for each randomization. We use this histogram to
adjust for small sample sizes in two ways. The first corrects for mutual
information based on chance by subtracting the mean of the histogram from the
raw mutual information to give a corrected mutual information. The second
takes the histogram and fits a gamma distribution on it. We use that distribution
to calculate an e-value. Both of these values show a significant improvement
over raw mutual information.

We compensate for the bias of over-represented sequences by thinning the
sequences to a series of subsets with increasing dissimilarity between the
sequences. We find that thinning in general improved results and thinning to

35% sequence similarity between all sequences provides the best results in
balancing between the bias and sample size.

Finally we are able to improve on these predictions by using these as part of the
inputs to a neural network. The network consists of 280 inputs consisting of
sequence length, separation, corrected mutual information and e-values for
different thinnings, distributions of both residues including neighboring
residues, and burial and secondary structure predictions. The network's single
output is the probability value that there is a contact between the respective
residues. The results of preliminary testing suggest a significant improvement
over previous predictors.

The predictions were available as constraints for the "undertaker" program here
at UC, Santa Cruz. There are no current results to show whether or not those
constraints improved the tertiary structure predictions.

1. Gobel,U.,, Sander,C., Schneider,R., Valencia,A. (1994) Correleated
mutations and residue contacts in proteins. Proteins 18, 309-317.

2. Fariselli,P., Olmea,O., Valencia,A., Casadio,R. (2001) Prediction of contact
maps with neural networks and correlated mutations. Protein Engineering
14 (11), 835-843.

3. Karplus,K., Karchin,R., Draper,J., Casper,J. Mandel-Gutfreund,Y.,
Diekhans,M., and Hughey,R. (2003) Combining local-structure, fold-
recognition, and new-fold methods for protein structure prediction.
Proteins 53 (S6), 491-496.

SBC - 90 models for 64 3D targets
A study of different profile-profile alignment methods

Tomas Ohlson, Bjérn Wallner and Arne Elofsson
Stockholm Bioinformatics Center
tomasoh@sbc.su.se

It has been demonstrated that methods using multiple sequences, i.e.
evolutionary information, are superior to methods that only use single
sequences’ and more recently that methods that use evolutionary information
for both the query and target sequences are even more efficient? when it comes
to detecting homologous proteins. One method to include this information is
by the use of profile-profile alignments, where a profile from the query protein
is compared with the profiles from the target proteins.
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Profile-profile alignments can be implemented in several fundamentally
different ways. The similarity between two positions can be calculated using a
dot-product, a probabilistic model or an information theoretical measure. In
addition, information about the background frequency of amino acids can be
used.

In this study® we present a large scale comparison of different profile-profile
alignment methods. We show that the profile-profile methods perform at least
30% better than standard sequence-profile methods both in their ability to
recognize superfamily related proteins and in the quality of the obtained
alignments. The main reason behind the improvement is most likely that the
profile-profile scoring methods are better at distinguishing evolutionary related
positions from non-related positions.

1. LindahLE., Elofsson,A. (2000). Identification of related proteins on family,
superfamily and fold level. J. Mol. Biol. 295, 613-625.

2. Wallner,B., Fang,H., Ohlson,T., Frey-Skétt,J., Elofsson,A. (2004). Using
evolutionary information for the query and target improves fold
recognition. Proteins 54, 342-350.

3. Ohlson,T., Wallner,B., Elofsson,A. (2004). Profile-profile methods provide
improved fold-recognition: A study of different profile-profile alignment

methods. Proteins 57, 188-197.

Benchmark of different homology modeling packages

B. Wallner and A. Elofsson

Stockholm Bioinformatics Center, Stockholm University
bjorn@sbc.su.se

In this study, we have used alignments between protein domains belonging to
the same SCOP family, with sequence identity ranging from 30%-100%, as an
input to six different homology modelling programs, Modeller’,
SegMod/ENCAD?, SWISS-MODEL?, 3D-JIGSAW®, Builder*® and nest’
within the JACKAL modeling package®. As a further reference SCWRL3? and
(also within the Jackal modeling package) were used to build side-chain from
simple backbone models. The overall quality and stereochemistry of the
resulting models were analyzed.

In general there is not a huge difference between the different methods. But
looking at the details there are differences. The differences are most

pronounced for the side-chain prediction, were there is clearly room for
improvement. For backbone dihedrals all methods perform equal except
SegMod/ENCAD which has 10 percentage points lower fraction of phi/psi
dihedrals correct. However these models have good stereochemistry which
indicates that it is difficult to get both the correct stereochemistry and correct
backbone dihedrals.

It has been shown in many studies and also at CASP that a model very seldom
is more close to the native structure than the template it was build on. This is
also true for most cases in this benchmark. However some methods like nest
very rarely makes the model worse, resulting in higher fraction of models that
get better compared to models that get worse (5% vs 2.5%).

Overall SegMod/ENCAD, Modeller and nest produce a higher number of
acceptable models compared to the other methods.

1. Sali,A. and Blundell, T.L. (1993). Comparative modelling by
statisfaction of spatial restraints. J. Mol. Biol. 234(3), 779-
815.

2. Levitt,M. (1992). Accurate modeling of protein conformation
by automatic segment matching. J. Mol. Biol. 226(2), 507-
533.

3. Schwede,T., Kopp,J., Guex,N. and MC Peitsch (2004). SWISS-
MODEL: An automated protein homology-modeling server.
Nucleic Acids Res. 31(7), 3381-3385.

4. Bates,P.A., Kelley,L.A.,, MacCallum,R.M. and Sternberg,M.].
(2001). Enhancement of protein modeling by human
intervention in applying the automatic programs 3D-JIGSAW
and 3D-PSSM. Proteins Suppl 5, 39-46.

5. Koehl,P. and Delarue,M. (1995). A self consistent mean field
approach to simultaneous gap closure and side-chain
positioning in homology modelling. (1995). Nat. Struct.
Biol., 2(2), 163-170.

6. Koehl,P. and Delarue,M. (1994). Application of a self-
consistent mean field theory to predict protein side-chains
conformation and estimate their conformational entropy. J.
Mol. Biol. 239(2):249-275.

7. Petrey,D., Xiang,Z., Tang,C.L., Xie,L., Gimpelev,M., Mitros,T.,
Soto,C.S,, Goldsmith-Fischman,S., Kernytsky,A.,
Schlessinger,A., Koh,l.Y., Alexov,E. and Honig,B. (2003).
Using multiple structure alignments, fast model building,
and energetic analysis in fold recognition and homology
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modeling. Proteins 53 Suppl 6:430-435.

8. Xiang,J.Z. (2003) Jackal: A protein structure modeling
package.
http://trantor.bioc.columbia.edu/programs/jackal/index.html.

9. Canutescu,A.A., Shelenkov,A.A. and Dunbrack,R.L Jr. (2003).
A graph-theory algorithm for rapid protein side-chain
prediction. Protein Sci. 12(9), 2001-2014.

Softberry - 122 models for 63 3D / 59 DR targets
SoftPM: Softberry tools for protein structure modeling

V. Solovyev 2, D. Affonnikov?, A. Bachinsky?, I. Titov?,

V. Ivanisenko® and Y. Vorobjev*
- Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 OEX,UK;
2-Softberry Inc., 116 Radio Circle, Suite 400; Mount Kisco, NY 10549, USA
victor@cs.rhul.ac.uk

See methods section

Tramontano - organizer, no predictions

PMDB: a new freely accessible database of protein structure
models

P. D'Onorio De Meo, D. Cozzetto, V. Zafiropoulos, C. Valeriani, T.
Castrignan, and A. Tramontano

The Protein Models DataBase (http://sandokan.caspur.it/PMDB/) collects three-
dimensional protein models obtained by any structure prediction method and
labelled with a reliability value. The system allows users both to contribute new
models and to search for existing ones. The database currently stores all models
submitted to the last edition of the CASP experiment.

VENCLOVAS - 25 models for 25 3D targets

PSI-BLAST-ISS: an intermediate sequence search tool for
estimation of position-specific alignment reliability

M. Margelevicius and C. Venclovas
Institute of Biotechnology, Graiciiino 8, Vilnius, Lithuania
venclovas@ibt.It

The Intermediate Sequence Search (PSI-BLAST-ISS) tool is designed to assess
the region-specific alignment reliability between two protein sequences (target
and template). The main idea of the algorithm is to initiate additional PSI-
BLAST! searches against the non-redundant sequence database for a set of
sequences that are related both to the target and to the template2. The position-
specific reliability of the alignment between the target and the template is then
assessed by merging alignment data obtained from intermediate sequence
searches and analyzing alignment convergence.

Algorithm
The whole ISS procedure may be described as the following steps: (1)

identification of multiple sequences related to both target and template
sequences, (2) creation of a representative set from these sequences by filtering
out close homologs, (3) generation of multiple sequence alignments for all
sequences from this representative set by searching sequence database,
containing both target and template sequences, (4) retention of all instances of
significant matches between the target and the template from multiple
alignments obtained in step 3, (5) merging all of significant target-template
alignments by taking one of the sequences (either the target or the template) as
a frame of reference. Optionally, the procedure can include creation of the
consensus template sequence derived from the final merged target-template
alignment. Using this option, the position specific reliability for multiple target-
template alignments can be contrasted simultaneously.

Implementation
PSI-BLAST-ISS is a collection of fairly independent modules linked together

using Perl. As an input, PSI-BLAST-ISS takes the target sequence, which is
searched against the non-redundant sequence database to collect intermediate
sequences. The set of intermediate sequences is currently filtered by CD-HIT?,
the sequence clusterization program. Each of the intermediate sequences is used
to generate sequence profiles in a form of PSI-BLAST checkpoint file by
running a user-defined number of PSI-BLAST iterations. The resulting
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checkpoint files are then used to restart PSI-BLAST searches in a sequence
database that has to include sequences of both proteins of interest (target and
template). In a common situation, when the template represents a structural
template intended for use in comparative modeling, such database may be
derived by simply appending the target sequence to the PDB sequence database
that already contains the template sequence. After the processing and merging
obtained target-template alignment variants the final result is a multiple
sequence alignment, where the reference sequence (say the target) is aligned
with multiple instances of the second sequence (template) according to different
alignment variants.

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W.
& Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Venclovas, C. (2001). Comparative modeling of CASP4 target proteins:
combining results of sequence search with three-dimensional structure
assessment. Proteins Suppl 5, 47-54.

3. Li,W, Jaroszewski,L., Godzik,A. (2001) Clustering of highly homologous
sequences to reduce the size of large protein database. Bioinformatics 17,
282-283.

Wymore - 32 models for 19 3D targets

Comparative modeling using alternative alignments and
statistical potentials

Adam Marko, Stuart Pomerantz, Troy Wymore
Biomedical Initiative Group, Pittsburgh Supercomputing Center,
Pittsburgh, PA
wymore@psc.edu

For even moderately difficult comparative modeling projects, there is often
variable regions for which the alignment between target and template is highly
arbitrary and hence structures generated through such an alignment can have
significant errors. In an effort to overcome these errors, we have developed a
protein structure prediction pipeline that is currently applicable for these
comparative modeling targets. This pipeline consisted of 1) generating
hundreds of alternative alignments between target and template 2) using these
alignments to generate structures 3) scoring these structures with a statistical
potential and 4) visually examining lowest energy structures in an effort to pick
the one closest to native. Programs were written in Perl to enable the flow

between modeling programs. Our goal for this part of our modeling
strategy was to demonstrate improvement in our comparative
models over those constructed from a T-coffee' alignment.

Template structures were identified by performing a BLAST? search
through the non-redundant database, building profiles from
related sequences through the MEME? program and using those
profiles to search through the PDB using the MAST* program.
We constructed 100-500 alternative alignments between
template and target using the program probAs. This program
uses a probabilistic backtracking procedure that generates
ensembles of suboptimal alignments with correct statistical
weights. This ensemble of alignments was used to build
structures using MODELLER version 6.2°. The structures were
then ranked using Prosall®. For some targets, we attempted to
distinguish between favorable “Prosall” models with an all-
atom molecular mechanical potential coupled to a Generalized
Born implicit solvent model. This presentation will describe the
1) the ability of the Prosall program to identify structures
closest to native from an ensemble and 2) the improvements
in alignment quality and native contacts generated through the
use of this pipeline versus constructing a model from a T-coffee
multiple sequence alignment.

1. Notredame, C., Higgins, D., Heringa, J. (2000) T-Coffee: A novel method
for multiple sequence alignments. J. Mol. Biol., 302, 205-217.

2. Altschul,S.F., Gish, W., Miller, W., Meyers, E. W., Lipman, D. J. (1990)
Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

3. Bailey, T. L., Elkan, C. (1994) Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. Proc. 2" Int. Conf.
Intelligent Sys. Mol. Biol. AAAI Press, 28-34.

4. Bailey, T. L., Gribskov, M. (1998) Combining evidence using p-values:
application to sequence homology searches. Bioinformatics 14, 48-54.

5. Kelley, L. A., MacCallum, R. M., Sternberg, M. J. E. (2000) Enhanced
genome annotation using structural profiles in the program 3D-PSSM. J.
Mol. Biol. 299, 499-520.

6. Muckstein, U., Hofacker, I. L., Stadler, P. F. (2002) Stochastic pairwise
alignments. Bioinformatics, 18, S153-S160.

7. Sali, A., Blundell, T. L. (1993) Comparative Protein Modeling by
Satisfaction of Spatial Restraints. J. Mol. Biol., 234,779-815.

8. Sippl, M. J. (1993) Recognition of Errors in Three-Dimensional Structures
of Proteins. PROTEINS: Struct. Func. Gen. 17,355-362.
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Loop modeling using the Multi-scale Modeling Tools for
Structural Biology (MMTSB) toolset

Troy Wymore and Adam Marko
Biomedical Initiative Group, Pittsburgh Supercomputing Center,
Pittsburgh, PA
wymore@psc.edu

Our group has developed a comparative modeling pipeline that attempts to
generate a model that would correspond to the structural alignment as much as
possible. Yet even if the optimal target-template alignment is generated and
identified, there are often insertions or highly variable regions that will contain
significant errors. In these instances, one must resort to other methods such as
physics-based simulations to obtain a structure closer to the native. This
presentation will describe loop refinement efforts using the MMTSB' Toolset
during the prediction season and long molecular dynamics simulations
performed afterward.

For six highly variable regions ranging in size from 5-16
residues, we performed lattice-based replica exchange
simulations using MONSSTER? through the MMTSB toolset for
enhanced sampling of conformational space. Restraints were
placed on the rest of the structure. The lowest temperature
replicas from the final rounds of simulation (typically the last
100-1000 structures) were rebuilt to complete all-atom models.
These structures were minimized with the all-atom force field in
CHARMM with a distance dependant dielectric function.
Energies for these structures were then evaluated more
accurately with the same force field but coupled with a
Generalized Born implicit solvent model. The loop structures
were clustered according to distance RMSD. And finally a
model was chosen with the lowest energy in the cluster with
the lowest average energy.

1. Feig,M., Karanicolas,J., Brooks II[,C.L.B. (2004) MMTSB Tool Set:
enhanced sampling and multiscale modeling methods for applications in
structural biology. J. Mol. Graph. Model. 22, 377-395.

2. Skolnick,J., Kolinski,A., Ortiz,A.R. (1997) MONSSTER: a method for
folding globular proteins with a small number of distance restraints. J.
Mol. Biol. 265, 217-241.

YASARA - 28 models for 9 3D targets

The last mile of the protein folding problem — a pilgrim’s staff
and skid-proof boots

E. Krieger, S.B. Nabuurs, C.A.E.M. Spronk and G. Vriend
CMBI, Center for Molecular and Biomolecular Informatics,
Radboud University Nijmegen, the Netherlands
Elmar.Krieger@cmbi.ru.nl, www.YASARA.org

Today’s energy functions are not able yet to distinguish reliably between correct
and almost correct protein models. Improving these near-native models is
currently a major bottle-neck in homology modeling or experimental structure
determination at low resolution. Increasingly accurate energy functions are
required to walk along the 'last mile of the protein folding problem', for
example during a molecular dynamics simulation.

Here we provide a pilgrim’s staff: self-parameterizing force fields', that were
obtained from the AMBER force field® by simulating complete protein crystals
and iteratively adjusting the force field parameters to minimize the damage
done to the known structures®. The resulting YAMBER and YASARA force
fields are then used to run accurate simulations of homology models in aqueous
solution.

Additional skid-proof boots are needed to avoid a common pitfall: even with an
ideal force field, homology models cannot be expected to always approach the
native conformation directly. That’s why we run 100 simulations in parallel*
and then use a sophisticated scoring function based on WHAT IF checks® and
YASARA energies to pick out the pearls.

Even models very close to the native structure can be improved: The closest
template for Target 231 was an NMR structure with 80% sequence identity and
0.96 A Ca RMSD (excl. one long flexible surface loop). During the refinement,
this RMSD could be reduced to 0.79 A (Model 1).

More information is available at www.yasara.org and www.cmbi.ru.nl/whatif
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Krieger,E., Koraimann,G. & Vriend,G. (2002) Increasing the precision of
comparative models with YASARA NOVA - a self-parameterizing force
field. Proteins 47, 393-402.

Wang,J., Cieplak,P. & Kollman,P.A. (2000) How well does a restrained
electrostatic potential (RESP) model perform in calculating conformational
energies of organic and biological molecules? J.Comp.Chem. 21, 1049-
1074.

Krieger,E., Darden,T., Nabuurs,S.B., Finkelstein,A. & Vriend,G. (2004)
Making optimal use of empirical energy functions: force field
parametrization in crystal space. Proteins in press.

Krieger,E. & Vriend,G. (2002) Models@Home: distributed computing in
bioinformatics using a screensaver based approach. Bioinformatics 18,
315-318.

Hooft,R.W.W., Vriend,G., Sander,C. & Abola,E.E. (1996) Errors in protein
structures. Nature 381, 272-272.
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Accelrys - 27 models for 16 3D / 1 FN targets

Modeling, simulations and high-throughput functional
annotation using Discovery Studio Modeling and GeneAtlas

D. Haley-Vicente
Accelrys Inc., 9685 Scranton Rd., San Diego, CA 92121
dhv@accelrys.com

A plethora of methodologies have been utilized for CASP6 homology model
predictions. We determined the protein models based on a combination high-
throughput bioinformatics, modeling and simulations algorithms in Discovery
Studio® (DS) Modeling (Accelrys, Inc)'. As part of DS Modeling, an
automated, high-throughput functional annotation pipeline program called DS
GeneAtlas® was used to predict the majority of templates and provide initial
alignments and models for each target. The DS GeneAtlas pipeline
incorporates sequence similarity detection (e.g. PSI-BLAST), domain analysis
(e.g. PFAM), homology modeling (e.g. MODELER), model evaluation (e.g.
Profiles-3D), fold recognition (e.g. SeqFold), and 3D active site annotation (e.g.
CSC? 3D-motif searching) methods.

Both DS Modeling and DS GeneAtlas will be demonstrated at the CASP6
conference in Gaeta, Italy (December 2004). The demonstration will show
advanced in silico high throughput bioinformatics, functional annotation,
protein homolog modeling and 3D annotation techniques to study genomes and
proteomes. The software demonstration includes using our Discovery Studio
software to analyze the West Nile Virus (WNV) genome*.  The software
demonstration will show that the DS GeneAtlas pipeline can be used to produce
reliable structural and functional annotation of the WNV capsid, envelope,
NS1, NS3, and NS5 proteins. Functional annotation for these proteins reveal
information regarding their predicted transmembrane region, structure, function
and binding site(s). The 3D homology model of the proteins can then be used as
the biological target for lead finding experiments that include a combination of
docking and de novo design.

1. Discovery Studio Modeling
(http://www.accelrys.com/dstudio/ds_modeling/) Accelrys Inc.

2. Kitson, et al. (2002) Functional annotation of proteomic sequences based
on consensus of sequence and structural analysis. Briefings in
Bioinformatics 3, 1-13.

3. Milik, et al. (2003) Common Structural Cliques: a tool for protein structure
and function analysis. Protein Engineering 16, 1-10.

4. Quinn, Fisher and Haley-Vicente (2004) From Gene to Function: In Silico
Warfare on the West Nile Virus
(http://www.accelrys.com/cases/west_nile_virus.pdf)

HHpred.2 (serv) - 310 models for 62 3D targets
HHpred.3 (serv) - 309 models for 62 3D targets

HHpred web server for distant homology detection and
structure prediction

J. S Soding, A. Biegert, A. Lupas
Dept for Protein Evolution,
Max-Planck-Institute for Developmental Biology, Tiibingen, Germany
johannes.soeding@tuebingen.mpg.de

HHpred is a server for the detection of distant homologs that can also be used
for structure prediction. The user can paste either a query sequence or a whole
alignment. HHpred then performs a specified number of PSI-BLAST iterations
(between 0 and 8) against the non-redundant database and predicts secondary
structure with PSIPRED. An HMM is generated for the query alignment and
the query HMM is compared with a user-selected database of HMMs. At the
moment, HHpred allows searching Pfam, SMART, and SCOP. Inclusion of
DALI and a daily updated version of the PDB protein data bank are planned.
The user can use local or semi-global HMM-HMM alignment for the search
and can choose whether to include secondary structure scoring. (If the 2D
structure of the database sequences is not known, predicted secondary structure
is used instead.)

HHpred returns a list of best matches together with the query-template
alignments in an easily readable format. The alignments include the secondary
structures and the consensus sequences of query and template, as well as a line
showing the match quality of each pair of HMM columns. Furthermore, the
user can chose to include up to ten representative homologs of the query and
template in the alignments and he may color residues by biochemical
similiarity. Hits are linked to Pfam, SCOP, SMART, and/or the PDB.
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The user may view the query and template alignments from which the HMMs
were calculated. He may edit the query alignment and resubmit the corrected
alignment to HHsearch. This ensures full flexibility for interactive use. The user
may also choose to generate a query-template alignment (with one or multiple
templates) as input to homology modelling programs. At the moment, FASTA
and PIR format is supported. Alternatively, an unrefined 3D structure model in
pdb format containing only the C, atoms can be generated by mapping the
coordinates of the template to the query residues in accordance with the query-
template alignment found.

HHpred is very fast: a search against the SCOP50 database (~6700 domains)
with a 200-residue query takes about one minute, plus the time to build an
alignment with PSI-BLAST. To make the server easy to use we have added a
help facility that explains the input parameters as well as how to interpret the
search output. The server distributes jobs to a small compute cluster which will
be extended as required.

We plan to extend HHpred together into a flexible structure and function
prediction pipeline for interactive use. We welcome suggestions for
improvement or further development. You can access HHpred at

http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred.

1. Soding,J. (2004) Protein homology detection by HMM-HMM comparison.
Submitted to Bioinformatics.

YASARA - 28 models for 9 3D targets
YASARA - Molecular graphics, -modeling and -simulation

Elmar Krieger
CMBI, Center for Molecular and Biomolecular Informatics,
Radboud University Nijmegen, the Netherlands
Elmar.Krieger@cmbi.ru.nl, www.YASARA.org

Because our brain prefers images over numbers, progress in the natural sciences
is coupled with the ability to display and investigate molecules on a computer
screen. Nowadays, computers are equipped with graphics processing units
(GPUs), that heavily accelerate the display of three-dimensional models.
Molecular visualization algorithms run into an unexpected problem, however:
GPUs are highly optimized for drawing triangles, while atoms are typically
shown as plain spheres. Programmers are thus forced to join ~320 or more
triangles to display one single atom (Figure A). For large biomolecular systems
with tens of thousands of atoms, this approach becomes prohibitively slow.
Here I describe a novel way of drawing molecules, that requires a minimum
number of two triangles per atom. These flat triangles have a precalculated
image of a sphere attached which creates the illusion of depth. When compared
with the classical approach, the novel method is up to 35 times faster, especially
when visualizing large structures like the ribosome or virus capsides. An
implementation of the algorithm is freely available as part of YASARA, a
molecular graphics, modeling and simulation program for Linux and Windows,
with support for structure analysis and prediction, interactive real-time
simulations using classic and newly developed force fields, molecular
animations, interactive tutorials, multimedia presentations, Python plugins and
Yanaconda macros at www.yasara.org.
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