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3D-JIGSAW_V3  
3D-JIGSAW_AEP  
Bates_BMM  

Template and fragment mixing using a genetic algorithm  

M.N. Offman, R.A.G. Chaleil, I. Moal and P.A. Bates 
Cancer Research UK London Research Institute 

paul.bates@cancer.org.uk 
 
Our objective is to blend models created by several different means, in an attempt to combine the good 
quality regions from each into a final, more refined, model. We have developed a number of refinement 
operators (the move-set) to search restricted regions of conformational space. These operators are used in 
the context of a genetic algorithm (GA) that reshuffles and repacks structural components at both a finer 
local and a coarser global level1-2.  
 
For CASP8 we entered two fully automated servers, 3D-JIGSAW_V31 and 3D-JIGSAW_AEP2 both of 
which employ this GA approach. Potential templates and fragments are first identified using the HHpred 
software package3. All templates are modelled to the target sequence using the sidechain replacement 
program SCWRL34. Insertions and deletions are modelled by our in-house loop modelling and closure 
method2, a complex procedure including a modified version of the cyclic coordinate descent algorithm5. 
The initial population of models is ranked with our course energy scoring function2 before being fed into 
several complete rounds of GA optimisation. These rounds of GA optimisation employ the move-set and 
model selection as previously described1-2. 
 
In the GA approach used, each round normally consists of a diversification (sampling) and an 
intensification (ranking) step. 3D-JIGSAW_AEP differs from 3D-JIGSAW_V3 in that the former uses 
Alternating Evolutionary Pressure (AEP), a new method to increase and improve diversification. In 
general, GAs and other similar conformational search algorithms can suffer from the problem that they tend 
to stay within local minima instead of exploring further afield. 
 
Therefore, in our AEP approach, a number of consecutive diversification steps are allowed between each 
intensification step. In these non-scored rounds, the population grows linearly and the structures in the 
ensemble are allowed to sample energetically unfavourable intermediate states. Although energy evaluation 
is not applied, to ensure reasonable sampling, basic protein health checks associated with the operators are 
still in place. 
 
In our manual submission protocol, all server models were downloaded from the prediction center webpage 
and used as the input population to 3D-JIGSAW_V3 in the upload mode. After recombination the highest 
scoring models, always at least slightly different from all initial input models, were submitted. 
 
Our own preliminary analysis suggests that between our fully automatic servers, 3D-JIGSAW_V3 performs 
better for the easier targets and 3D-JIGSAW_AEP for the more difficult ones. This is perhaps not too 
surprising since 3D-JIGSAW_AEP is able to search more conformational space. However, It is 
encouraging that our energy function can score some of the models from the AEP approach well. On the 
negative side, the AEP method still has a tendency to move away from the target minima into deep, false 
positive, energy basins. Baring this in mind, we plan to merge both servers and apply the techniques 
depending on the targets' modelling difficulty levels. Furthermore, we are currently trying to reduce entry 
into false positive energy basins by adding protein family specific knowledge thereby locating more 
optimal regions for performing protein model crossover and mutation events. 
 
1. Offman M.N., Fitzjohn P.W. & Bates P.A. (2006) Developing a move-set for protein model 

refinement. Bioinformatics. 22, 1838-1845. 
2. Offman M.N., Tournier, A.L. & Bates, P.A. (2008) Alternating evolutionary pressure in a genetic 

algorithm facilitates protein model selection. BMC Struct. Biol. 8:34. 
3. Soding, J., Biegert, A. & Lupas A.N. (2005) The HHpred interactive server for protein homology 

detection and structure prediction. Nucleic Acids Res.,33,  W244-W248. 
4. Canutescu, A.A., Shelenkov, A.A. & Dunbrack R.L.Jr. (2003) A graph-theory algorithm for rapid 

protein side-chain prediction. Protein Sci.,12, 2001-2014. 
5. Canutescu, A.A. & Dunbrack R.L.Jr. (2003) Cyclic coordinate descent: a robotics algorithm for 

protein loop closure. Protein Sci.,12, 963-972 
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3DShot1 
3DShotMQ 
3DShot2 

Novel, Meta-Approach based techniques for protein structure prediction 

T. Seth and D. Fischer 
tseth@cse.buffalo.edu, df33@cse.buffalo.edu 

 
In the eighth Critical Assessment of techniques for protein structure prediction (CASP 8) experiment, we 
participated as 3DShot1, 3DShotMQ in the “Human-Server” category and, 3DShot2 in the “Server-Only” 
category. All the three of our methods generate automated predictions using three different meta-selection 
and assembly techniques. 

 
3DShot1: 
3DShot1 incorporates the following steps: 
1) Input Selection: 3DShot1 evaluates all the “TS1” models submitted by the CASP7 server groups and 
extracts a subset 8-15 models for generating a hybrid model. The subset of models is determined based on a 
clustering scheme that takes into consideration different factors like the model quality, alignment length 
etc. 
2) Input Refinement: Each of the selected input models is refined (Beautify) in order to remove collisions. 
Models from highly diverse clusters are further assessed for quality using MQAP. 
3) Assembly: For each residue position, a set of its spatially closest residues is determined. These sets are 
then scored based on various sequence and structure-based properties and the best scoring sets are 
assembled together in a controlled environment to generate a hybrid prediction. 
4) Assembly Selection and Refinement: Each of the final assembled models is ranked based on a composite 
score derived as a function of the structural similarity of the assembled model with the other models and 
the 3D-1D scores. The highest-ranking assembled model is refined and is reported as the final result. 
 
3DShotMQ: 
3DShotMQ incorporates the same initial steps as 3DShot1 but generates hybrid models using a different set 
of models and a different version of the assembly algorithm. 
1) Input Selection and Refinement:  Fifteen input models are obtained using a new local meta-mqap method 
and are refined using Modeller.  
2) Assembly: The assembly is carried out using a slightly different version of the assembly algorithm used 
for 3DShot1. 
3) Assembly Selection and Refinement: 3DShotMQ reports the first assembled model, after refinement, as 
the final prediction. 
 
3DShot2: 
3DShot2 is a new autonomous server that generates hybrid models using models generated by Inub and our 
local implementations of HHpred and Sp3. Variable number of models are selected based on the target 
difficulty determined using the %sequence identity of the top predicted models. 3DShot2 generates hybrid 
models using an improved version of the shotgun algorithm and by doing assembly at the sub-structural 
unit level instead of the residue level followed by refinement. 
 
 

AMU-Biology 

Combined methods of template-based and template-free modeling 

J.M. Kasprzak, T. Puton, M. Musielak, K. Milanowska, K. Majorek, M. Domagalski, 
E. Kubiaczyk, A. Wysoczanska, U. Baraniak, N. Szostak, M. Magnus, J.M. Bujnicki and  

A. Czerwoniec* 
Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz 

University, Umultowska 89, PL-61-614 Poznan, Poland 
anna.czerwoniec@amu.edu.pl 

 
In the eighth Critical Assessment of techniques for protein Structure Prediction (CASP8), the AMU-
Biology group used the combination of the ‘FRankenstein’s Monster’ approach for template-based 
modeling (Kosinski, 2003) with the REFINER tool (Boniecki, 2003) and the ROSETTA method for de 
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novo modeling (Simons, 1997) to predict the tertiary structure of full-length targets of all categories. 
 
In the first step we identified structural homologs and generated target-template alignments using a number 
of fold-recognition methods available via the GeneSilico MetaServer (Kurowski and Bujnicki, 2003). 
MODELLER (Fiser and Sali, 2003) was used to convert target-template alignments into preliminary 
models. At this stage we also used external information: secondary structure predictions, conservation of 
fragments and putative catalytic residues, and constraints on the placement of insertion and deletions in the 
loop regions as well as available literature information. The preliminary models were evaluated according 
to MetaMQAP (Pawlowski, 2008 in press) to enable discrimination of fragments that are likely to be 
erroneous and ranked with automated ProQ assessment (Wallner, 2005). 
 
After superimposing the best models and merging their best-scored fragments, we constructed hybrid 
models and used them to introduce necessary modifications in the original target-template alignments. The 
first step of model refinement involved iterative model building, evaluation, and realignment. The second 
step of model refinement concerned short loop regions, for which the structural information available from 
the templates was insufficient. We used REFINER (Boniecki, 2003) – a "de novo" protein structure 
prediction method. For each fragment we generated hundreds of alternative models, which were then 
ranked by ProQ to select the best models. In a few cases we used also the server for short loop modeling 
(Michalsky, 2003).  
 
For long regions (or entire proteins) with no corresponding structure among the templates identified by 
fold-recognition, we attempted de novo modeling using the ROSETTA algorithm. Hundreds to thousands 
of decoys were generated and clustered to identify the most representative low-energy conformations. 
Models were selected according to the average energy of clusters, size, density and visual evaluation of the 
full-atom structures. The final hybrid models were ‘refined’ by running MODELLER to optimize the bond 
lengths and angles.  
 
1. Kosinski, J., Cymerman, I.A., Feder, M., Kurowski, M.A., Sasin, J.M., Bujnicki, J.M. (2003). A 

'Frankenstein's monster' approach to comparative modeling: merging the finest fragments of fold-
recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 53 Suppl 
6:369-79. 

2. Simons KT, Kooperberg C, Huang E, Baker D. (1997) Assembly of protein tertiary structures from 
fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J 
Mol Biol. 268(1):209-25. 

3. Boniecki M, Rotkiewicz P, Skolnick J, Kolinski A. (2003) Protein fragment reconstruction using 
various modeling techniques. J Comput Aided Mol Des. 2003 Nov;17(11):725-38. 

4. Kurowski, M.A., Bujnicki J.M. (2003) GeneSilico protein structure prediction meta-server. Nucleic 
Acids Res. 31(13):3305-7. 

5. Fiser, A., Sali, A. (2003). Modeller: generation and refinement of homology-based protein structure 
models. Methods Enzymol. 374:461-91. 

6. Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM. (2008 in press). MetaMQAP: a meta-server for the 
quality assessment of protein models. BMC Bioinformatics  

7. Wallner B., Elofsson A (2005). Identification of correct regions in protein models using structural, 
alignment and consensus information. Protein Sci., 15(4):900-913 

8. Michalsky E., Goede A., Preissner R. (2003) Loops In Proteins (LIP) – a comprehensive loop database 
for homology modeling. 

 
 
 
BAKER-GINZU 

Ginzu homolog identification and domain parsing in CASP8 

D. Chivian1, D. E. Kim2, J. Thompson2 and D. Baker2 
1 - Lawrence Berkeley National Laboratory, Berkeley, CA, 

 2 - University of Washington, Seattle, WA 
DCChivian@lbl.gov 

 
Protein chains often contain more than one domain.  In order to predict the domain organization of a 
protein, we have developed the Ginzu1-2 homolog identification and domain parsing method. The method 
is available to the public as part of the Robetta server1;3-4 (http://robetta.org). 
 
Ginzu attempts to determine the locations of putative domains in the query sequence and the identification 
of any likely homologs with experimentally characterized structures. These steps are not decoupled, since 
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the ability to assign a region of the target to a known protein structure greatly increases the likelihood that it 
is at least one protein domain. The approach consists of scanning the target sequence with successively less 
confident methods to assign regions that are likely to be domains. Once those regions are identified, cut 
points in the putative linkers are determined, and if possible a single homologous PDB chain is associated 
with each putative domain. The initial scan attempts to identify the closest relatives with experimental 
structures to regions of the query sequence. A straightforward BLAST/PSI-BLAST5 search against the 
PDB sequence database detects such relatives. All PDB ids that are detected at this stage are stored. Non-
overlapping regions that possess the best combination of detection confidence and length of coverage are 
assigned as domains. The associated PDB id and region of the chain matched is retained. 
 
One may then employ more remote fold-recognition methods to detect homologous PDB structures. We 
used HHSEARCH6 in this step for the parsing of the CASP8 targets.  Again, as with the PSI-BLAST 
detections, the associated PDB and region of the target chain covered is retained. 
 
Any remaining long regions of the query that do not have structural homologs may require further division 
into domains. One may search unassigned regions against Pfam7.  Subsequent steps of Ginzu utilize the 
program "msa2domains", which examines the PSI-BLAST multiple sequence alignment (MSA) to find 
clusters of sequences in the PSI-BLAST multiple sequence alignment (MSA) and assigns these as regions 
of increased likelihood of possessing a domain.  This is done in an order based on the number of unique 
observations in the cluster (essentially a non-redundant depth), with overlaps not permitted.  Lastly, 
msa2domains determines where to place the exact cut points in the linker regions, or any remaining long 
unassigned regions, via a heuristic that again considers clusters of sequences in the PSI-BLAST MSA, the 
least occupied positions in the MSA, strongly predicted loop regions by PSIPRED8, and distance from the 
nearest region of increased domain confidence.  A fourth term boosts the likelihood of a domain boundary 
in regions of the MSA where the sequences frequently begin or end. 
 
The final step consists of parsing regions that have been assigned structural homologs based on the model 
generated by that assignment.  We have developed a consensus variant of Taylor’s structure-based domain 
parsing method9 that is applied to the target's final Robetta model, as well as PSI-BLAST detectable 
structural homologs, to complete the domain parsing. Alternate domain predictions based on the model 
from the default K*Sync alignment to the parent are also returned, as are MSA-based predictions for weak 
confidence HHSEARCH detected regions. 
 
1. Chivian D., Kim D.E., Malmstrom L., Bradley P., Robertson T., Murphy P., Strauss C.E., Bonneau R., 

Rohl C.A., & Baker D. (2003) Automated prediction of CASP-5 structures using the Robetta server. 
Proteins 53, 524-533. 

2. Kim D.E., Chivian D., Malmstrom L., & Baker D. (2005) Automated prediction of domain boundaries 
in CASP6 targets using Ginzu and RosettaDOM. Proteins 61, 193-200. 

3. Kim D.E., Chivian D., & Baker D. (2004) Protein structure prediction and analysis using the Robetta 
server. Nucleic Acids Res 32, W526-W531. 

4. Chivian D., Kim D.E., Malmstrom L., Schonbrun J., Rohl C.A., & Baker D. (2005) Prediction of 
CASP6 structures using automated Robetta protocols. Proteins 61, 157-166. 

5. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., & Lipman D.J. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res 25, 3389-3402. 

6. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-
960. 

7. Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S.R., Griffiths-Jones S., Howe K.L., 
Marshall M., & Sonnhammer E.L. (2002) The Pfam protein families database. Nucleic Acids Res 30, 
276-280. 

8. Jones D.T. (1999)  Protein secondary structure prediction based on position-specific scoring matrices. J 
Mol Biol 292, 195-202. 

9. Taylor W.R. (1999) Protein structural domain identification. Protein Eng 12, 203-216. 
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BAKER-DP_HYBRID 

Hybrid domain parsing with Ginzu and RosettaDOM 

D. Chivian1, D. E. Kim2 and D. Baker2 
1 - Lawrence Berkeley National Laboratory, Berkeley, CA,  

2 - University of Washington, Seattle, WA 
DCChivian@lbl.gov 

 
Protein chains often contain more than one domain.  In order to predict the domain organization of a 
protein, we have combined the Ginzu1-2 and RosettaDOM2 domain parsing methods into a hybrid 
predictor (see accompanying abstracts for BAKER-GINZU and BAKER-ROSETTADOM in this volume). 
 
Ginzu attempts to determine the locations of putative domains in the query sequence and the identification 
of any likely homologs with experimentally characterized structures with PSI-BLAST3 and HHSEARCH4. 
This search for homologous structures is followed by parsing any remaining regions by screening Pfam5, 
and then by application of a boundary preference function. The boundary preference function is derived 
from a PSI-BLAST MSA (from the "UniRef90" sequence database6) via a heuristic that considers clusters 
of sequences in the PSI-BLAST MSA, the least occupied positions in the MSA, strongly predicted loop 
regions by PSIPRED7, and distance from the nearest region of increased domain confidence.  A fourth 
term boosts the likelihood of a domain boundary in regions of the MSA where the sequences frequently 
begin or end.  Regions with structural homologs are further parsed using a consensus variant of Taylor's 
structure-based domain parsing method8. 
 
RosettaDOM generates 400 decoy structures with Rosetta's de novo fragment-assembly approach for the 
full length of the target and structurally parses each of those decoys using Taylor’s structure-based domain 
parsing method.  Increased frequency of boundaries within a sliding window (smoothed in the same fashion 
as SnapDRAGON9) is used to assign domain boundaries (over a Z-score of 2.5).  Although Rosetta is 
unlikely to produce accurate atomic-resolution models, it may accurately produce course structural features 
such as domains. 
 
Both Ginzu and RosettaDOM often do not arrive at a strongly predicted boundary separately, but instead 
may suggest several candidate boundaries with a confidence below the threshold of each method.  In such 
circumstances, agreement between the two methods increases the confidence of a boundary within that 
window.  The BAKER-DP_HYBRID method takes advantage of the agreement between the sequence-
based and structure based domain prediction methods by combining the boundary confidence functions 
from the two methods (only in regions without a strongly detected PDB homolog by Ginzu).  It reports 
boundaries only when the combined function is above the threshold, which may be achieved with a strong 
prediction by either method or when weaker predictions by each method are in agreement.  Regions with 
PDB homologs found by Ginzu are structurally parsed with Taylor's method (based on the model) in the 
same fashion as Ginzu.  The BAKER-DP_HYBRID method makes use of two largely independent domain 
prediction methods, one based on sequence homology and the other based on de novo structure predictions.  
 
1. Chivian D., Kim D.E., Malmstrom L., Bradley P., Robertson T., Murphy P., Strauss C.E., Bonneau R., 

Rohl C.A., & Baker D. (2003) Automated prediction of CASP-5 structures using the Robetta server. 
Proteins 53, 524-533. 

2. Kim D.E., Chivian D., Malmstrom L., & Baker D. (2005) Automated prediction of domain boundaries 
in CASP6 targets using Ginzu and RosettaDOM. Proteins 61, 193-200. 

3. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., & Lipman D.J. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res 25, 3389-3402. 

4. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-
960. 

5. Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S.R., Griffiths-Jones S., Howe K.L., 
Marshall M., & Sonnhammer E.L. (2002) The Pfam protein families database. Nucleic Acids Res 30, 
276-280. 

6. Suzek B.E., Huang H., McGarvey P., Mazumder R., & Wu C.H. (2007) UniRef: comprehensive and 
non-redundant UniProt reference clusters. Bioinformatics 23, 1282-1288. 

7. Jones D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J 
Mol Biol 292, 195-202.  

8. Taylor W.R. (1999) Protein structural domain identification. Protein Eng 12, 203-216. 
9. George R.A., Heringa J. (2003) SnapDRAGON: a method to delineate protein structural domains from 

sequence data. J Mol Biol. 316, 839-851. 
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BAKER-ROBETTA 

Robetta De Novo and Homology Modeling in CASP8 

D. E. Kim1, D. Chivian2 , J. Thompson1, R. Vernon1 and D. Baker1 
1 - University of Washington, Seattle, WA, 

 2 - Lawrence Berkeley National Laboratory, Berkeley, CA 
dekim@u.washington.edu 

 
The Robetta server1-3 (http://robetta.org) combines the Rosetta homology modeling4 and de novo5-7 tertiary 
structure prediction protocols with the Ginzu1,8 homolog identification and domain parsing protocol to 
provide predictions for the full length of each target.  The main modifications to the Robetta homology 
modeling protocol for CASP8 include generating more conservative alignment ensembles for close 
homologs, and generating more compact loops and using a more stringent chain-break filter in loop 
modeling.  As in CASP7, our model ensembles are parametrically generated for up to 5 parents by the 
K*Sync4 alignment method for the template regions and with Rosetta loop modeling7,9 for unaligned 
regions.  The main modifications to the Robetta de novo protocol include the addition of a full-atom 
refinement step at the end of each standard Rosetta fragment-replacement trial, and a significant increase in 
the number of independent trajectories sampled through the use of the distributed computing project 
Rosetta@home (http://boinc.bakerlab.org/rosetta).  Blind benchmarking of servers is crucial as it allows us 
to measure the abilities of automated prediction, which is vital for the purpose of large-scale prediction 
efforts. 
 
Robetta homology modeling protocol  
Robetta uses up to 5 of the highest confidence detections from BLAST/PSI-BLAST8 or HHSEARCH10 to 
select the parent for homology modeling.  Important to note is that Robetta does not use the alignment 
from the detection method except to determine the domain(s) of the parent to model against.  Rather it 
parametrically generates its own alignment ensemble using the K*Sync alignment method by varying the 
sequence profile comparison method, the source of the secondary structure prediction, the stringency of the 
sequence profile, the stringency of the StrAD-Stack4 multiple structural alignment used to define obligate 
elements, and the weights on the terms in the dynamic programming scoring function.  The alignment 
ensemble is turned into a decoy ensemble by threading the sequence of the query onto the backbone of the 
parent based on the alignment. Unaligned regions are modeled using the standard Rosetta loop modeling 
protocol that involves cyclic coordinate descent and optimized to fit the aligned template structure7,9.  The 
template region is kept fixed, and models are selected from the ensemble using a combination of the 
Rosetta energy function with a consensus score derived from the alignment ensemble4. 
 
Robetta de novo protocol  
As in CASP7, Robetta de novo modeling generates 4000 query decoys and 2000 decoys each for up to 2 
homologous sequences (filtered down to 2000, 1000, 1000 to ameliorate known pathologies such as low 
contact-order structures) using the Rosetta fragment-assembly methodology5.  For CASP8, in an effort to 
obtain high-resolution models, we also generated up to 300,000 query decoys using the standard fragment 
replacement strategy followed by full-atom refinement using the Rosetta full-atom energy function6,7.  The 
CPU cycles necessary for large scale conformational sampling and full-atom refinement was provided by 
the distributed computing project Rosetta@home.  The lowest scoring 4000 decoys based on their full-atom 
energies were structurally clustered with the standard query and homolog decoy sets, and the lowest 
scoring full-atom decoy from each of the 5 best clusters by population were returned as the final 
predictions.  The final predictions were ranked entirely based on the Rosetta all-atom energies. 
 
1. Chivian D., Kim D.E., Malmstrom L., Bradley P., Robertson T., Murphy P., Strauss C.E., Bonneau R., 

Rohl C.A., & Baker D. (2003) Automated prediction of CASP-5 structures using the Robetta server. 
Proteins 53, 524-533. 

2. Kim D.E., Chivian D., & Baker D. (2004) Protein structure prediction and analysis using the Robetta 
server. Nucleic Acids Res 32, W526-W531. 

3. Chivian D., Kim D.E., Malmstrom L., Schonbrun J., Rohl C.A., & Baker D. (2005) Prediction of 
CASP6 structures using automated Robetta protocols. Proteins 61, 157-166. 

4. Chivian D. & Baker D. (2006) Homology modeling using parametric alignment ensemble generation 
with consensus and energy-based model selection. Nucleic Acids Res. Sep 13 [Epub]. 

5. Bonneau R., Strauss C.E., Rohl C.A., Chivian D., Bradley P., Malmstrom L., Robertson T., & Baker 
D. (2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol 
322, 65-78. 

6. Bradley P., Misura K. M., Baker D. (2005). Toward high-resolution de novo structure prediction for 
small proteins Science 309, 1868-1871. 
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7. Das R., Qian B., Raman S., Vernon R., Thompson J., Bradley P., Khare S., Tyka M. D., Bhat D., 
Chivian D., Kim D. E., Sheffler W. H., Malmstrom L., Wollacott A. M., Wang C., Andre I., & Baker 
D. (2007) Structure prediction for CASP7 targets using extensive all-atom refinement with 
Rosetta@home. Proteins 69, 118-128. 

8. Kim D.E., Chivian D., Malmstrom L., & Baker D. (2005) Automated prediction of domain boundaries 
in CASP6 targets using Ginzu and RosettaDOM. Proteins 61, 193-200. 

9. Canutescu, A.A. & Dunbrack, R.L., Jr. (2003). Cyclic coordinate descent: A robotics algorithm for 
protein loop closure. Protein Sci 12, 963-72. 

10. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-
960. 

 
 
BAKER-ROSETTADOM 

The RosettaDOM Domain Parsing Protocol 

D. E. Kim1, D. Chivian2and D. Baker1 
1 - University of Washington, Seattle, WA,  

2 - Lawrence Berkeley National Laboratory, Berkeley, CA 
dekim@u.washington.edu 

 
Here, we describe a protocol to identify protein domain boundaries using a sequence homology based 
procedure called Ginzu1-2, and a de novo method that uses the Rosetta3-5 structure prediction software suite 
for proteins lacking significant homology to experimentally determined structures. 
 
RosettaDOM first uses Ginzu to identify domains that are homologous to known structures in the PDB.  
See accompanying Ginzu abstract for details.  If  
Ginzu assigns a domain based on homology to a known structure in the PDB using either BLAST or PSI-
BLAST6, RosettaDOM simply returns the domain boundary predictions provided by Ginzu.  For query 
sequences lacking such homology, a de novo domain prediction method similar to SnapDRAGON7 is used.  
The de novo method consists of generating 400 three-dimensional models using Rosetta, and then selecting 
200 models based on score and whether they pass filters that eliminate structures with too many local 
contacts or unlikely strand topologies.  Domain boundaries are then assigned for each of the 200 models 
using a structure based domain identification algorithm8.  Final domain boundary predictions are made 
based on consistencies found in the domain assignments of these models.  Domain boundaries are chosen 
under the assumption that although Rosetta is unlikely to produce atomic-resolution models, it may 
accurately produce coarse structural features such as domains. 
 
1. Chivian D., Kim D.E., Malmstrom L., Bradley P., Robertson T., Murphy P., Strauss C.E., Bonneau R., 

Rohl C.A. & Baker D. (2003) Automated prediction of CASP-5 structures using the Robetta server. 
Proteins. 53 Suppl 6, 524-533. 

2. Km D.E., Chivian D., Malmstrom L., & Baker D. (2005) Automated prediction of domain boundaries 
in CASP6 targets using Ginzu and RosettaDOM. Proteins 61, 193-200. 

3. Badley P., Chivian D., Meiler J., Misura K.M., Rohl C.A., Schief W.R., Wedemeyer W.J., Schueler-
Furman O., Murphy P., Schonbrun J., Strauss C.E. & Baker D. (2003) Rosetta predictions in CASP5: 
successes, failures, and prospects for complete automation. Proteins. 53 Suppl 6, 457- 468. 

4. Bonneau R., Strauss C.E., Rohl C.A., Chivian D., Bradley P., Malmstrom L., Robertson T. & Baker D. 
(2002) De novo prediction of three-dimensional structures for major protein families. J. Mol. Biol. 
322, 65-78. 

5. Simons K.T., Ruczinski I., Kooperberg C., Fox B., Bystroff C., & Baker D. (1999) Improved 
recognition of native-like protein structures using a combination of sequence-dependent and sequence-
independent features of proteins. Proteins. 34, 82-95. 

6. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., & Lipman D.J. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

7. George R.A. & Heringa J. (2002) SnapDRAGON: a method to delineate protein structural domains 
from sequence data. J. Mol. Biol. 316, 839-851. 

8. Taylor W.R. (1999)  Protein structural domain identification. Protein Eng. 12, 203-216. 
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assessment 

S. Nakamura1, M. Morita1 and K. Shimizu1 
1 - Department of Biotechnology, The University of Tokyo 

shugo@bi.a.u-tokyo.ac.jp 
 
As in CASP7, we used our in-house protein structure prediction server named “ENABLE” for tertiary 
structure prediction. The following is the overview of the prediction procedure: 1) Templates for a target 
were first searched using PDB-BLAST, FUGUE1, and SP32. About 20-30 3D models were generated based 
on various combinations of templates and alignments using MODELLER3 and SCWRL4. 2) Qualities of 
the models were then assessed using our developed QA predictor. 3) If refinement of partial structure or 
full de novo prediction is needed, our developed de novo prediction tool named “IDDD/ABLE5” was 
executed. Target function including burial of hydrophobic residues, contacts between residues, average 
distance between hydrophobic residues, hydrogen bonds between mainchains, and exclusive volume to 
avoid overlap of residues was minimized by simulated annealing with 40000 steps. About 5000-20000 
models were generated using IDDD/ABLE according to the length of a target and the available 
computational resources. 4) Apply clustering to generated models and five models were picked up that 
have best QA score and were within 5 % from the center of the largest clusters. Our QA predictor is based 
on support vector regression (SVR) and predict GDT-TS and TM-score6 of a model in global mode and can 
predict S-score for each residue of a model in local mode using scores of Verify3D7, ProSa8, ProQ9, 
secondary structure matching using PSIPRED10, and IDDD/ABLE potentials.  
 
For ligand binding site prediction, server models were first collected from CASP8 web site and qualities of 
the models were assessed using our QA predictor, and five model structures were selected from top of the 
QA list semi-automatically.  Then ligand-binding sites for each model were predicted by the structure-
based approach11, followed by the sequence-based approach. In the structure-based approach, the protein 
surface was coated with multiple layers of probes to calculate the van der Waals interaction energies 
between these probes and the protein. Energetically favorable probes were then clustered and the resulting 
clusters were ranked based on their total interaction energies. In the following sequence-based approach, 
the first three clusters, which were generated by the structure-based approach, were re-ranked according to 
average conservation scores of all residues within 4 Å from any probe in each cluster. The first ranked 
cluster was regarded as the predicted site for a model. Finally, predicted sites (one site per model, five sites 
in total) were submitted in the order of the same score as was used in sequence-based approach. 
 
1. Shi,J., Blundell,T.L. & Mizuguchi,K. (2001). FUGUE: sequence-structure homology recognition using 

environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243-
257. 

2. Zhou, H & Zhou, Y. (2004) Single-body residue-level knowledge-based energy score combined with 
sequence-profile and secondary structure information for fold recognition. Proteins 55, 1005-1013. 

3. Sali,A. & Blundell,T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. 
Mol. Biol. 234, 779-815. 

4. Canutescu,A.A., Shelenkov,A.A. & Dunbrack R.L. (2003). A graph theory algorithm for protein side-
chain prediction. Protein Sci. 12, 2001-2014. 

5. Ishida,T., Nishimura,T., Nozaki,M., Inoue,T., Terada,T., Nakamura,S. & Shimizu,K. (2003). 
Development of an ab initio protein structure prediction system ABLE. Proc. 14th Int’l Conf. Genome 
Inform. (GIW 2003) 14, 228-237. 

6. Zhang, Y. & Skolnick, J. (2004) Scoring function for automated assessment of protein structure 
template quality. Proteins 57, 702-710. 

7. Luthy,R., Bowie,J.U. & Eisenberg,D. (1992). Assessment of protein models with three-dimensional 
profiles. Nature 356, 83-85. 

8. Sippl,M.J. (1993). Recognition of Errors in Three-Dimensional Structures of Proteins. Proteins 17, 
355-362. 

9. Wallner,B. & Elofsson,A. (2003). Can correct protein models be identified? Protein Sci. 12, 1073-
1086. 

10. Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. 
Mol. Biol. 292, 195-202. 

11. Morita, M., Nakamura, S. & Shimizu, K. (2008) Highly accurate method for ligand-binding site 
prediction in unbound state (apo) protein structures. Proteins 73, 468-479. 
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PID-SVM: Prediction of Intrinsic Disordered Regions Using Multiple Sequence-
Derived Inputs and Customized Models 

 
K. Chen1, H. Zhang1,2 and L. Kurgan1 

1 - Electrical and Computer Engineering, University of Alberta, Canada 
 2 - College of Mathematical Science and LPMC, Nankai University, PRC 

lkurgan@ece.ualberta.ca 
 
We present a method, PID-SVM, for the sequence-based prediction of intrinsic disordered regions. The 
overall architecture of PID-SVM, which incorporates two steps, is similar to other existing disorder 
prediction methods. First, each predicted residue is represented by a fixed-length numerical feature vector. 
The vector is extracted using a 15-residue wide window which is centered on the predicted residue. Second, 
the vector is inputted into a support vector machine (SVM) classifier that outputs the prediction, i.e., 
ordered or disordered residue, together with a numerical score that is normalized to [0, 1] interval. The 
novelty of the PID-SVM method stems from the following four characteristics. 
 
1. The features that implement the input to the SMV integrate three sequence-derived sources, the PSI-
BLAST1 profile (PSSM), the secondary structure predicted with PSI-PRED2, which is represented by the 
probabilities of assuming the helix, strand, and coil conformations, and the output of IUPred3, which 
represent the probability that a given residue is disordered.  
 
2. The method is custom-designed to differentiate between predictions for residues at the sequence termini 
(the first and the last 20 amino acids in the sequence) and for the remaining internal (with respect to the 
sequence) residues. This is motivated by an observation that majority of the disordered regions are located 
in the vicinity of the sequence termini, which calls for a different (biased towards prediction of the 
disordered residues) prediction model when compared with the model for the internal residues (biased 
towards prediction of ordered residues). Although we encode all residues using the same set of features, the 
training of the model is used to accommodate for the bias. To this end, each feature f is duplicated into two 
features, ft (termini) and fi (internal). For the residues at the termini, we set ft= f and fi=0, while for the 
internal residues ft= 0 and fi=f.  
 
3. PID-SVM applies a cost matrix to accommodate for the unbalanced ratio between disordered and 
ordered residues, i.e., lower weigh values are associated with the majority (ordered) residues. More 
specifically, the disordered regions occupy only about 5%-6% of the protein sequences4. Classifiers that 
treat the majority (larger) and minority (smaller) classes the same way develop a bias toward the majority 
class resulting in low recall for the minority class and a low ROC value. Usage of the cost matrix allows 
balancing the predictions between the ordered and the disordered residues. 
 
4. PID-SVM applies two feature selection methods, the information gain based method and the Chi-squared 
method, to reduce the dimensionality (allowing for more efficient training of the classification model) and 
to select features that contribute to the improved classification performance (potentially improving the 
prediction quality by removing irrelevant features). The selection methods rank the features based on two 
different merit measures, which were shown to be complementary5. The features were sorted based on their 
average rank and the top 100 features were selected as the input to the SVM classifier. 
 
The PID-SVM does not utilize structural templates, which allows for consistent performance for both 
homologous and low-homology targets. The method was trained using sequences extracted from PDB. The 
pairwise sequence identity in the training set is below 25% to assure that the generated classification model 
can generalize to sequence with low identity. 
 
1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

2. Jones,D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. 
J Mol Biol. 292, 195–202 

3. Dosztányi,Z., Csizmok,V., Tompa,P. & Simon,I. (2005). IUPred: web server for the prediction of 
intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 
3433-4.  

4. Bordoli,L., Kiefer,F. & Schwede,T. (2007). Assessment of disorder predictions in CASP7. Proteins 69 
Suppl 8, 129-36. 

5. Chen,K., Jiang,Y., Du,L. & Kurgan,L. (2008). Prediction of integral membrane protein type by 
collocated hydrophobic amino acid pairs. J. Comp. Chem. DOI: 10.1002/jcc.21053. 
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carlos@aki.che.tohoku.ac.jp 
 
For CASP8, we have combined our original system for protein 3D structure prediction PIPS1,2 with 
orthodox sequence alignment techniques.  The underlying concept in the spectral analysis method 
embedded in PIPS is a periodicity analysis of the physicochemical properties of the residues constituting 
proteins primary structures. The analysis is performed using a front-end processing technique in automatic 
speech recognition1,2 by means of which the cepstrum (measure of the periodic wiggliness of a frequency 
response) is computed so as to lead to a spectral envelope that depicts the subtle periodicity in 
physicochemical characteristics of the amino acid sequences. The system extracts a diverse set  of proteins 
from PDB when the methodology is applied to a target sequence in order to search  similar  folding 
patterns. Extracted structures rank from scant similarity in terms of amino acid composition to high 
similarity ones. Then a more specific sequence alignment like FASTA 
(http://www.ebi.ac.uk/Tools/fasta33) or BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) can be applied to 
the reduced set of structures obtained by our spectral oriented methodology. This combined method has 
shown a high degree of effectiveness to select optimal templates for a determined target, both in terms of 
processing times as well as quality of template. The threading algorithm is then pursued by an energy 
minimization process for the newly built structure. Table 1 shows a list of the targets in which the 
methodology has succeeded in recognized the closest folding pattern  for the targets in CASP8. 
 
 
 
1. Del Carpio, C.A. and Yoshimor, A. 

(2002) International University Line 
Publishers (IUL), 171-200. 

2. Del Carpio, C.A. and Carbajal, J.C. 
(2002) Genome Informatics 13, 163-
172..  
 
 

Table 1. Comparison of our group’s 
results for some CASP8 targets 
 

 

 

 

 

 

 

1 

 N Target  Length  Fitted 
length  

RMSD 

1 T0389_1 153 119 1.667 

2 T0393_2 263 147 2.511 

3 T0401_1 143 108 1.952 

4 T0407_1 363 177 2.064 

5 T0411_1 139 101 1.621 

6 T0415_1 109 95 1.979 

7 T0417_2 189 125 2.332 

8 T0423_1 156 142 1.098 

9 T0425_1 181 164 1.830 

10 T0427_1 422 328 2.424 

11 T0431_1 491 427 1.554 

12 T0434_5 205 106 1.535 

13 T0437_1 99 68 4.441 

14 T0440_1 275 231 1.576 

15 T0446_1 124 96 2.254 

16 T0449_1 307 225 1.608 

17 T0451_1 133 99 2.443 

18 T0454_1 203 147 2.401 

19 T0469_1 65 31 2.235 

20 T0480_3 55 26 1.783 

21 T0492_1 73 46 2.020 
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TESE: Generating specific protein structure test set ensembles 

F. Sirocco1 and S.C.E. Tosatto1 
1 - Department of Biology, University of Padova 

silvio.tosatto@unipd.it 
 
Creating representative ensembles of sufficiently diverse proteins is a recurring problem in bioinformatics. 
Any novel method has to be trained and benchmarked on a test set of protein sequences and/or structures 
ensuring wide coverage of the protein universe and solid statistical evaluation. At least three different use 
cases can be envisaged: (i) The benchmarking of novel sequence alignment protocols and statistical 
potentials. (ii) The generation of test sets for specialized protein classes, e.g. transmembrane proteins. (iii) 
Extending datasets from previous publications with new structures to enhance statistical significance, e.g. 
for novel repeat proteins. Given the exponential growth in available information, it is increasingly 
necessary to generate representative test sets large enough to allow solid statistical evaluation of the results.  
 
One limitation of currently available services is the lack of an underlying structural classification 
throughout the selection process. This becomes increasingly important in the low sequence similarity range, 
where it is desirable to eliminate homology, and limits the usefulness of current methods in fold recognition 
for instance. On the other hand, the structural classification schemes, e.g. CATH1, are readily used for the 
selection of similar structures in absence of sequence similarity. However, only the full classifications are 
distributed and it is the developer’s responsibility to extract meaningful subsets in a similar way to the 
previously mentioned services. This process can become rather cumbersome in practice, e.g. when 
selecting structures with short tandem repeats or representatives of the Rossman fold. A lack of 
standardization, and the relevance of many technical details in the selection process, frequently also 
complicates the unbiased assessment of novel methods to avoid “cherry-picking” of the data. For these 
reasons, we have developed TESE2, a novel server for the automatic generation of large benchmark sets 
both on the sequence and on the structure level. 
 
TESE is a method to derive meaningful ad hoc test sets from proteins of known structure. The CATH 
structural classification is used to control sequence/structural redundancy at various levels, e.g. <35% 
pairwise sequence identity corresponds to the “S” level. Queries may be started in three different ways. 
Keywords or a small sample of PDB files can be used to seed the TESE search for specific proteins, e.g. for 
alpha-helical repeats or oxidoreductases, or to extend previously published datasets. Alternatively, the user 
may specify search parameters related to the desired CATH similarity level, e.g. topology, the experimental 
method and quality, e.g. maximum X-ray resolution, or protein size, e.g. minimum length, to initiate the 
search. It is possible to select all structures or a randomly chosen subset of any size. For sets of less than 
600 proteins, a clickable list of protein structures and their CATH classification is produced. New proteins 
may be selected by directly choosing a different protein subset or by adding additional search parameters. 
When satisfied, the user may save the protein list as a compressed archive containing the relevant FASTA 
formatted sequences, PDB files and a HTML index of the selected proteins. The test set may be 
automatically split to create subsets for cross-validation. Large datasets of more than 600 proteins are 
treated in a non-interactive way to limit bandwidth usage. Some widely used test sets are available as 
precompiled archives. An online help is provided to guide the user through the process. A more extensive 
server description and examples are available from the web site at URL: http://protein.bio.unipd.it/tese/. 
 
1. Sirocco, F., Tosatto, S.C. (2008) TESE: Generating specific protein structure test set ensembles. 

Bioinformatics. 2008 Sep 16. [Epub ahead of print] 
2. Pearl, F.M., Bennett, C.F., Bray, J.E., Harrison, A.P., Martin, N., Shepherd, A., Sillitoe, I., Thornton, J. 

and Orengo, C.A. (2003) The CATH database: an extended protein family resource for structural and 
functional genomics, Nucleic Acids Res, 31, 452-455. 
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Prediction of intrinsically disordered regions with ASPIDES 

G. Zamperin1, A. Sperduti2 and S.C.E. Tosatto1 
1 - Department of Biology, 2 - Department of Pure and Applied Mathematics, University of Padova 
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ASPIDES (Atchley and Svm Predict Intrinsically Disorder ElementS) is a software that predicts disorder in 
proteins sequence. It uses the five physico-chemical property scales of Atchley et al.1 in order to translate 
the protein sequence into numbers. The prediction is made with a support vector machine trained in 
analogy to SPRITZ2. 
 
From the input sequence, ASPIDES creates a multiple sequence alignment with PSI-BLAST3, secondary 
structure prediction with Porter4 and solvent accessibility prediction with ACCpro5. These three are melded 
together to create the features: secondary structure and solvent accessibility predictions are considered as 
they are, while the multiple sequence alignment is processed using the five physico-chemical property 
scales of Atchley. 
 
Described in this way, each residue is given in input to the support vector machine. The prediction is made 
using a Gaussian kernel. The output is filtered using the PDB6 in order to reduce the output probability in 
case of many similar sequences in PDB, corresponding to a higher probability for the residue to be ordered 
rather than disordered. The resulting values are the output of the predictor ASPIDES. 
 
1. Atchley WR, Zhao J, Fernandes AD, Drüke T. (2005) Solving the protein sequence metric problem. 

Proc Natl Acad Sci USA, 102(18):6395-400.  
2. Vullo A, Bortolami O, Pollastri G and Tosatto SC (2006) Spritz: a server for the prediction of 

intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res, 
34:W164-168. 

3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic 
Acids Res, 25, 3389-3402. 

4. Pollastri, G. and McLysaght, A. (2005) Porter: a new, accurate server for protein secondary structure 
prediction, Bioinformatics, 21, 1719-1720. 

5. Pollastri, G., Baldi, P., Fariselli, P. and Casadio, R. (2002) Prediction of coordination number and 
relative solvent accessibility in proteins, Proteins, 47, 142-153. 

6. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., 
Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., 
Thanki, N., Weissig, H., Westbrook, J.D. and Zardecki, C. (2002) The Protein Data Bank, Acta 
Crystallogr D Biol Crystallogr, 58, 899-907. 
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T. Noguchi, S. Yamada, K. Shimizu and S. Hirose 
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National Institute of Advanced Industrial Science and Technology, Japan  

noguchi-tamotsu@aist.go.jp 
 
We predicted disordered regions and domains in proteins by using POODLE-I, which is the disordered 

region prediction server (see the abstract for CBRC_POODLE in this volume), and two methods for 
domain linker prediction. In the previous CASP experiments, our team succeeded in improvement of 
prediction accuracy for disordered regions in protein by our original predictors (i.e. POODLE series: 
POODLE-S1, L2 and W3) in combination with prediction results of secondary structure, accessible surface 
area and similar structures. POODLE-I includes several predictors: POODLE series as disordered region 
prediction, PSIPRED4, jpred5 and sable6 as secondary structure prediction, jnet and sable as accessible 
surface area prediction, genThreader7 and HHsearch8 as fold recognition, and coils9 as coiled coil region 
prediction. DomCut10 and our original method based on position-specific scoring matrix are used for the 
domain linker prediction. Our method was developed by M.Takizawa, who was a member of our group in 
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CASP7. This method was assessed using a dataset of 106 multi-protein domains defined in SCOP. The 
performance of our method for predicting domain linker, which exhibited sensitivity of 39.3% and 
specificity of 64.7%, was higher when compared with several other methods (i.e. DLP11, DomCut and 
Armadillo12).  
 

We respectively predicted disordered region and domain linker by using our original method, POODLE 
series and our domain linker prediction method, and then the prediction results were carefully inspected 
with reference to the template structure and/or the predicted secondary structure obtained from other 
programs, and the final disordered regions and domains were determined. In case of detecting a high scored 
template structure by fold recognition, the information had priority for modifying predicted the disordered 
regions and the domains. And in case that target sequence were not covered by the template structure or 
that a template was not found, we give priority to the disordered region prediction of POODLE series and 
domain prediction of our method based on position-specific scoring matrix respectively.  

 
1. Shimizu K., Hirose S. & Noguchi T. (2007). POODLE-S: web application for predicting protein 

disorder by using physicochemical features and reduced amino acid set of a protein-specific scoring 
matrix. Bioinformatics, 23(17), 2337-2338.  

2. Hirose S., Shimizu K., Kanai S., Kuroda Y. & Noguchi T. (2007). POODLE-L: a two-level SVM 
prediction system for reliably predicting long disordered regions. Bioinformatics, 23(17), 2046-2053. 

3. Shimizu K., Muraoka Y., Hirose S., Tomii K. & Noguchi T. (2007). Predicting mostly disordered 
proteins by using structure-unknown protein data. BMC Bioinformatics, 8, 78. 

4.  McGuffin J., Bryson K. & Jones DT. (2000). The PSIPERD protein structure prediction server. 
Bioinformatics, 16(4), 404-405. 

5. Cuff JA. & Barton GJ. (2000). Application of multiple sequence alignment profiles to improve protein 
secondary structure prediction. Proteins, 40(3), 502-511. 

6. Adamczak R., Porollo A. & Meller J. (2005). Combining prediction of secondary structure and solvent 
accessibility in proteins. Proteins, 59(3), 467-475. 

7. Jones DT. (1999). GenTHREADER: an efficient and reliable protein fold recognition method for 
genomic sequences. J. Mol. Biol., 287(4), 797-815. 

8. Söding J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7), 
951-960. 

9. Lupas A., Van Dyke M. & Stock J. (1991). Predicting coiled coils from protein sequence. Science, 
252(5009), 1162-1164. 

10. Suyama,M. & Ohara,O. (2003). DomCut: prediction of inter-domain linker regions in amino acid 
sequences. Bioinformatics, 19, 673-674.  

11. Miyazaki,S., Kuroda,Y. & Yokoyama,S. (2002). Characterization and prediction of linker sequences of 
multi-domain proteins by a neural network. Journal of Structural and Functional Genomics, 2, 37-51. 

12. Dumontier M., Yao R., Feldman HJ. & Hogue CW. (2005). Armadillo: domain boundary prediction by 
amino acid composition, J. Mol. Biol., 350, 1061-1073. 
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POODLE-I (“I” stands for Integration) is the disordered region prediction server based on integration of 
POODLE series. POODLE series consists of three programs that they target different disordered region 
according to their length1-3. In the previous CASP experiments, our team succeeded in improvement of 
prediction accuracy by adding prediction results of secondary structure, accessible surface area and similar 
structures. In this time, POODLE-I automated this technique. 
 
POODLE-I includes several predictors: POODLE-S (two disordered definition are adopted; missing region 
and high B-factor region), L and W as disordered region prediction, PSIPRED4, jpred5 and sable6 as 
secondary structure prediction, jnet and sable as accessible surface area prediction, genThreader7 and 
HHsearch8 as fold recognition, and coils9 as coiled coil region prediction.  
Our prediction method in POODLE-I consists of three steps, which are prediction, integration, and 
validation/modification step. The first step is to execute all prediction programs for a query sequence, and 
to align prediction results. The second step is to integrate prediction results of POODLE series. All 
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disordered regions predicted by POODLE series were picked up, and they were mapped on the prediction 
result of POODLE-S. But, disordered region with less than 30 aa length predicted by POODLE-L was 
ignored. The third step is to verify and modify predicted disordered region. Three kinds of rules were 
applied according to the length of disordered region. (i) If POODLE-W predicts that a query is unfolded 
protein, POODLE-I employed this result. (ii) If POODLE-L predicted long disordered region in a query, 
both terminal of disordered region were modified that they did not contain alpha-helix and beta-sheet based 
on information of predicted secondary structure. Exceptionally, if long disordered region was coincident 
with predicted coiled coil region, it was converted into ordered region. (iii) If short disordered region was 
predicted by POODLE-S, it was judged whether it was reliable prediction by using information of protein 
structure. If similar structures are able to be detected, it is confirmed whether there are any missing region 
or insertion in the corresponding region that was predicted disordered. In the case of no information of 
similar structure, we used the information of predicted secondary structure and accessible surface area. If a 
disordered region matched secondary structure or buried region, it was converted into an ordered region. 
Finally, if missing region(s) was detected in the predicted ordered region, an ordered region was converted 
into a disordered region. 
 
All information about the POODLE series is provided at http://mbs.cbrc.jp/poodle. 
 
1. Shimizu K., Hirose S. & Noguchi T. (2007). POODLE-S: web application for predicting protein 

disorder by using physicochemical features and reduced amino acid set of a protein-specific scoring 
matrix. Bioinformatics, 23(17), 2337-2338.  

2. Hirose S., Shimizu K., Kanai S., Kuroda Y. & Noguchi T. (2007). POODLE-L: a two-level SVM 
prediction system for reliably predicting long disordered regions. Bioinformatics, 23(17), 2046-2053. 

3. Shimizu K., Muraoka Y., Hirose S., Tomii K. & Noguchi T. (2007). Predicting mostly disordered 
proteins by using structure-unknown protein data. BMC Bioinformatics, 8, 78. 

4.  McGuffin J., Bryson K. & Jones DT. (2000). The PSIPERD protein structure prediction server. 
Bioinformatics, 16(4), 404-405. 

5. Cuff JA. & Barton GJ. (2000). Application of multiple sequence alignment profiles to improve protein 
secondary structure prediction. Proteins, 40(3), 502-511. 

6. Adamczak R., Porollo A. & Meller J. (2005). Combining prediction of secondary structure and solvent 
accessibility in proteins. Proteins, 59(3), 467-475. 

7. Jones DT. (1999). GenTHREADER: an efficient and reliable protein fold recognition method for 
genomic sequences. J. Mol. Biol., 287(4), 797-815. 

8. Söding J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7), 
951-960. 

9. Lupas A., Van Dyke M. & Stock J. (1991). Predicting coiled coils from protein sequence. Science, 
252(5009), 1162-1164. 
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In this round of CASP experiment, we used SimFold1, a protein structure prediction toolbox that we have 
been developing, and submitted all targets in the TS category. Regardless of the target difficulty, we 
performed fragment assembly2 with SimFold energy function for all targets (even for easy targets). But, 
depending on the difficulty, fragment library construction procedures were different. Hereafter, we briefly 
describe the energy function and what we did in CASP8. 
SimFold energy function 
SimFold uses a reduced protein model representation that has explicit backbone atoms and a sphere at the 
center of mass of side-chain atoms. The energy function consists of several terms such as hydrophobic 
interaction, hydrogen bonding, and so on. Their functional forms are well based on physico-chemical 
consideration so that each energetic term can be interpreted as a physical force. The explicit expression of 
the energy function is described in ref [1]. 
The category classification 
Before structure modeling, all targets were classified into easy/medium/hard categories, because we carried 
out different procedures for constructing fragment libraries depending on the target difficulty. First, the 
server predictions were downloaded from the CASP web site for each target. Second, we performed 
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structural clustering with TM-score3 cut off 0.4. If the size of the largest cluster was larger than 40% of 
total number of server predictions, we assumed that the target was classified into the easy category. For the 
target in which we couldn’t get sufficient cluster size, we used 3D-Jury system4 which is clone software 
made by us.  If the 3D-Jury system detected a template, we assumed that the target was classified into the 
medium category.  Otherwise we classified the target into hard category. 
Fragment library construction 
(i) Easy targets: 
Briefly, the concept of our method for easy targets is similar to that of the meta-predictor methods5-7, in 
which 3D models are generated by hybridizing fragments of models obtained from several fold recognition 
servers, but the procedure of ours is much simpler than that of those methods. First, we performed 
structural clustering using TM-score. Cut off values were determined so that the size of the largest cluster is 
almost equal to 1/3 of the total number of server predictions. Second, all possible 10-residue fragments are 
excised from structures that are the members of the largest cluster. These fragment structures were used in 
the tertiary structure generation step as fragment libraries. 
(ii) Medium targets: 
Our attempt in this category was to refine the 3D-Jury top hit template by exhaustive search of 
conformational space that is near the template structure. To do so, fragment structures that are structurally 
similar to the template fragment were taken from PDB by the structure alignment program TM-align8.  The 
criterion we used here was that fragments must be longer than 20-residue, and that RMSD to the 
corresponding region of the template must be smaller than 5 angstroms. 
(iii) Hard targets: 
For hard targets, we searched fragment structure candidates of 10-residue segment using the Pearson’s 
correlation coefficient between the PSSMs of a query subsequence and the PSSMs of a target subsequence. 
Top 500 scoring structures are deposited in the fragment library for every overlapping 10-residue segment. 
Tertiary structure generation 
For tertiary structure generation, we performed fragment assembly combined with a simple simulated 
annealing algorithm for easy/medium targets, and with the replica exchange Monte Carlo for hard targets. 
Submitted models were basically selected from low energy structures by structure clustering, but if we 
couldn’t obtain reasonable cluster size, we selected models by visual inspection. Finally, side-chain 
modeling was performed by using SCWRL version 3.09. 
 
1. Fujitsuka, Y., Chikenji, G. & Takada, S. (2006). SimFold energy function for de novo protein structure 

prediction: Consensus with Rosetta. Proteins. 62, 381-398. 
2. Simons, KT., Kooperberg, C., Huang, E., & Baker, D. (1997). In silico Protein Recombination: 

Enhancing Template and Sequence Alignment Selection for Comparative Protein Modeling. J. Mol. 
Biol. 268, 209-225. 

3. Zhang, Y. & Skolnick, J.  (2004). Scoring Function for Automated Assessment of Protein Structure 
Template Quality. Proteins.  57, 702-110. 

4. Ginalski, K., Elofsson, A., Fischer, D., & Rychlewski, L. (2003). 3D-Jury: a simple approach to 
improve protein structure predictions. Bioinformatics. 19, 1015-1018 

5. Fischer, D (2003) 3D-SHOTGUN: A Novel, Cooperative, Fold-Recognition Meta-Predictor. Proteins. 
51, 434-441.  

6. Kosinski J. et al. (2003) A “Frankenstein’s Monster” Approach to Comparative Modeling: Merging the 
Finest Fragments of Fold-Recognition Models and Iterative Model Refinement Aided by 3D Structure 
Evaluation. Proteins. 53, 369-379.  

7. Contreras-Moreira, B., Fitzjohn, P.W., & Bates, P.A. (2003). In silico Protein Recombination: 
Enhancing Template and Sequence Alignment Selection for Comparative Protein Modeling. J. Mol. 
Biol. 328, 593-608. 

8. Zhang, Y. & Skolnick, J.  (2005). TM-align: a protein structure alignment algorithm based on the TM-
score. Nucleic. Acids. Res.  33, 2302-2309. 

9. Canutescu, A.A, Shelenkov, A.A., Dunbrack, Jr. R.L. (2003). A graph theory algorithm for protein 
side-chain prediction. Protein Sci. 12, 2001-2014.  
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In this work, we have developed MQ Assessment Programs CIRCLE 1 and participated in Quality 
Assessment (QA) category of CASP8. CIRCLE aims at identifying the near native models and incorrect 
models without using consensus methods. 
 
CIRCLE considers two terms for the model quality: (1) model quality calculated from the side-chain 
environment of each residue (SideChainScore in equation(1)); and (2) similarity between the secondary 
structure propensities predicted for an amino acid sequence by PSI-PRED and the secondary structure of 
the three-dimensional model (SSscore in equation (1)). The side-chain environment for each residue is 
determined from the fraction of the molecular surface area of the side-chain covered by the polar atoms, the 
fraction of the side-chain area buried by any other atoms, and the secondary structure. According to the 
target difficulty, a total score is calculated as: 
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As shown in equation (1), the similarity score of the secondary structures (SSscore) is emphasized in 
difficult targets (FR: Fold Recognition, NF: New Fold) than easy targets (CM: Comparative Modeling). 
In the QA category of CASP8, predictor groups provide quality estimates comprising scores between 0.0 
and 1.0 for each protein structure model produced by server groups participating CASP8. Therefore, for 
each target, we convert estimated score of models into the values from 0.0 to 1.0 by scaling circle score of 
models which has minimum and maximum values. 
The 103/128 (80%) native protein structures of CASP8 targets were published in CASP8 web site (Sep 
2008). We calculated Pearson’s correlation coefficient between converted CIRCLE score and the quality of 
models. We used the Global Distance Test Total Score (GDT_TS) as the quality of model compared to 
native. 
The average of GDT_TS (x-axis) and correlation coefficient (y-axis) are shown in Fig.1. These results 
show that QA performance of CIRCLE depends on the quality of set of models which are evaluated (Table 
1). The good correlation coefficients were obtained above 0.9 for the targets having the high average value 
of GDT_TS (above 50). 
 

                        

Average of
GDT_TS

Average of Pearson's
correlation coefficient

0-25 0.24
25-50 0.75
50-75 0.92
75-100 0.93
ALL 0.78  

Fig. 1                                                                                      Table 1 
 
Additionally the best (T0423) and worst (T0460) examples of CIRCLE results are shown in Fig.2 and 
Fig.3. The x-axis and y-axis represents the circle score and GDT-TS of each model, respectively. In T0423 
(Fig.2), CIRCLE score has high value of correlation coefficient (0.98), because high quality models 
(GDT_TS > 50) has high proportion of set of models. In contrast, in the case that no good models existed in 
the set of models (T0460 of Fig.3), CIECLE could not perform well (correlation coefficient = -0.24). These 
results indicate that the model accuracy of easy targets (GDT_TS>50) can be assessed quantitatively by our 
CIRCLE, and there is a room to improve especially in difficult targets, which does not include high quality 
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models. We are planning to add other kind of scoring function calculated from evolutional information 
such as a sequence alignment score and the consensus method. 
 

                                      
Fig. 2  T0423                                                                                       Fig. 3  T0460 
 

1. Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Hosoi A, Ohta K, Umeyama H.(2007) 
Fams-ace: a combined method to select the best model after remodeling all server models. Proteins. 69 
Suppl 8:98-107. 
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COMA (Comparison Of Multiple Alignments) is a novel profile comparison and search method 
(manuscript in preparation) that includes a number of new features. The major ones are: (1) filtering of 
non-informative profile regions with the modified two-level SEG algorithm, (2) composition-based 
statistics for profiles, (3) scoring schemes that could be used either to score independent pairs of profiles, or 
as a universal scoring system within context of a database, (4) variable (position-specific) gap penalties for 
the profile-profile alignment, (5) adaptive adjustment of the search and scoring parameters, (6) statistical 
significance estimation method derived specifically for profiles. 
 
During CASP8 two versions of COMA-based automatic modeling servers were tested. Both servers build 
structural models using Modeller1 from the alignments that are obtained by searching the target profile 
against the databases of profiles for structural templates. The differences between the two are in the 
processing of the profile search results. COMA models are always based on a single best template, while 
COMA-M is able to use multiple structural templates for model-building.  
 
Target profiles are constructed from the alignments obtained using PSI-BLAST2. In every PSI-BLAST 
iteration the set of detected sequences is verified and the search parameters are appropriately adjusted. 
Several sequence databases are used for PSI-BLAST runs: nr80 (nr filtered at 80% of sequence identity), 
nr70, env_nr80 (junction of nr and env_nr filtered at 80%), and nr. Different databases can be selected 
during PSI-BLAST search depending on the results of the previous iteration. The search results also control 
whether sequence masking with SEG is turned on or off. Number of sequences for inclusion into the profile 
to be used in the next iteration is controlled at each iteration by analyzing the number of sequences found in 
the current iteration. The PSI-BLAST search is terminated either if it converges, a maximum number of 
iterations has been reached, or if at least one sequence included in the last sequence profile, is not found in 
the current iteration. 
 
The obtained PSI-BLAST alignments are then used to make the target profiles using a program from the 
COMA toolkit. The profile for each target is searched in parallel against several databases of template 
profiles. These different databases include the same templates, but profiles are compiled using different sets 
of parameters. The results of these parallel searches are processed together. 
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Depending on the initial number of profiles found and their statistical significance, COMA either stops or 
continues the search in an iterative mode with the parameters adjusted on the fly. After the search results 
are obtained, the top 5 alignments with potential templates are extracted for each set of the results. All the 
possible combinations with different number of the top 5 alignments are then made. For each combination 
of the alignments, the templates are mutually aligned with DaliLite3. If a combination comprises more than 
2 alignments, a multiple alignment is built using the DaliLite pairwise alignments. For each combination, a 
multiple alignment is constructed by taking COMA’s alignment between the target and the template as a 
reference. Other templates are then added to the target-template alignment without changing it according to 
the DaliLite pairwise template comparisons. There are as many alignment variants as the number of 
templates in the combination. 
 
After all variants of alignments are produced, serial modeling of the target with MODELLER is run using 
one or more structural templates (COMA always uses a single top template). Side chains of each model are 
optimized with SCWRL34.  
 
The top models from the hundreds obtained are selected using the Prosa5 values. However, small variations 
in the model completeness may result in misleading Prosa Z-scores. Therefore, if two models overlap 90% 
or more, then the model with the better Prosa value for the overlapping region is selected. 
 
1. Šali,A. & Blundell,T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. 

Mol. Biol. 234, 779-815. 
2. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

3. Holm,L. & Park,J. (2000) DaliLite workbench for protein structure comparison. Bioinformatics 
16,566-567. 

4. Canutescu,A.A., Shelenkov,A.A. & Dunbrack,R.L. (2003) A graph theory algorithm for protein side-
chain prediction. Protein Science 12, 2001-2014. 

5. Sippl,M.J. (1993) Recognition of Errors in Three-Dimensional Structures of Proteins. Proteins 17, 355-
362. 
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Sequence profiles have a broad application in field of bioinformatics prediction algorithms dating back to 
the pioneering work by Rost and Sanders1. The field of protein structure prediction has largely benefited 
from this work, and most high performing algorithms for protein homology modeling use sequence profiles 
as their main vehicle2-4. Likewise has prediction of local protein structural features been demonstrated to 
improve when sequence profile are used to represent the protein sequences5,6.  Here, we develop a scoring 
scheme for remote homology modeling building on these findings. Two protein sequences are aligned 
using local sequence alignment with an amino acids scoring matrix constructed combining sequence 
profiles, and local protein structural features like secondary structure and relative surface accessibility.  For 
the query sequence where the structure is unknown, predicted local features are used. For the template PDB 
structure averages of predicted and DSSP assigned local features are used. Secondary structure predictions 
are performed using the artificial neural network approach described by Petersen et al [1], and relative 
surface exposure predicted using a doubled structure neural network approach as described by Petersen et 
al.7. Each element in the alignment function (profile, secondary structure, and relative surface exposure) 
where scored using a log-likelihood approach where the likelihood was estimated as ( , 

where the sum is over the different classes of the given feature (amino acids, secondary structure elements, 
and exposure class),  pi

a is the probability of observing that given feature class a in protein i, and O is the 
odds value definition a background score for a given feature. The log-likelihood odds values, relative 
weights on the three parts of the alignment function as well as the two affine gap-penalty values were 
optimized using a set of structurally superimposable sequence pairs with low mutual sequence similarity.  
Relating a sequence alignment score to a likelihood of the two sequences been structurally similar is not 
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straightforward.  The protein length and protein amino acids composition among other things determine 
how a protein sequence will score against other protein sequences. We design a double-sided baseline 
corrected scoring scheme to allow for a direct interpretation of the alignment scoring values in terms of 
structural similarity likelihood. Each sequence is aligned against a set of 1500 sequence representatives 
with internal low sequence similarity and broad structural diversity. A baseline correction for the sequence 
is estimated from a least square fit of the alignment scores to the logarithm of the template query sequence. 
Next, a mean score and standard deviation is estimated from the baseline correction score distribution after 
removal of outliers. The baseline fit, mean score and standard deviation values for the two sequences are 
next used to determine the significance of a given alignment score. This significance score is calculated as 
Z = 2⋅ZQ ⋅Z T

ZQ +Z T
, where ZQ and ZT are the baseline corrected Z-score values for the alignment score for the 

query (Q) and template (T) sequences, respectively. A curated version of the PDB where the SEQRES 
sequence was aligned to the PDB sequence with atom coordinates was used as template database. Sequence 
profiles were generated using PSI-Blast with default parameters for three iterations and an e-value cut-off 
of 0.0018. Large scale benchmarking and cross validation demonstrates that the use of local structure 
predictions to guide the pairwise sequence alignment significantly improved the alignment quality beyond 
that obtained using sequence profiles only. Further, the use of double-sided baseline correction improved 
the specificity of the method for template recognition.  
 
1. Rost, B. and C. Sander, Improved prediction of protein secondary structure by use of sequence profiles 

and neural networks. Proc Natl Acad Sci U S A, 1993. 90(16): p. 7558-62. 
2. Soding, J., A. Biegert, and A.N. Lupas, The HHpred interactive server for protein homology detection 

and structure prediction. Nucleic Acids Res, 2005. 33(Web Server issue): p. W244-8. 
3. Bennett-Lovsey, R.M., et al., Exploring the extremes of sequence/structure space with ensemble fold 

recognition in the program Phyre. Proteins, 2008. 70(3): p. 611-25. 
4. Jaroszewski, L., L. Rychlewski, and A. Godzik, Improving the quality of twilight-zone alignments. 

Protein Sci, 2000. 9(8): p. 1487-96. 
5. Petersen, T.N., et al., Prediction of protein secondary structure at 80% accuracy. Proteins., 2000. 41: p. 

17--20. 
6. Dor, O. and Y. Zhou, Real-SPINE: an integrated system of neural networks for real-value prediction of 

protein structural properties. Proteins, 2007. 68(1): p. 76-81. 
7. Petersen, B., et al., NetSurfP - Predicting real value Relative Solvent Accessibility with a Pearson 

Correlation Coefficient of 0.70, and direct reliability predictions. In preparation, 2008. 
8. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search   

programs. Nucleic Acids Res., 1997. 25: p. 3389--3402. 
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New features in our comparative modeling methodology in CASP8 include improvements to our full-atom 
energy function, expert-based alignment selection, and increased computational sampling. We also 
experimented with a variety of new protocols on subsets of targets, including the use of game player based 
optimization with FoldIt (http://www.fold.it/). 
 
Alignment Methodology: We used a variety of methods to generate alignments of the query sequence to 
similar template structures3,4,5. Human experts curated the output of these programs to find high-quality 
alignments to the query sequence, and annotated regions of the template structure that were unlikely to be 
conserved in the query sequence. Using these alignments, we created starting models by copying 
coordinates of the aligned regions of the template structure into the query sequence.  
 
Loop Relax: We stochastically rebuilt sections of models that were either unaligned to the template 
sequence, aligned with low confidence, or structurally variable within the clustered population of starting 
models using fragment-based modeling as in CASP71,2, and the resulting models were subjected to the 
Rosetta full atom refinement protocol.  During this step all atoms are represented explicitly, and the 
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backbone and sidechain torsion angles of all residues are optimized using the Rosetta Monte Carlo plus 
minimization method described in ref 1.   
 
Evolutionary Optimization: The process of clustering models, building loops, and minimizing the Rosetta 
full-atom energy was iterated several times to produce a population of models with very low Rosetta 
energies1.  Submitted models were selected based on energy, visual inspection, and similarity to template 
structures over portions of the alignment likely to be conserved.  
 
 
Results: In a number of cases, the full atom refinement led to models improved over the starting templates, 
including targets T0492 (Figure 1).  Failures resulted from selection of incorrect alignments and overly 
aggressive full atom refinement, particularly in the close homology regime.  As in CASP7, the accuracy of 
the models relative to the automated servers (which rely primarily on evolutionary information) increased 
with increasing target difficulty; this is likely because accurate modeling of the physical chemistry becomes 
more important as evolutionary information becomes weaker. We are currently working to unify, 
rigorously benchmark and completely automate the somewhat chaotic collection of methods we used in 
CASP8. 

 
Figure 1: Superposition of native structure (blue), the best available template (red), and our best submitted 
model (green) for CASP8 target T0492. 
  
1. Qian B., Raman S., Das R., Bradley P., McCoy A.J., Read R.J., Baker D. (2007) High-resolution 

structure prediction and the crystallographic phase problem. 
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From Fragments with Similar Local Sequences using Simulated Annealing and Bayesian Scoring 
Functions. J. Mol. Biol. 268, 209-225.  
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4. Pei J., Grishin N. (2007) PROMALS: towards accurate multiple alignment of distantly related proteins. 
Bioinformatics 23, 802-808. 

5. Söding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-
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During CASP8 we applied the Rosetta free modeling protocol to targets for which there was no close 
homologue of known structure.  The protocol  consists of a coarse grained fragment based search of 
conformational space followed by physically realistic full atom refinement.  Tens of thousands of 
independent trajectories were carried out using Rosetta@home. 
 
Methods: The initial fragment based structure assembly step  generates a diverse pool of 105-106 decoys 
that have buried hydrophobic cores and other protein-like features. This initial stage of modeling is carried 
out using a centroid level representation of the protein backbone and a low-resolution energy function1. 
This is followed by full atom refinement using Monte Carlo plus minimization with the Rosetta full-atom 
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energy function to access nearby free energy minima and make possible the recognition of the most 
accurate models based on their energies. The final submissions were selected by clustering the lowest 
energy structures, occasionally supplemented by visual inspection. In accordance with our protocols during 
CASP7, we increased the diversity of our models by folding multiple sequence homologs for each target3, 
by stochastically disallowing beta hairpins, and by resampling long-range beta sheet pairings4. 
 
Improvements: Several improvements to our protocols were tested in CASP8, including improvements 
both to our energy function and our sampling strategy. Energy function improvements include an updated 
full atom energy function with a differentiable environment term1, and a more effective weighting of the 
different energy function parameters. We modified our sampling strategy in three ways. First, we generated 
more diverse sets at the low resolution stage by using variable fragment lengths to initially assemble 
structures.  Second, the full folding protocol was carried out on alternative domain parses, and the results 
used to select the most likely parses.  Third, a subset of the targets were further refined using the iterative 
evolutionary protocol we have used for template-based modeling4.  For targets with very remote 
homologues of known structure, both the free modeling and template-based protocols were used and 
submissions were chosen from the lowest energy models overall.  
 
Results: High-resolution predictions were made for multiple single domain targets, including all-beta 
(T0467; 2.5 Å over 73 residues) and alpha-beta (T0482; 2.4 Å over 82 residues) proteins. The protocol was 
less successful on large targets, multi-domain targets, targets with uncertain secondary structure 
predictions, and targets with extensive disordered regions.    
 

 

Figure 1: Predictions from the Rosetta free modeling method superimposed with NMR model 1.  
 
1. Simons K.T., Kooperberg C., Huang E., Baker D. (1997) Assemble of Protein Tertiary Structures 

From Fragments with Similar Local Sequences using Simulated Annealing and Bayesian Scoring 
Functions. J. Mol. Biol. 268, 209-225. 

2. Qian B., Raman S., Das R., Bradley P., McCoy A.J., Read R.J., Baker D. (2007) High-resolution 
structure prediction and the crystallographic phase problem. 

3. Bradley P., Baker D. (2006) Improved beta-protein structure prediction by multilevel optimization of 
nonlocal strand pairings and local backbone conformation. Proteins 65, 922-9. 
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Our approach to structure prediction uses physics-based modeling. Rather than using database information 
– such as secondary structure predictions, template models, or PDB-derived potentials – we use a standard 
force field potential (Amber 96 + GBSA) in combination with molecular dynamics (MD) simulations and 
‘mechanism-based’ sampling. 
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Our search strategy attempts to exploit the hierarchical nature of protein folding landscapes. Using 
extensive MD simulations, we search for small (<16 residue) fragments of the structure that have 
transiently stable secondary structures. Once identified, these fragments are assembled into full-length 
structures using two different methods (described below). Finally, the resulting structures are used to seed a 
reservoir replica exchange molecular dynamics simulation (REMD), which sorts the structures according to 
their free energy. 
 
Our ultimate aims are to: (1) explore the shape and features of the protein folding landscape, (2) gain an 
understanding of the local nature of protein folding, (3) gauge the utility of a variety of cheap metrics for 
structure prediction, and (4) assess the current state of physics based force fields for protein structure 
prediction. 
 
Due to the computational expense of physics based simulations, we faced severe time and resource 
constraints that ultimately prevented us from applying our full procedure to any target. However, our full 
procedure is detailed below with comments indicating steps where sacrifices were made in order to meet 
CASP deadlines. 
 
Our approach works as follows: 
 
1. We conducted extensive simulations of all 8-, 12-, and 16-residue fragments of the target sequence 

using the Amber 961 force field and an implicit solvent model2. These simulations were performed on 
the Folding@Home distributed computing network3. 

2. We identified fragments that show a propensity to form transiently stable secondary structures using 
residue-residue contact maps derived from the simulations. 

3. Different combinations of stable secondary structures were then passed to the assembly tools described 
below. Due to time and resource constraints, we were typically only able to evaluate three or four of 
the many possible combinations of fragments. 

4. The fragments were assembled using one of the following two protocols: 
a. FRODA4 is a search algorithm based on geometric constraints. The protein is parsed into rigid 

units according to the bonds, hydrogen bonds, and hydrophobic contacts. These rigid units are 
randomly perturbed and the structure is energy minimized to satisfy the constraints. We add a 
metropolis routine that favors structures with a low hydrophobic radius of gyration in order to 
eliminate non-compact structures. We also identify pairs of hydrophobic residues and add a 
perturbation to push those pairs together.  If we perform multiple runs and choose different 
pairs for each run, we then ensure unique conformations for each run and greater sampling.  
The resulting structures are clustered together based upon Cα RMSD.  These conformations 
are then passed on the REMD simulations in step 5.  

b. Alternatively, for some targets we employed a rigid-body Monte Carlo sampling procedure 
utilizing fast loop closure routines5. Here, the fragments were held internally rigid and only 
their relative positions and orientations, and the intervening loop configurations were allowed 
to vary. The ensemble of structures was then filtered by radius of gyration to eliminate the 
non-compact structures. The remaining structures were energy minimized. Any structures 
with high energy were eliminated, as these typically had steric clashes or other defects. The 
resulting structures were then subjected to 5 ps of molecular dynamics simulations and then 
sorted according to average potential energy. We were typically able to generate, filter, and 
score 250,000 candidate structures within the timframe of CASP. Further analysis has shown 
that for a 100-residue protein, we would need to evaluate approximately 106-107 structures in 
order to identify a structure < 5Å RMSD from native. 

5. The final step is to seed an REMD simulation6 with the structures generated by step 4. REMD employs 
a set of parallel simulations across a range of temperatures with periodic Monte Carlo exchange of 
structures between adjacent temperatures. The structures with the lowest apparent free energy are 
identified by clustering the trajectory at the lowest temperature. Due to time constraints, this step was 
omitted for most targets. Instead, we typically relied on the ranking provided by the cheap metrics and 
sometimes visual inspection of the structures. 

 
Our long-term goal is to extend this method to work in situations where current state of the art methods 
struggle due to the lack of available templates, such as for membrane proteins or peptoids, non-biological 
peptide mimics for which there is no database information. 
 
1. Cornell,W.D., et al., (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic 

Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179-5197. 
2. Onufriev,A., Bashford,D. & Case,D.A. (2004) Exploring Protein Native States and Large-Scale 

Conformational Changes with a Modified Generalized Born Model. Proteins: Structure, Function, and 
Bioinformatics. 55, 383-394. 

3. Shirts,M.R. & Pande,V.S. (2000) Screen savers of the world, Unite! Science 290, 1903-1904. 



4. Wells,S., Menor,S., Hesphenheide,B. & Thorpe,M.F. (2005) Constrained geometric simulation of 
diffusive motion in proteins. Physical Biol. 2, S127-136. 

5. Coutsias,E.A., Seok,C., Jacobson,M.P. & Dill,K.A. (2004) A kinematic view of loop closure. J. Comp. 
Chem. 25, 510-528. 

6. Roitberg,A.E., Okur,A. & Simmerling,C., (2007). Coupling of Replica Exchange Simulations to a 
Non-Boltzmann Structure Reservoir. Phys. Chem. Letters B 111, 2415-2418. 
 
 

DISOclust 

Intrinsic disorder prediction using the DISOclust server 

L.J. McGuffin 
 School of Biological Sciences, University of Reading, Whiteknights,  

Reading RG6 6AS, UK 
l.j.mcguffin@reading.ac.uk 

 
DISOclust1 is an unsupervised method composed of two steps; the prediction of the per-residue error in 
multiple fold recognition models, using ModFOLDclust2, followed by a simple analysis of the conservation 
of the per-residue error across all models. The premise of the method is that residues that are highly 
variable in 3D space from one model to the next may coincide with regions of disorder. The DISOclust web 
server initially obtains multiple 3D models from the nFOLD3 server and then combines the results obtained 
from running the DISOclust method with those from the DISOPRED3 method, in order to form disorder 
predictions for each target. 
 
The per-residue error in each model was calculated using a score based on the average S-score4. Pairwise 
superpositions of the nFOLD3 server models were carried out in order to evaluate the local structural 
conservation of each residue in each model. For each CASP8 target, a number of nFOLD3 server models 
were available (N). The per-residue quality of each model was calculated by carrying out structural 
alignments with every other model using the TM-score program5, with the “-d” option set to 3.9Å. In a 
pairwise structural alignment, if the overall TM-score was found to be >0.2, then S-scores were calculated 
for each residue (i) in the model. If a pair of residues were structurally aligned within the TMscore distance 
cut-off (as indicated by a “:” in the TM-score alignment output), then the S-score was calculated as below: 
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Where di was the distance between aligned residues and d0 was the distance threshold (3.9). Unaligned 
residues in the model were given an Si score of 0. 
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The mean S-score (S ) was then calculated for each residue (r) in the target sequence: r
Where Sr was the predicted residue accuracy for the model5, N-1 was the number of pairwise structural 
alignments carried out for that model, A was the set of alignments and Sia was the Si score for a residue in a 
structural alignment (a). An Sr score of 0 was given to any residues that were missing from the model, so 
that all residues in the target sequence were scored. Finally, the DISOclust score for each residue in a target 
sequence was calculated as 1 minus the per-residue accuracy across all models: 

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

∈Mm
rmd S

N
P 11

Where Pd was the approximate posterior probability of a residue being in a disordered state, N was the 
number of models, M was the set of models and Srm was the Sr score for a model (m). The Pd score for each 
residue was combined with the score obtained from the second column of the DISOPRED output file. Each 
DISOPRED score was re-scaled using Ds=D/0.052*0.5, for scores ≤0.052, and using Ds=(D-
0.052)/0.948*0.5+0.5, for scores >0.052, where D was the original DISOPRED score and Ds was the 
rescaled value. The mean of the Pd and Ds was taken as the probability of disorder for each residue. 
 
The DISOclust web server is available at the following URL: 
http://www.reading.ac.uk/bioinf/DISOclust/ 
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Distill is a fully automated system for the prediction of draft protein structures. Distill has two main 
components: a set of predictors of protein features (secondary structure, relative solvent accessibility, 
contact density, residue contact maps, etc.) based on machine learning techniques; an optimisation 
algorithm that searches the space of protein backbones under the guidance of a potential based on these 
features. 
Secondary structure is predicted by Porter1, relative solvent accessibility by PaleAle2, contact density by 
BrownAle3, residue contact and distance maps by XXStout3. Residue contact maps submitted to CASP 
(8Å) are obtained by XXStout, and are not directly used to predict 3D coordinates. 4-class distance map 
predictions by an architecture identical to XXStout’s are adopted instead. All structural feature predictors 
are based on single- or dual-layer Recursive Neural Network architectures for Directed Acyclic Graphs 
(DAG RNNs)4. One-dimensional feature predictors (i.e. those mapping the primary sequence into a 
sequence of the same length) are based on 1D DAG RNNs, while contact and distance map predictors are 
based on 2D DAG RNNs. All predictors are provided structural information about PDB templates as a 
further input, when templates are available. Templates are identified as follows: 2 rounds of PSI-BLAST 
are run against UniProt; the resulting PSSM, plus predictions of structural motifs by Porter+5, are aligned 
locally against all the sequences and corresponding structural motifs in the PDB. If no suitable template is 
found this way (e-value<1e-3), we predict all 1-dimensional properties ab initio, and search for templates 
by alignigning the complex of these properties plus the sequence against the equivalent representation of all 
PDB proteins, by dynamic programming. 
In the next stage, we reconstruct sets of Cα coordinates. The reconstruction is carried out by minimising a 
potential function containing terms that penalise the violation of predicted distances between residues, and 
enforce predicted strand locations, hard-core repulsion between amino acids, and virtual Cα-Cα bond 
lengths. The actual search is performed in 3 stages:  
• Initial structures are generated, in which helices predicted by Porter are modelled, consecutive Cα 

atoms are set at a realistic distance (~3.8Å), and virtual Cα angles are restricted to the 90º-180º 
interval.  

• A search from these initial structures is performed by introducing perturbations in them. Helices are 
treated as rigid “rods” and their core Cαs are never moved on their own. The search is carried out by 
simulated annealing with a linear schedule for the temperature. 5,000 moves of every non-helical Cα 
and helical termini are attempted for each search. 50 searches are run for each protein structure. 

• Finally, the structures obtained are ranked. In the ab initio case we rank the structures by a neural 
network trained to map a number of characteristics (enforcement of of predicted constraints, secondary 
structure composition, compaction, etc.) of each structure into its quality, measured as its TM score 
against the correct structure. In the case templates from the PDB are available, similarity to the 
templates is used as further information for ranking. 

• Finally, all atom models are obtained by reconstructing the backbone via maxsprout7 and the side 
chains by SCWRL8. 

 
We also submitted predictions of protein domains and protein disorder by predictors that are not integrated 
in Distill’s pipeline. The predictor or protein domains (Shandy) has three stages: one in which SCOP and 
PDB templates are found; a second stage (a 1D DAG Recurrent Neural Network) in which residues are 
marked as domain boundary vs. intra-domain using primary and template information; a third stage in 
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which the previous predictions are smoothed and the location of domain boundaries is decided. Disorder is 
predicted by Punch, an evolution of Spritz6, a combination of experts implemented by kernel machines, 
which also uses template information.  
 
1. Pollastri,G. & McLysaght,A. (2005) Porter, A new, accurate server for protein secondary structure 
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DISTILLF is a new knowledge-based Model Quality Assessment Program (MQAP) at the residue level 
which evaluates single protein structure models. DISTILLF also predicts local quality, but it is derived 
from global quality. In each structure model each Amino Acid (AA) is represented by its C-alpha. We 
consider two AAs as interacting if their C-alphas are at up �to a distance of 20 A. Each interaction between 
AAs is evaluated individually by a Neural Network (NN), which produces a vector of hidden features as 
output. The features from all interacting pairs are obtained from as many copies of the NN as there are 
interactions, then added up and presented to a further NN which maps the resulting vector into a measure of 
the global goodness of the structure/decoy. The whole, compound network (all the interaction network 
copies plus the output network) is trained by backpropagating the difference between global goodness and 
actual model quality. As target function we use TMScore as it is a model quality measurement independent 
of the model length and more sensitive to details than GDT TS or RMSD1. To train the NN we used models 
submitted to CASP editions 5, 6 and 7 in 5 fold cross-validation. Values stored in the hidden states after 
representing each AA correlate with the scaled distance used in the TMScore calculation (local quality 
measurement). As inputs for the NN we use a vector of numbers that describes each pair of AAs and their 
interaction. This input vector contains several structure descriptors computed solely from the C-alpha trace. 
These structure descriptors encode each AA's environment, the interaction between two AAs in contact and 
their identities. AAs environment is described by distances with sequence neighbours, several angles 
formed between the AA's C-alpha and C-alphas of its sequence neighbours, pseudo solvent accessibility as 
HSE measure2, pseudo packing quality, angles of HSE's pseudo C-beta vectors with sequence neighbours' 
pseudo C-betas. The interaction between two AAs in contact is described by the distance of each AA in the 
pair and its sequence neighbours to the other AA of the pair and its sequence neighbours, and the angles 
between their respective pseudo C-beta vectors. The AAs identities are also provided to the network. 
 
1. Zhang, Y. & Skolnick, J. (2004) Scoring Function for Automated Assessment of Protein Structure 

Template Quality. PROTEINS: Structure, Function, and Bioinformatics 57, 702-710. 
2. Hamelryck, T. (2005) An Amino Acid Has Two Sides: A New 2D Measure Provides a Different View 

of Solvent Exposure, PROTEINS: Structure, Function, and Bioinformatics, 59, 38-48. 
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In the CASP8, our fams-ace2 server participated in the 3D coordinate prediction category as a human 
expert group. We applied two different scoring functions for the fully automated model prediction server, 
fams-ace2: (1) the local consensus score; and (2) the model quality score based on classification of the side-
chain environment for each residue. The local consensus score was used as a filter to select the models 
which have locally similar structures comparing with the set of models. The model quality score was then 
used for the final selection of the best model. This model quality score was calculated by our model quality 
assessment program CIRCLE1. 
 
The procedure of fams-ace2 can be summarized as the 
following 4 steps:  
(1) Obviously incorrect models which have serious 
physical clashes or broken main-chain structures were removed. (2) The top 10% (an optimized parameter 
of fams-ace2) of server models were selected in the order of the local consensus score; the local consensus 
score is calculated as the equation (1). N is the number of server models. LOCm,i is a set of C-alpha 
coordinates which exist within 10Å from the i th residue of model m. MAXSUB(a,b) is a maximum number 
of C-alpha coordinates (subset a) which superimpose well (within 3Å) upon their corresponding C-alpha 
coordinates in subset b. The values of 10 and 3 Å are optimized parameters of fams-ace2. (3) All of the 
server models, selected in step (2), were refined and rebuilt utilizing our homology modeling program 
FAMS2. (4) The top 5 structures were selected, according to a model quality evaluation based on their 
CIRCLE score. The coefficients of SSscore in the circle which do not use the consensus method were 
changed in the fams-ace2 from 0.35 and 0.75 to 0.30 and 0.30, respectively. The fams-ace2 is a fully 
automated server and does not require human intervention. 
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The parameters of fams-ace2 were optimized by the data set of previous CASP7. We used the GDT_TS as 
the quality of model compared to native. When we applied optimized fams-ace2 to CASP7 targets, fams-
ace2 obtained the best results over all server groups (Fig.1). Moreover, in Template Based Modeling 
Targets, fams-ace2 also achieved best results over all groups including human groups. 
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Fig. 1  Results of fams-ace2 (gray bar) and distribution of selected servers (pie graph) in 

CASP7 
 
The 103 native protein structures of CASP8 128 targets were published in CASP8 web site (Sep 03 2008). 
We calculated GDT_TS of all models submitted by servers and fams-ace2 (Fig. 2). The total GDT_TS of 
fams-ace2 (gray in Fig.2) were obviously better than almost all of the other servers. The fams-ace2 selected 
models of the best server (Zhang-server) among 40% and 34% of targets in CASP7 and CASP8, 
respectively (The black area in pie graph of Fig.1 and Fig.2). 
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Fig. 2  Results of fams-ace2 (gray bar) and distribution of selected servers (pie graph) in CASP8 

 
Although the advantage of fams-ace2 over other servers is slightly smaller than the results applying for 
CASP7 (123 domains, Fig.1), the intended results are accomplished. This small difference between CASP7 
and CASP8 might be caused by the change of the distribution of target difficulty and performance of 
servers. When we calculate GDT_TS of CASP8 models, we did not consider the domain regions. Therefore 
the results of some targets will be changed. The advantages of fams-ace2 are the fully automated process, 
the lower calculation costs due to the decrease of the modeled number in comparison with Fams-ace1, and a 
high accuracy similar to the top of human groups. We are planning to optimize fams-ace2 according to the 
target difficulty and performance of each server by using much huger data set. 
 
1. Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Hosoi A, Ohta K, and Umeyama H 

(2007). Fams-ace: a combined method to select the best model after remodeling all server models. 
Proteins.69 Suppl 8:98-107.  
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The DomFOLD server uses a consensus of three different methods for domain prediction. The output from 
DomSSEA1, HHsearch2, and DISOPRED3 is parsed to form a domain prediction for each method. The final 
prediction is then a simple majority vote taken on the domain assignment of each residue. Where the vote is 
evenly split, the lowest domain number is taken.  
 
The first method used for domain prediction is DomSSEA, which has been described previously1. 
DomSSEA is based on the alignment of the PSIPRED4 predicted secondary structure of the target against a 
fold library of known secondary structures, determined using DSSP5. The domain boundaries of templates 
within the fold library are assigned using SCOP6, which are then mapped onto the target structure. 
 
The second method parses the top alignments from HHsearch. Domain boundaries are assigned by the 
location of each template aligned to the target sequence. Where possible, the boundaries of aligned 
templates with multiple domains are appropriately subdivided using the SCOP domain assignment. The 
consensus domain assignment is then used to determine the overall domain boundaries for this method. 
 
The third method is based on disordered regions predicted using the DISOPRED method. The premise of 
this method is that regions of the target protein that are predicted to be disordered may indicate flexible 
domain linkers. Domain boundaries are predicted in stretches of disorder which are more than twenty 
residues from the N- and C-termini. 
 
The DomFOLD web server is available at the following URL: 
http://www.reading.ac.uk/bioinf/DomFOLD/ 
 
1. Marsden,R., McGuffin,L.J. & Jones,D.T. (2002) Rapid protein domain assignment from amino acid 

sequence using predicted secondary structure. Protein Sci. 11, 2814-2824. 
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We have developed a domain prediction method based on the results of inter-domain loop (domain linker1) 
prediction, in combination with those of various protein structure prediction tools including fold 
recognition. Our method consists of two alternative prediction schemes, one of which is selected, 
depending on whether structures fit to a target sequence can be detected. 
 
First, we executed well known fold recognition methods, HHsearch2 and GenThreader3, to detect similar 
structure for target sequence. From the results of fold recognition, proteins with scores higher than 90 
(HHsearch) and/or 4.0 (GenThreader) were selected as template structures of target sequence. If template 
structures were detected, the domain regions of target sequences were manually determined based on the 
template structures. Even when only a part of protein structures were selected as the template, we carefully 
assigned domain regions to the target, referring the template structure.  
 
When no template structure was detected, we then determined domain regions using the prediction results 
of domain linker candidates, in combination with those of secondary structure and disordered regions. In 
this scheme, domain linker candidates were predicted by an improved version of DLP-SVM1  that uses 
position specific scoring matrix (PSSM) for its training and prediction. The output values of DLP-SVM 
represent the domain linker propensity of each residue. Thus we predicted domain linker candidates based 
on the raw output values. To reduce the false positives, we refine the domain linker candidates using the 
prediction results of  disordered regions and those of secondary structure by POODLE4-6 series and 
PSIPRED7, respectively. Since POODLE series individually predicted the different types of disordered 
regions, we totally assessed the prediction results and determined disordered regions within the target 
sequences. In the next step of this scheme, we selected domain linker candidates with significantly higher 
DLP-SVM output values than those of other regions or with strongly predicted as disordered region and/or 
coil regions, or with both. According to selected domain linkers, we determined the domain regions, where 
existing the both side of the selected region. The results of these protein structure prediction and domain 
assignments were carefully analyzed and final domain regions were determined. 
 
1. Ebina T.,Toh H. & Kuroda Y. (2008) Loop-length dependent domain linker prediction for high-

throughput structural proteomics, Peptide Science, in press. 
2. Söding J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7), 
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matrix. Bioinformatics, 23(17), 2337-2338.  
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prediction system for reliably predicting long disordered regions. Bioinformatics, 23(17), 2046-2053. 

6. Shimizu K., Muraoka Y., Hirose S., Tomii K. & Noguchi T. (2007). Predicting mostly disordered 
proteins by using structure-unknown protein data. BMC Bioinformatics, 8, 78.  

7. McGuffin J., Bryson K. & Jones DT. (2000). The PSIPERD protein structure prediction server. 
Bioinformatics, 16(4), 404-405. 



30 

 
 
Elofsson 

Prediction of A2a receptor as step forward automatized pipeline for GPCR-ligand 
complex prediction. 

W. Jurkowski1 and A.Elofsson1 
1 - Center of Biomembrane Research,  Department of Biochemistry & Biophysics, Stockholm University 

jurkow@sbc.su.se 
 
Procedure to automatize the GPCR structure prediction and ligand docking is presented. The aim of method 
under development is to use common tools (e.g. Modeller1, Autodock2) and to limit human intervention on 
each of modeling phase: homology modeling of receptor, ligand preparation, binding site determination, 
docking and scoring. Recently published structure of Adenosine Receptor A2a complexed with antagonist 
ZM2413853, which could be blind predicted thanks to Critical Assessment of GPCR Modeling and 
Docking 2008 project4 served as one of the training targets. Results of this experiment are with good 
agreement with the crystal structure with less than 1.5 Å RMSD for TM and external loops and correct pose 
of the ligand. Even tough, the prediction is not faultless with ligand to much buried inside the TM part of 
protein it shows positive perspective for this prediction routine. 
 
1. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, A. 
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Fais-server is an automated protein tertiary structure and disorder prediction server. 
 
For tertiary structure prediction, the server tried to identify the structural templates of a target sequence for 
the PDB library by fold recognition technique. Fold recognitions were done by HMM-HMM comparison 
using HHsearch program1 and by our profile-profile alignment program, which searches for templates with 
the similar position specific scoring matrices (PSSM) by PSI-BLAST along with the matches of secondary 
structures of the template and predicted ones for the target by Psipred. If good templates with statistical 
significance were found, tertiary models were generated with those templates by Modeller program. If there 
were some long unaligned regions in the alignment, those regions were modeled by our de novo structure 
prediction system described later. The models were ranked according to the statistical significance of the 
alignment and the best five models were submitted.   
 
If reliable alignments could not be found for the target, the server generated tertiary structure models by de 
novo modeling system based on the fragment assembly method. Candidate fragments for each position of 
the target sequence were searched using the Pearson’s correlation coefficient between PSSMs of query 
subsequences and that of the target subsequence. Using that fragment libraries, the server searched 
conformational spaces using a potential energy function by simulated annealing method. Our potential 
energy function includes terms of potential based on contact number prediction2, atom clashes, and 
hydrogen bonding. About 1,000 models were produced for each target, and five prediction models were 
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selected by using the potential energy and structural clustering. Finally, side chain modeling was performed 
by using SCWRL version 3.03. 
 
For the prediction of disordered protein regions, the server used our protein disorder prediction system, 
named PrDOS4. The prediction system is composed of two predictors: a predictor based on local amino 
acid sequence information and one based on template proteins. The first part is implemented using a 
support vector machine (SVM) algorithm for the PSSM of the input sequence. The second part assumes the 
conservation of intrinsic disorder in protein families, and is simply implemented using PSI-BLAST and our 
own measure of disorder. The final prediction is done as the combination of the results of the two 
predictors. 
 
1. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7), 951-

960. 
2. Ishida T, Nakamura S, Shimizu K. (2006) Potential for assessing quality of protein structure based on 

contact number prediction. Proteins 64(4): 940-947.  
3. Canutescu A.A., Shelenkov A.A. & Dunbrack Jr.,R.L. (2003) A graph theory algorithm for protein 

side-chain prediction. Protein Sci. 12, 2001-2014. 
4. Ishida T and Kinoshita K. (2007) PrDOS: prediction of disordered protein regions from amino acid 

sequence. Nucleic Acids Res. 35(Web Server issue):W460-464. 
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Our strategy of predicting tertiary structures consists of producing models by our own de novo modeling 
methods and selecting appropriate models from those and server models. First, we classified the targets as 
either template based modeling (TBM) targets or free modeling (FM) targets according to their PSI-
BLAST e-values. We took different approaches for each category.  
 
For TBM targets, we did not generate tertiary structure models. We collected the server models and 
selected the good models according to our scoring functions.  At first, we picked up the server models from 
CASP8 web site, in which the coordinates of all the heavy atoms were present. We evaluated these models 
by a scoring function that consists of multiple energy functions and the score based on the structural 
consensus between the models. We used three types of potential functions; potential based on the contact 
number prediction1, Verify3D2 and our statistic potentials depending on the distance between atom pairs. 
For the distance dependent atom pair potentials, we used four difference reference states. Two of them have 
the similar reference states with RAPDF3 and DFIRE4 and the others have hybrid reference states of the 
former two potentials. For each potential, the mean and standard deviation was calculated for all server 
models, and the potential values of each structure were transformed into Z-scores. We also used the 
structural consensus between target model and the other server models for scoring. For each model, we 
calculated the average of the GDT-TS scores from all the other server models and used it as a measure of 
the structural consensus. The target models were evaluated by the weighted sum of Z-scores of potentials 
and the structural consensus score. We selected the best five models according to the score and submitted 
these models after refinement by using short Monte Carlo minimization with the scoring function. 
 
For FM targets, we generated tertiary structure models by using our de novo modeling system based on the 
fragment assembly method. Our potential energy function includes terms of potential based on contact 
number prediction1, atom clashes, and hydrogen bonding. About 3,000 models were produced for each 
target. Sidechains were modeled by using SCWRL. Finally, we selected five structures from the server 
prediction models and these models as in the case of TBM targets.  
 
For function prediction, we predicted binding sites of the target proteins based on the similarity searches of 
molecular surfaces against the database to representative heteroatom binding sites appearing within the 
Protein Data Bank (PDB) using predicted models. For searching binding sites, we used the structure of the 
best models selected previous process as queries and submitted them to eF-seek5 server. Finally, we 
submitted the five best candidates by the server as prediction results. 



 
1. Ishida T, Nakamura S, Shimizu K. (2006) Potential for assessing quality of protein structure based on 

contact number prediction. Proteins 64(4), 940-947.  
2. Bowie JU, Luthy R, Eisenberg D. (1991) A method to identify protein sequences that fold into a 

known three-dimensional structure. Science 253, 164-170. 
3. Samudrala R, Moult J. (1998) An all-atom distance-dependent conditional probability discriminatory 

function for protein structure prediction. J Mol. Biol. 275(5), 895-916.  
4. Zhou H, Zhou Y. (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived 

potentials of mean force for structure selection and stability prediction. Protein Sci. 11(11), 2714-2726.  
5. Kinoshita, K., Nakamura, H. (2005) Identification of the ligand binding sites on the molecular surface 

of proteins. Protein Sci. 14, 711-718. 
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We wish to find a unified and the simplest model for protein structure prediction, one of the major open 
problems in science. We are not interested in trying PSI-BLAST for easy targets, threading by RAPTOR 
for harder targets, fragment assembly by ROSETTA for ab initio targets, or consensus for everything. We 
are also not interested in using different methods for different steps, such as Monte Carlo fragment 
assembly, clustering, selecting, refinement. Nature does not do this. It does not fit with the Occam's Razor 
principle. Nature prefers simplicity. We wish to find one theory, one model, as simple as possible, that goes 
from an input sequence to the final structure. This theory should embody homology modeling, threading, 
fragment assembly (all stages of it), loop modeling, refinement, side chain packing, and consensus. This 
theory must be simple, robust, and effective.  This paper presents our initial efforts in building a theory 
toward this goal, and our preliminary implementation of this theory, FALCON, together with clear cut 
experimental results.  Some ideas of our work come from three lines o research: fragment assembly, hidden 
Markov model sampling, and Ramachandran basins. 

 
We propose a simple and unified paradigm for protein structure prediction. The plan is to probabilistically 
sample protein structure conformations compatible with local structural biases for a given protein. The 
architecture of the model is as below. 
1. For residue i , several Cosine models are used to describe the local bias of its torsion angle pair 

),( ii ψφ .  
2. A position specific hidden Markov model (HMM) is used to capture the dependencies among 
local biases of adjacent residues, based on carefully selected fragments. This HMM is referred to as 
Fragment-HMM. 
3. The Fragment-HMM is used to sample a sequence of torsion angle pairs for the given protein 
sequence. An energy function is used to evaluate the generated decoys, and to direct the sampling process 
to the better decoys. 
4. The generated decoys are fed back to produce more accurate estimations of local structural biases, 
a more accurate Fragment-HMM and thus, better decoys. This step is executed iteratively to increase the 
quality of the final decoys, until convergence.  
 
This model has advantages over existing works as follows.  
─Our Fragment-HMM model combines the very successful fragment assembly method and the elegant 
FB5-HMM idea. Rather than using the fragments as building blocks, we use them to produce local bias 
information. We use the directional distribution to model local biases, and use HMM to explore the 
dependency among the adjacent residues. Unlike FB5-HMM, our Fragment-HMM is position specific. 

 
─ Our Fragment-HMM naturally enables the Step 4 to re-sample decoys. Immediately, the readers would 
observe that this applies to obtaining fragments from a known structure. Thus this naturally enables 
homology modeling, threading, refinement (requiring more hidden nodes to model side chains), loop 
modeling, and consensus, unifying all these approaches under one roof.  
─ Step 4 is similar to that of primal and dual optimization process. The primal goal is to minimize the 
energy which is done by discriminating decoys with an energy function; and the dual process is done via 

32 

mailto:mli@uwaterloo.ca


sampling our Fragment-HMM to improve the estimation of torsion angles. Step 4 differs from the 
traditional fragment assembly methods that end with a population of decoys: some good and some bad. Our 
model does not stop here, but iterates until convergence.  
─The search space is narrowed down step by step. Monte Carlo is a popular technique for fragment-
assembly-based protein structure prediction. However, Monte Carlo suffers from its low efficiency since it 
does not explore the characteristics of the search space. In contrast, our Fragment-HMM narrows down the 
search space after each iteration step since the local structural biases are estimated more and more 
accurately. 

 
We have implemented this theory in FALCON, Fragment-HMM approximating local bias and consensus.. 
We take all 6 proteins from the ROSETTA benchmark data used in (Simons et al., 1997). FALCON 
converges 100% to within 6 Å for all six proteins after only four iterations. 
 
FALCON was designed for short targets. During the CASP8, it was evolved to take longer target by using 
some of the threading results (as longer fragments) as input.  However, more it is still evolving to combine 
the strength of threading programs. 
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Our comparative modeling method consists of following four steps: (1) making sequence alignments 
between target protein and template structures, (2) constructing three-dimensional structures based upon 
each alignment, (3) selecting the best structure model and (4) refinement of the selected model. Programs 
such as SP3 [1], FAMS (Full Automatic Modeling System) [2], CIRCLE [3] and Molecular dynamics were 
used at the each step (1) ~ (4), respectively. 
  
 (1) Making sequence alignments  
8 kinds of alignment programs, BLAST, PSI-BLAST [4], PSF-BLAST, RPS-BLAST, IMPALA, Pfam-
BLAST, SPARKS2 and SP3 were executed for each target protein sequence. Various alignments were 
generated and were filtered with its alignment score. The alignment scores for 6 kinds of methods except 
SPARKS2 and SP3 were calculated with following equation, 

 
),,,( SSLenHomkfscore i=      (1) 

 
Here Len is the number of residues of a predicted model. Hom indicates sequence identity % value, SS is 
the degree of secondary structure agreement between the secondary structures predicted one from sequence 
using PSI-PRED [5] and one calculated from model using STRIDE. ki is a coefficients for each alignment 
method.  
And as the alignment score for SPARKS2 and SP3, Z-score of their output was used. When the alignment 
score was more than (the maximum score of all alignments) * X, these alignments were used to construct 
model. A parameter X is a cut-off value which was decided using CASP7 targets as a training set 
depending on difficulty of each target (Table 1). The difficulty was predicted using Support Vector 
Machine (SVM). The alignment score and sequence identity of PSI-BLAST and these of SPARKS are used 
as parameters for SVM training. 
 
(2) Constructing three-dimensional structures 
We constructed three-dimensional structures using FAMS program based on each selected alignment which 
was mentioned in the preceding section. 
 
(3) Selecting the best structure 
All constructed models were evaluated using following scoring function, 

score = CIRCLE + w * SSscore 
 Here, Circle represents the 3D1D score which was improved based on verify3D and SSscore represents the 
degree of secondary structure agreement. w is the weighting factor for SSscore which was optimized using 
CASP7 models as a training set (Table 1). 
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Table 1. Values of X and w. 

PSIB SPK2 X w 

CMeasy CMeasy 0.99  0.00 

CMhard CMeasy 0.90  0.30  

CMeasy CMhard 0.85  0.35  

CMhard CMhard 0.85  0.35  

FRorNF CMhard 0.85  0.35  

CMhard FRH 0.80  0.55  

CMhard FRAorNF 0.80  0.55  

FRorNF FRH 0.80  0.55  

FRorNF FRAorNF 0.80  0.55  

PSIB and SPK2 indicate the predicted difficulty using 
alignment score and sequence identity of PSI-BLAST and 
these of SPARKS2, respectively, as parameters for SVM. 

 
Figure 1 shows the distribution of alignment method of finally ranked first models by above scoring 

function. 
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 (4) Refinement of the selected models 
Five selected models were refined using Energy minimize & Molecular dynamics. With this procedure, 
hydrogen bonds, main chain torsion angles and side chain torsion angles were refined slightly and 
collisions of hydrophobic atoms were decreased.  

 
Results and discussion 
109 experimental structures of 128 CASP8 targets became available by October 3, 2008. We evaluated the 
quality of all server models. FAMSD ranked at 15th with the cumulative GDT_TS score of all 109 targets. 
The accuracy of side chain was also assessed with the number of residues in the case that each model have 
a sufficiently accurate side chain, i.e., chi1 and chi2 torsion angle which is within 30 and 60 degrees, 
respectively, from native structure. Furthermore we calculated the cumulative score of GDT_TS, chi1 and 
chi2 for only 80 targets in the CM category (Figure 2). Target classification is referred to on Robetta 
evaluation page [6]. As the results, the rank of FAMSD with GDT_TS, chi1 and chi2 were 12th, 7th and 
10th, respectively. The six servers (Zhang-Server, Phyre_de_novo, pro-sp3-TASSER, FAMSD, BAKER-
ROBETTA and COMA-M) predicted high quality models in terms of not only backbone geometry but also 
side chain conformation.  
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A consensus method like 3D-Jury [1] is one of the most powerful methods of model quality assessment. 
3D-Jury score represent consensus of the backbone geometry among structure models. This method can 
select “good backbone” models but the quality of the side chain of selected models is not so good.  
Thus we developed a new consensus method which considers side chain environment for the purpose of 
selecting good side chain models, and participated in Quality Assessment category using this method as a 
team FAMSD. We describe the algorithm of this method and our results for CASP8. 
 
Methods 
First, we calculated the side chain environment composed of ‘fraction buried’ and ‘fraction polar’ for each 
residue of predicted model. ‘Fraction buried’ is the fraction of buried area within the surrounding side chain 
atoms, and ‘fraction polar’ is the fraction of buried area within the surrounding polar atoms. These values 
range from 0 to 1.0 per residue. When the model A was assessed, for each residue of model A, the side 
chain environment was calculated and is compared with the other models. If the Euclidian distance between 
the side chain environment (‘fraction buried’ and ‘fraction polar’) [2] of one residue of model A and that of 
corresponding residue of another model was within 0.2, we considered that the two residues were in the 
same environment. For each model, we counted the number of residues in the same environment and the 
side chain environment score is the summation of those numbers. The threshold of 0.2 was determined 
using CASP7 models as a training set. 
 
In CASP8, we participated in QA category as a team ‘FAMSD_QA’. We had refined all predicted models 
by FAMS [3] and had assessed quality of these models using following combined score. 
 

score = env_con + w * SSscore 
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Here, env_con represents the side chain environment consensus score and SSscore represents the degree of 
match between the secondary structure of a predicted model and the secondary structure predicted from the 
given sequence with PSIPRED [4]. w is the weighting factor for SSscore and ranges from 0 to 1 depending 
on the predicted difficulty using SVM. In the case of difficult targets, more weight is given to SSscore than 
easy targets. This value was optimized using CASP7 models. 
 

PSIB SPK2 w 

CMeasy CMeasy 0.3  

CMhard CMeasy 0.3  

CMeasy CMhard 0.5  

CMhard CMhard 0.5  

CMhard FRH 0.5  

FRorNF CMhard 0.5  

FRorNF FRH 1.0  

CMhard FRAorNF 1.0  

FRorNF FRAorNF 1.0  

 
PSIB and SPK2 indicate the predicted difficulty using alignment score and sequence identity of PSI-
BLAST and these of SPARKS2, respectively, as parameters for SVM training. 
 
Results and discussion 
Correlation coefficients 
109 experimental structures of 128 CASP8 targets became available by October 2008. We calculated 
GDT_TS (accuracy score of backbone geometry) of all predicted models for 103 structure available targets, 
and calculated Pearson and  
Spearman correlation coefficients between GDT_TS and FAMSD_QA score. As a result, average Pearson 
and Spearman correlation coefficients for all targets were 0.85 and 0.75, respectively. Furthermore the 
averages for 75 relatively easy targets were 0.91 and 0.79, and for 28 relatively difficult targets were 0.69 
and 0.67, respectively. (Target classification is referred to on Robetta evaluation page [5].) 
 
Given this, it can be considered that FAMSD_QA scoring is more effective for easy targets than for 
difficult targets. The reason for the difference between Pearson and Spearman correlation coefficients for 
easy targets is that some targets of in the easy category have the bipolar distribution, as shown in Figure 1. 
Tthere are both moderately good models and extremely bad models. That is, non normal distribution is 
observed. The target that has the biggest difference between Pearson and Spearman correlation coefficients 
was T0444, for which the PDB code is 2VUX. These coefficients were 0.857 and 0.289, respectively. Fig. 
1 shows the scatter plot of FAMSD_QA score versus GDT_TS. In this case FASMD_QA scoring could 
judge the moderately good models (GDT_TS > 50) as “good model” and could judge the extremely bad 
models (GDT_TS < 30) as “bad model”. Therefore Pearson correlation coefficient was very high (0.857). 
But among the moderately good models, FASMD_QA scoring couldn’t distinguish relatively good models  
from relatively bad  models, so Pearson correlation coefficient calculated with only these models was 0.416 
in comparison with 0.857. 
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This is not so good, but the GDT_TS of the first 
ranked model by FASMD_QA score is 88.6 and 
the highest GDT_TS among all models is 96.0. 
The ratio of the GDT_TS of the first ranked 
model to the highest GDT_TS, we call MGR 
(Max GDT_TS Ratio), is 92.3 (88.6/96.0) %. 
The average MGR value for all targets, easy 
targets and difficult targets were 89.6, 93.8 and 
79.0 %, respectively. 
 
Evaluate the first raked model 
We calculated the cumulative GDT_TS score of 
the first ranked models by FAMSD_QA score 
and compared with that of other automatic 
servers. FAMSD_QA ranked at second 
following Zhang-Server.  
 
 
 



 
 
 

Rank team name 
Sum of 

GDT_TS 
average 

1 Zhang-Server 6884.62 63.16 

2 FAMSD_QA 6784.26 62.24 

3 pro-sp3-TASSER 6654.85 61.05 

4 RAPTOR 6614.46 60.68 

5 METATASSER 6580.59 60.37 

 
Furthermore, we evaluated the accuracy of side chain torsion angles for easy targets. We calculated the 
cumulative number of residues that have sufficiently accurate chi1 angle (within 30 degrees from native). 
As a result, FAMSD_QA ranked first of all server teams and 3D-Jury ranked fourth (Figure 2). This shows 
that FAMSD_QA scoring can select good models in terms of not only backbone geometry but also side 
chain torsion angles. 
 
Conclusion 
We developed an alternative consensus score for the purpose of selecting good models that have accurate 
side chain atoms. The new consensus score considers the side chain environment. We participated in 
Qaulity Assessment category and evaluated our method. As a result, side chain accuracy of the first ranked 
models by our new method was the best of all servers including 3D-Jury. It was proved that our consensus 
method using the side chain environment can select better side chain models. 

Figure 2. Chi1 Ranking (for 80 easy targets)

3867

6958

6879

6921

6938

3909

3868 3821

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

FA
M
SD

_Q
A

*B
AKE

R-
RO

BE
TT

A

*Z
ha

ng
-S

er
ve

r

3D
ju
ry

*S
AM

-T
08

-s
er

ve
r

*C
O
M
A-M

*p
ro

-s
p3

-T
AS

SE
R

*P
hy

re
_d
e_
no

vo

*F
AM

SD

4800

5000

5200

5400

5600

5800

6000

accuracy of chi1

accurate of chi2

sum of GDT_TS  
 
[1] Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3D-Jury: a simple approach to improve protein 
structure predictions. Bioinformatics. 2003; 19:1015–8 
[2] Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Hosoi A, Ohta K, Umeyama H. 
Proteins. 2007;69 Suppl 8:98-107. 
[3] Ogata, K. and Umeyama, H. An automatic homology modeling method consisting of database searches 
and simulated annealing J Mol Graph Model. 2000; 18, 258-272 
[4] Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. 
Biol. 1999; 292: 195-202. 
[5] http://robetta.bakerlab.org/CASP8_eval/index.html 
 
 

37 

http://robetta.bakerlab.org/CASP8_eval/index.html


FAMS-multi 

Automated homology modeling based upon multiple reference proteins using better 
pairwise alignments 

K. Kanou1, T. Hirata1, G. Terashi1, H. Sakai1, 
M. Takeda-Shitaka1 and H. Umeyama1 

School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 
108-8641 JAPAN 

kanouk@pharm.kitasato-u.ac.jp 
 
We developed an automated method of protein structure 
prediction called FAMS (Full Automatic Modeling System) 
[1,2]. FAMS is a homology modeling program consisting 
of database search and simulated annealing, and can 
construct high accuracy model when appropriate reference 
protein was detected. For predicting more accurate model, 
especially of loop structure and side chain torsion angles, 
we developed a new version of FAMS, called FAMS-multi, 
which uses multiple reference proteins. In the following, 
we describe the scheme of FAMS-multi. 
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Methods 
1. Generation of better pairwise alignments 
We used the predicted models by other teams to generate 
better pairwise alignments between the target and its 
template in the PDB. First, we rebuilt these models by 
using FAMS program for the purpose of removing 
collisions. These rebuilt models were used to generate 
pairwise sequence alignments between the target and its template. The pairwise alignments were generated 
by structural superposition between each refined model and the its template using CE program [3]. When 
the superposition of the model and its template was not performed with the criteria of Z-score > 3.7, the 
alignment was not used.  
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Next, we constructed C� models from these alignments using FAMS-multi program, and calculated 3D-
jury scores of these C� models which is C��consensus score. Some alignments whose C� model has a 
high 3D-jury score were used to construct full atom models using FAMS-multi program, and these models 
were evaluated using fams-ace2 method. Figure 1 shows the distribution of teams whose alignment was 
used to construct submitted models.        

 
2. Construction of models by FAMS-multi 
Some reference proteins were chosen based on the sequence and structural similarity with template. Next, a 
multiple structural alignment based on the superposition of C� atoms was performed among the reference 
proteins including in the template. The target sequence was put on for this alignment based on the piarwise 
alignment between target and template mentioned in the preceding section. Thus, we get a result of 
multiple alignment between a target protein and reference proteins. 
 
 Using this alignment, tertiary structures were constructed mainly with next three steps, C� construction, 
main chain construction, and side chain construction. In each step, optimization was executed by the 
simulated annealing method.  
 
C� construction step: For the initial C� coordinates, first, the weighted average of C� coordinates and the 
average distance were obtained from pairwise structural alignment based on the superposition of C� atoms 
of the target and reference proteins. The weight factor of C� coordinates for each reference proteins was 
decided based on Local Space Homology (LSH) calculated for each secondary structure segment. Next, the 
coordinates of C� atoms were optimized by simulated annealing. 
 
Main chain construction step: Initial coordinates of main chain atoms were constructed with the same 
method as FAMS. In the simulated annealing step, the potential function, which is consisting of (1) the 
weighted average of the coordinates of main chain atoms, (2) the average of distance and (3) the pair of N 
and O atoms forming the hydrogen bond as structural information, was used. 
 



Side chain construction step: For the generated main chain atoms, conserved side chain torsion angles were 
obtained from homologous proteins. The coordinates of side chain atoms consisting of conserved side chain 
torsion angles were placed in relation to the fixed main chain atoms. The structural information such as the 
weighted average of the coordinates, average of distance, and the pair of N and O atoms forming the 
hydrogen bond, was derived from homologous proteins, and this information was used in optimization 
procedure. 
 
3. Evaluate models (fams-ace2 method) 
Thus, some full atom models were constructed. These models were evaluated using fams-ace2 selecting 
method (combined C��consensus and Circle score [4]). Consequently top five models were selected. 
 
4. Refine models 
Five selected models were refined using Energy minimize & Molecular dynamics. With this procedure, 
hydrogen bonds, main chain torsion angles and side chain torsion angles were refined slightly and 
collisions of hydrophobic atoms were decreased.  
 
All the procedures were implemented automatically. 
 
Results and discussion 
109 experimental structures of 128 CASP8 targets became available by October 3, 2008. We evaluated the 
accuracy of FAMS_multi models and that of the other server models, and compared them. The accuracy of 
backbone geometry was assessed by GDT_TS score, and the accuracy of side chain was assessed by the 
number of residues which have a sufficiently accurate side chain (chi1 torsion angle within 30 degrees from 
native structures or chi2 torsion angle within 60 degrees from native). Figure 2 shows the server ranking 
with the cumulative GDT_TS score of 109 targets (bar graph). Line graphs of square and triangle point is 
the cumulative number of accurate Chi1 torsion angles and Chi2 torsion angle, respectively. 
As the results, FAMS_multi ranked second following Zhang-Server with GDT_TS score. FAMS_multi also 
ranked second following Zhang-Server with side chain accuracy. FAMS_multi could construct good models 
in terms of backbone geometry and side chain conformation. 
 

 Figure 2. Top 15 servers
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[3] Shindyalov IN, Bourne PE. Protein Engineering 1998; 11(9) 739-747. 
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FEIG 

Automated protein structure prediction by comparative modeling and correlation-
based scoring  

S. M. Gopal1 and M. Feig1,2 
1 Department of Biochemistry and Molecular Biology, 2 Department of Chemistry, 

 Michigan State University, East Lansing, MI; USA 
feig@msu.edu 

 
The most common strategy in protein structure prediction involves two stages: 
a) generation of models with some sampling method  and (b) evaluation of models with a suitable scoring 
function to identify the native structure.  Often stage (a) is well achieved by numerous well-known 
methods, whereas design of a robust scoring function has been bottle neck in structure prediction. Decoy 
scoring with most of the successful scoring potentials (physical/knowledge-based) are noisy due to large 
fluctuations in physical interactions arising even from minor structural perturbations. Our group has 
devised a novel correlation-based scoring method1 which enhances the scoring function by reducing the 
associated noise. This method takes advantage of the idea that the structure from a given ensemble that is 
closest to the native basin leads to the highest correlation coefficient between a given score and distance to 
that structure as an approximation of the native state for the entire ensemble. We apply this scoring method 
to models generated from diverse comparative, threading and ab initio methods. The following paragraph 
will briefly summarize the essential steps involved in our automated modeling protocol. 

• Alignments were obtained for each domain of given target from different alignment methods such 
as BLAST2, FFAS3, FUGUE4, HHSEARCH5, PROSPECTOR6, SAM7, SP38 and SP49. Each 
alignment was scored based on sequence identity and predicted secondary structure. 

• Models were built from high-scoring single template and multiple template alignments with 
MODELLER10 and MMTSB11 programs.   Models were also built from TASSER12 and   
ROSETTA13 ab-initio (only for FM targets) protocols. Further additional models were generated 
for some of the targets with a local implementation of  iterative TASSER method using above 
models. 

• Models were subjected to short minimization and evaluated with DFIRE14 potential. They were 
then clustered and clusters with the lower score were used for generating an ensemble of models.  

•  Decoy scoring in this ensemble was enhanced by reducing the “noise” associated with the score 
by a correlation-based scoring method1. A subset of models with best correlation scores was 
chosen and the models with lowest DFIRE score from this subset were submitted as predictions. 

 
1. Stumpff-Kane, A. & Feig, M. A Correlation-Based Method for the Enhancement of Scoring Functions 

on Funnel-Shaped Energy Landscapes (2006). Proteins, 63, 155-164. 
2. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

3. Jaroszewski, L., Rychlewski, L., Li, Z., Li, W. & Godzik, A. FFAS03: a server for profile-profile 
sequence alignments (2005). Nucl. Acids Res. 33, W284-W288. 

4. Shi, J., Blundell, T. L. & Mizuguchi, K. FUGUE: sequence-structure homology recognition using 
environment-specific substitution tables and structure-dependent gap penalties (2001). J. Mol. Biol. 
310, 243-257. 

5. Söding J. Protein homology detection by HMM-HMM comparison (2005). Bioinformatics 21, 951-
960. 

6. Skolnick, J., Kihara, D. & Zhang, Y. Development and testing of the PROSPECTOR 3.0 threading 
algorithm (2004). Proteins 56,502-518. 

7. Karplus,K., Karchin,R., Draper,J., Casper,J., Mandel-Gutfreund,Y., Diekhans,M. and Hughey,R. 
Combining local-structure, fold-recognition, and new fold methods for protein structure prediction 
(2003). Proteins,  53, 491–496. 

8. Zhou, H. & Zhou, Y. Fold recognition by combining sequence profiles derived from evolution and 
from depth-dependent structural alignment of fragments (2005). Proteins. 58, 321–328. 

9. Liu, S., Zhang, C., Liang, S. & Zhou, Y., Fold Recognition by Concurrent Use of Solvent Accessibility 
and Residue Depth (2007). Proteins, 68, 636-645. 

10. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints (1993). J. 
Mol. Biol. 234, 779-815. 

11. Feig, M., Karanicolas, J., & Brooks III, C., L.: MMTSB Tool Set: enhanced sampling and multiscale 
modeling methods for applications in structural biology (2004). J. Mol. Graph Model. 22, 377-395. 

12. Zhang, Y. & Skolnick, J. TASSER: An automated method for the prediction of protein tertiary 
structures in CASP6 (2005). Proteins 61(S7), 91-98. 
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13. Rohl, C.A., Strauss, C.E., Misura, K.M.S., & Baker, D. Protein structure prediction using Rosetta 
(2004).  Methods in Enzymology  383, 66-93. 

14. Zhou, H. &  Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived 
potentials of mean force for structure selection and stability prediction (2002). Protein Science, 11, 
2714-2726. 
 
 

Fiser-M4T 

Improved scoring function and template search protocol for comparative modeling 
using the M4T method 

D. Rykunov, E. Steinberger, C.J. Madrid-Aliste and A. Fiser 
Department of Systems and Computational Biology, Department of Biochemistry, 

Albert Einstein College of Medicine, Bronx, NY USA 
afiser@aecom.yu.edu 

 
Improvements in comparative protein structure modeling for the remote target-template sequence similarity 
cases are possible through the optimal combination of multiple template structures and by improving the 
quality of target-template alignment. Recently developed MMM1,2 and M4T3,4 methods were designed to 
address these problems. MMM identifies alternatively aligned regions from a set of input alignments, maps 
them in the template structure and scores them using a composite scoring function within the given the 
structural environment. The final alignment is a combination of the best scored alternatives with the core 
part of alignment. M4T method implements an algorithm to automatically select and combine Multiple 
Template structures and feed them to MMM in order to generate a protein model. 
 
Present modification of the MMM method replaces previously used contact statistical potential with 
recently developed distance-dependent residue-level statistical potential similar to our all-atom Shuffled 
Reference State potential5. It is described in greater details in the Fiser-QA abstract. Along with addition of 
BLOSUM62 mutation table scores it improves alignment accuracy, especially in low sequence identity 
(<30%) cases. 
 
1 Rai, B.K. and Fiser, A. (2006) Multiple mapping method: A novel approach to the sequence-to-

structure alignment problem in comparative protein structure modeling. Proteins: Structure, Function, 
and Bioinformatics 63, 644-661 

2 Rai, B.K. et al. (2006) MMM: a sequence-to-structure alignment protocol. Bioinformatics 22, 2691-
2692 

3 Fernandez-Fuentes, N. et al. (2007) M4T: a comparative protein structure modeling server. Nucleic 
Acids Res 35 (Web Server issue), W363-368 

4 Fernandez-Fuentes, N. et al. (2007) Comparative protein structure modeling by combining multiple 
templates and optimizing sequence-to-structure alignments. Bioinformatics 23, 2558-2565 

5 Rykunov, D. and Fiser, A. (2007) Effects of amino acid composition, finite size of proteins, and sparse 
statistics on distance-dependent statistical pair potentials. Proteins: Structure, Function, and 
Bioinformatics 67, 559-568 

 

 

Fiser-QA 

Assessment of model quality using distance-dependent pairwise statistical potentials 
with shuffled reference state 

D. Rykunov and A. Fiser 
Department of Systems and Computational Biology, Department of Biochemistry, Albert Einstein College 

of Medicine, Bronx, NY USA 
afiser@aecom.yu.edu 

 
We developed distance-dependent residue-level statistical potential similar to our all-heavy-atom shuffled 
reference state (SRS) potential1. Key feature of both residue-level and all-heavy-atom potentials is the way 
system state with no interactions is approximated. Atomic identities for all atom potential and residue 
identities were shuffled while their spatial positions were preserved. Different sequence separations and 
distance cutoffs were studied.  
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This SRS pairwise potential was combined with local potentials developed by Reva and coauthors, 
including short-range distance-dependent potentials, bend and torsion potentials2. 
 
All SRS and local potentials were linearly combined with weights adjusted to maximize correlation of 
score and GDT_TS for comparative model and easy fold recognition targets from previous CASP 
experiments (CASP5-7). In the quality assessment experiment we have explored three flavors of the 
potentials: 
 
Fiser-QA server was based on Cβ residue-level SRS potential with sequence separation 3 (i.e. pairs i,i+1 
and i,i+2 were excluded) and spatial distance cutoff value 8 Å. 
 
Fiser-QA-Comb server was based on combination of local potentials2 with Cβ residue-level SRS potential 
(sequence separation 1, spatial distance cutoff value 11 Å). 
 
Fiser-QA-FA potential combined local potentials2 with all-heavy-atom1 SRS potential using sequence 
separation 1, spatial distance cutoff value 4 Å. 
 
All three servers scored models for a given target and normalized scores to 0-1 scale; in addition, Fiser-
QA-FA server employed MODELLER3 to add missing side chain atoms. 
 
1 Rykunov, D. and Fiser, A. (2007) Effects of amino acid composition, finite size of proteins, and sparse 

statistics on distance-dependent statistical pair potentials. Proteins: Structure, Function, and 
Bioinformatics 67, 559-568 

2 Reva, B.A. et al. (1997) Accurate mean-force pairwise-residue potentials for discrimination of protein 
folds. Pac.Symp.Biocomput., 373 

3 Fiser, A. and Sali, A. (2003) Modeller: generation and refinement of homology-based protein structure 
models. Methods Enzymol 374, 461-491 
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Comparative modeling with all-atom refinement using molecular dynamics 
simulation 

S. Fuchigami1 
1 - International Graduate School of Arts and Sciences, Yokohama City University 

sotaro@tsurumi.yokohama-cu.ac.jp 
 
We have mainly focused on tertiary structure prediction of target proteins categorized into comparative 
modeling. Our method starts from conventional approaches consisting of template selection, sequence 
alignment and loop modeling. For some target proteins, we further performed an all-atom refinement of 
models using energy minimization and molecular dynamics (MD) simulation in explicit solvent. 
 
Template structures for modeling of target sequences were selected by PSI-BLAST1 searches against the 
PDB database using position-specific scoring matrices generated by PSI-BLAST with 10 iterations against 
the nr sequence database. For some targets, we also used information of secondary structure prediction 
performed by PSIPRED2 to choose templates. Target sequences were aligned to the templates using PSI-
BLAST and with manual curation. Missing loops of target structures were modeled by MODELLER3. 
 
To remove the atomic clashes in the models, we carried out energy minimization by steepest descents using 
the MD program system, MARBLE4, with the CHARMM22 force field for proteins5 and the CMAP 
correction for peptide backbone φ, ψ dihedral crossterms6. Consequently the clashes were considerably 
reduced to the same extent or less than observed in native crystal structures. 
 
In order to sample possible conformations of the target proteins at atomistic level, we performed MD 
simulation in NPT ensemble with explicit water, started with the energy-minimized structures, using the 
MARBLE4 with the CHARMM22/CMAP force filed parameters5,6. The initial structures were dissolved in 
water molecules with the addition of counter ions to neutralize the net charges of the system. The 
temperature and pressure of the system were set at 300 K and 1 atom, respectively. Water molecules and 
hydrogen-containing group (e.g. CH3, NH2, OH, etc.) were treated as rigid bodies (partial rigid-body 
method), enabling to use a 2.0 fs time step. Coulombic interactions were evaluated using the particle-mesh 
Ewald method7. For some targets, additional refinements were carried out using simulated annealing to 
relax the sampled conformations of the target, especially fluctuating loops 
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Submitted models were chosen from a set of models generated using different templates and alignments 
based on complete-linkage clustering, structure verification by WHAT_CHECK8, and visual inspection. 
 
1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids 
Res. 25, 3389-3402. 

2. Jones,D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. 
J. Mol. Biol. 292, 195-202. 

3. Šali,A. & Blundell,T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. 
Mol. Biol. 234, 779-815. 

4. Ikeguchi,M. (2004). Partial Rigid-Body Dynamics in NPT, NPAT and NP�T Ensembles for Proteins 
and Membranes. J. Comput. Chem. 25, 529-541. 

5. MacKerell Jr.,A.D., Brooks,B., Brooks III,C.L., Nilsson,L., Roux,B., Won,Y. & Karplus,M. (1998). 
CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. in The 
Encyclopedia of Computational Chemistry edited by Schleyer,P.v.R. et al., (John Wiley & Sons, 
Chichester, 1998), Vol. 1, pp. 271-277. 

6. MacKerell Jr.,A.D. (2004). Empirical Force Fields for Biological Macromolecules: Overview and 
Issues. J. Comput. Chem. 25, 1584-1606. 

7. Essmann,U., Perera,L., Berkowitz,M.L., Darden,T., Lee,H. & Pedersen,L.G. (1995). A smooth particle 
mesh Ewald method. J. Chem. Phys. 103, 8577-8593. 

8. Hooft,R.W.W., Vriend,G., Sander,C. & Abola,E.E. (1996). Errors in protein structures. Nature 381, 
272-272. 

 
 
FLOUDAS 

ASTRO-FOLD: Three dimensional structure prediction of proteins using ab initio 
methods 

C. A. Floudas1, A. Subramani1 , Y. Wei1 and R. Rajgaria1  
1  Department of Chemical Engineering, Princeton University, Princeton NJ 

floudas@titan.princeton.edu 
 
First principles structure prediction of proteins based on an overall deterministic global optimization 
framework coupled with mixed-integer optimization.  The novel four stage approach uses free energy 
calculations and integer linear optimization to predict helical and beta-sheet structures.  Detailed atomistic 
modeling and the deterministic global optimization method, aBB, coupled with torsion angle dynamics, 
form the basis for the final tertiary structure prediction.  A hybrid aBB-CSA (conformational space 
annealing) algorithm has been used to improve performance and generate a large ensemble of low-energy 
structures1,2. The first stage involves the identification of helical segments and is accomplished by 
partitioning the amino acid sequence into overlapping oligopeptides; atomistic level modeling using 
ECEPP/3 generates an ensemble of low energy conformations; calculating free energy contributions for 
each pentapeptide; and helix propensities for each residue using equilibrium occupational probabilities of 
clusters. A new method for secondary structure prediction is also introduced, wherein an ILP based model 
for helix prediction has been established, which evaluates the propensity of the central residue of 
overlapping nonapeptides to be in a helix, by calculating the pairwise probabilities of residues surrounding 
it3,4. The second stage focuses on the prediction of beta-sheet and disulfide bridge topology. It is based on 
an ILP modeling of the hydrophobic driving force of beta-structure formation and solving the model to 
maximize the hydrophobic contact energy5. In addition, a novel ILP based method for tertiary contact 
prediction, using a Ca-Ca distance dependent force field to assign contact energy has been implemented6,7. 
The third stage involves the derivation of angle and distance restraints based on helical and beta-sheet 
predictions to enforce the predicted secondary and tertiary arrangements8.  Restraints are determined for the 
loop residues connecting helical and strand regions through dihedral angle sampling and a novel clustering 
approach9. The final tertiary structure prediction relies on restraints introduced from the previous stages as 
well as atomistic energy modeling, represents a nonconvex constrained global optimization problem, which 
is solved through the combination of a deterministically based global optimization approach, the aBB, and 
torsion angle dynamics10. A pre-cursor quick rotamer energy optimization step is also implemented11. A 
number of force fields like the High resolution distance dependent force field12, and the optimized Amber 
force field13 were used to re-rank the resulting structures. 
 
1. Klepeis JL and Floudas CA (2003) ASTRO-FOLD: A Combinatorial and Global Optimization 

Framework for Ab Initio Prediction of three dimensional Structures of proteins from the Amino Acid 
Sequence. Biophys. J., 85, 2119-2146. 
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2. Klepeis JL, Pieja MJ and Floudas CA (2003) Hybrid Global Optimization Algorithms for Protein 
Structure Prediction: Alternating Hybrids. Biophys. J. 84, 869 – 882.  

3. Subramani A and Floudas CA (2008), in preparation. 
4. Klepeis JL and Floudas CA (2002). Ab-Initio Prediction of Helical Segments in Polypeptides. J 

Comput. Chem., 23, 1-22. 
5. Klepeis JL and Floudas CA (2003). Prediction of Beta-Sheet Topology and Disulphide Bridges in 

Polypeptides. J. Comput. Chem., 24, 191-208. 
6. Rajgaria R, McAllister SR and Floudas CA (2008). in preparation. 
7. McAllister SR, Mickus BE, Klepeis JL and Floudas CA (2006), A Novel Approach for Alpha-Helical 

Topology Prediction in Globular Proteins: Generation of Interhelical Restraints., Proteins, 65, 930-
952. 

8. McAllister SR and Floudas CA (2008), Development of rigorous distance bounds for improving 
protein structure prediction., submitted. 

9. Monnigmann M and Floudas CA (2005), Protein Loop Structure Prediction with Flexible Stem 
Geometries. Proteins, 65, 930-952. 

10. Klepeis JL and Floudas CA (2003), Ab-Initio Tertiary Structure Prediction of Proteins. J Glob. Optim., 
25, 113-140. 

11. McAllister SR and Floudas CA (2008), in preparation. 
12. Rajgaria R, McAllister SR and Floudas CA (2006). A Novel High Resolution Ca-Ca Distance 

Dependent Force field Based on a High Quality Decoy Set. Proteins, 65(3), 726-741.  
13. Wroblewska L, Jagielska A and Skolnick J (2008), Development of a Physics-based Force field for the 

scoring and Refinement of Protein Models., BioPhys. J., 94, 3227-3240.   
 

GeneSilico 

The GeneSilico pipeline for protein structure prediction  

 J. Orlowski
1*, M. Boniecki1, W. Potrzebowski1, J.M. Bujnicki1 

1 International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland 
jerzyo@genesilico.pl 

 
Based on our experience with the metaserver approach and with modeling by recombination of fragments 
(e.g. the FRankenstein’s Monster protocol), we developed a new prediction method, which makes better 
use of server models and Model Quality Assessment Programs (MQAPs). 
 
In the first step of modeling, we retrieve all CASP server predictions. The most common template 
structures are identified. The similarity matrix of the models is calculated using MAXCLUST and models 
are clustered using CLANS. Models and their fragments are also ranked by their scores predicted by the 
following MQAPs: PCONS, ModFoldClust, MetaMQAPconsI and MetaMQAPconsII. In the case of 
MetaMQAPcons methods developed in our laboratory, we use also their special mode of predicting the top 
5 models. Simultaneously we carry out the fold recognition analysis through the GeneSilico 
MetaServer21,which was updated and now includes new methods for prediction of domain boundaries, 
protein order, protein solvatation and secondary structure. 
 
The second step of our analysis is a manual inspection of the data obtained. At this step, if 1 to 5 starting 
models are confidently predicted to exhibit a correct fold, these models are subjected to refinement (see 
below). If no confident fold prediction is made, the target is modeled de novo using Refiner2 and Rosetta 
2.33.  
 
In the refinement step, we were looking for poorly scoring or missing protein fragments or fragments with 
secondary structure different than predicted by the MetaServer. These fragments were refined in up to four 
ways: 

• By copying the coordinates from different models 
• By running REFINER with secondary structure and distance restraints 
• By running ROSETTA in the loop modeling mode 
• By identifying potential errors in the alignment used for generating the parent protein 

 
The final models were selected from variants generated by different modifications according to scores 
reported by MetaMQAP4 aided by visual inspection. 
 
In order to run ROSETTA automatically, starting from the models generated by the GeneSilico 
MetaServer, we developed a pipeline of scripts, called ROCKETTA. Briefly, the secondary structure 

mailto:jerzyo@genesilico.pl
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predictions are taken from the MetaServer, then de novo, loop or loop relax mode is carried out and the 
resulting decoys are clustered to identify the most promising solutions.  
 
According to the preliminary ranking reported by Zhang and coworkers 
(http://zhang.bioinformatics.ku.edu/casp8/) our semi-automatic method of protein structure prediction are 
on average better than all but one automatic predictor. For 6 targets of different difficulty (T0411, T0425, 
T0437, T0440, T0462_1, T0496_1) our first models were better than any server predictors, which shows 
that our approach works well for both easy and fold-recognition modeling. 
 
1. Kurowski,M.A., Bujnicki,J.M. (2003). GeneSilico protein structure prediction meta-server. Nucleic 

Acids Res 31,3305-3307. 
2. Boniecki,M., Rotkiewicz,P., Skolnick,J., Kolinski,A. (2003). Protein fragment reconstruction using 

various modeling techniques. J. Computer Aided Molecular Design 17:725-737 
3. Rohl, C. A., Strauss, C. E., Chivian, D., Baker, D. (2004). Modeling structurally variable regions in 

homologous proteins with rosetta Proteins 55, 656-677. 
4. Pawlowski,M., Gajda,M.J., Matlak,R., Bujnicki,J.M. (2008). MetaMQAP: a meta-server for the quality 

asessment of protein models BMC Bioinformatics 9:403 
 
 

GRIER-CONSENSUS 

Model Validation Using Delaunay Tessellation 

John B. Grier 
University of North Carolina at Chapel Hill 

jgrier@email.unc.edu 
 

The computational geometry technique Delaunay tessellation (DT) was used to determine the fitness of the 
protein models created by the structure prediction servers participating in CASP8. Delaunay tessellation 
transforms a set of point in three-dimensional space into an aggregate of space-filling, irregular tetrahedra, 
known as Delaunay simplices, with the original points being vertices of these tetrahedra. This 
computational method when applied to protein structures rigorously defines all four nearest neighbor 
residue clusters within a protein1. For CASP8 the coordinates of the side chain centroids of the server 
models were determined and used as the input of the DT algorithm. This resulted in decomposing all 
models into four-residue nearest neighbor clusters (or quadruplets). Since each of the four vertices is 
composed of one of the 20 natural amino acids, each cluster belongs to one of 160,000 different 
compositional types or motifs. For each of these quadruplets types a weight was given according to its total 
occurrence in the tessellated protein models. Each model was then scored by summing the weights of the 
clusters. The score was then normalized with 1.0 being the highest scoring and 0.0 being the lowest 
scorning model. 
 
1. Zheng, W., Cho, S.J., Vaisman, I.I., & Tropsha, A. (1997). A new approach to protein fold recognition 

based on Delaunay tessellation of protein structure. Pac. Symp. Biocomput. 486-497. 
 
 

GS-KudlatyPred 

KudlatyPred - Fully automated modeling server based on scoring of models by 
MetaMQAPcons and recombination of best-scoring fragments 

M. Pawlowski and J.M. Bujnicki 
Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell 

Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Poland  
marcinp@genesilico.pl 

 
 
For the prediction of the 3D structures in CASP8, we have developed a fully automatic procedure 
comprising collection of 3rd-party models, local assessment of model quality by MetaMQAPconsI&II 
developed in our laboratory, and recombination of best-scoring fragments. The whole procedure comprises 
the following five steps: 
 

mailto:jgrier@email.unc.edu
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1. The method collects models for a given target sequence. By default, the method downloads 
models based on fold-recognition alignments generated by the GeneSilico metaserver1. In the case of  FM 
targets in CASP-8, the method has also downloaded models generated by ROBETTA2.  
 
2. Each model is scored by MetaMQAPconsI. Both local residue deviations and global model scores 
are predicted. Five models with the best global score are selected.  
 
3.  All input models are divided into partially overlapping fragments containing 1 or 2 secondary 
structure elements, depending on the target size. 
 
4.  All possible combinations of fragments are ranked (without explicitly generating 3D models for 
each combination). To rank a given combination of fragments, the sum of local MetaMQAPconsI scores is 
calculated for all residues. In addition, a complex penalty system is applied. Penalty is given for fragments:  
a) derived from models with different folds; b) derived from models with folds different from the folds of 
top 5 models selected in step 2; c) if the area of overlap between fragments exhibits different structure.  
 
5.  In the last step, 3D models are built for each of 100 top-scored combinations of fragments, using 
Modeller 9v33 in a multi-template mode. Each fragment is considered as a single template with restraints 
between residues of each fragment and other residues in the initial model from which that fragment was 
derived. The resulting 100 models are ranked by the MetaMQAPconsII method. 
 
The preliminary results carried out by Zhang and coworkers (http://zhang.bioinformatics.ku.edu/casp8/) 
suggested that out method is among the 10 top 3D prediction servers according to TM-score and hydrogen 
bonds score.  
 
1. Kurowski,M.A. & Bujnicki,J.M. (2003). GeneSilico protein structure prediction meta-server. Nucleic 

Acids Res 31, 3305-7. 
2. Chivian,D., Kim,D.E., Malmstrom,L., Bradley,P., Robertson,T., Murphy,P., Strauss,C.E., Bonneau,R., 

Rohl,C.A. & Baker,D. (2003). Automated prediction of CASP-5 structures using the Robetta server. 
Proteins 53 Suppl 6, 524-33. 

3. Sali,A. & Blundell,T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J 
Mol Biol 234, 779-815. 
 
 

GSmetaDisorder 

Meta-prediction of intrinsic disorder in proteins 

L.P. Kozlowski1, J. M. Bujnicki1,2 
1 - Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell 
Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, 2 - Laboratory of Bioinformatics, and Biotechnology, 

Faculty of Biology, ul. Umultowska 89, 61-614, Poznan, Poland 
lukaskoz@genesilico.pl 

 
Recent studies have revealed that protein regions lacking 3D structure, so called intrinsic disorder regions, 
are very common. They are responsible for many protein functions e.g. phosphorylation, transcriptional 
activation and protein-protein, and protein-DNA binding. The fact that primary structure of ordered and 
disordered regions is dissimilar (different hydropathy, charge and amino acid composition) enables 
prediction of disorder/order state directly from the protein sequence. This have been done using statistical 
methods, artificial neural networks, support vector machines and other approaches. To date, over 20 
disorder prediction methods have been published. The best among them achieve less than 80% accuracy. 
 
In order to increase efficiency and robustness of prediction we have benchmarked 13 disorder predictors 
(DisEMBL, DISOPRED2, DISpro, Globplot, iPDA, IUPred, Pdisorder, Poodle-s, Poodle-l, PrDOS, Spritz, 
VLS2 and RONN) on two datasets. The first one is the last release of the DisProt database, which stores 
experimentally validated disorder-containing proteins (470 proteins) and 96 targets from CASP7. The 
second is culled PDB database employing some restrictions (i.e. length of protein 50-100 amino acids,  R-
factor < 0.2, resolution < 2.0Å ,and sequence identity < 20%), which gave 1147 proteins. Additionally, 
other features of sequence are taken into account: amino acid type and its position into sequence, secondary 
structure prediction (PSIPRED and Jnet) and solvent accessibility (Jnet).  
 
Based on the result of this benchmark we constructed a meta-predictor, which uses as an input predictions 
from the above-mentioned methods and process them using a backpropagation artificial neuronal network 
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with single layer. The method uses 9 amino acids long  sliding window and smoothing filtering  in the final 
step.  
 
Preliminary results suggest that presented meta-server overperforms each of used methods reaching 83% 
accuracy.  
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Three servers (GS-MetaMQAP, GS-MetaMQAPconsI, and GS-MetaMQAPconsII) from our group 
participated in QA prediction in CASP8. All these methods predict both local and global model quality.  
 
MetaMQAP[2] evaluates single protein models. MetaMQAPconsI scores models by comparing a series of 
models with each other. MetaMQAPconsII is a variant of MetaMQAPconsI, which compares all models 
from the query set against 10 representative models from the query set.  
 
MetaMQAP[2] uses a machine learning approach to assess the deviation of C-alpha atoms of all residues in 
the model from their counterparts in the unknown native structure. This method combines the output from a 
number of model quality assessment programs (MQAPs), including VERIFY3D[3], PROSA[4], BALA-
SNAPP[5], ANOLEA[6], PROVE[7], TUNE[8], REFINER[9], PROQRES[10], as well as local residue 
features: secondary structure agreement, solvent accessibility, residue depth. Finally, global deviation is 
calculated in the form of RMSD and GDT_TS values.  
 
MetaMQAPconsI combines MQAPs scores: VERIFY3D, PROSA, BALA, ANOLEA, PROQRES, 
DFIRE[11] and local residue features. In addition, input  models are superimposed in pairs, then residue 
contacts and deviation of the C-alpha atoms of corresponding residues are analyzed. Two independent 
regression predictors were generated. The local predictor inferrs S-scores for each residue in a model, while 
the globals predictor infers the GDT_TS score of the whole model. 
 
MetaMQAPconsII is a variant of MetaMQAPconsI. Here all models are clustered into 10 groups using the 
k-mean approach. The clustering threshold is automatically set to a value that guarantees clustering of  75% 
of initial models. Then, MetaMQAPconsII compares each model to the centroids of these 10 clusters. Thus, 
MetaMQAPconsII is less sensitive to overrepresentation of similar models in the input dataset. 
 
1. Pawlowski,M., Gajda,M.J., Matlak,R. & Bujnicki,J.M. (2008). Meta-MQAP: a meta-server for the 
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3. Sippl,M.J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355-
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Protein contact prediction provides a complementary approach to the information provided by force field 
and sequence alignment based methods for protein fold prediction. While the predictive accuracy is far 
from perfect it can provide valuable information that can be used, for instance, to rank models created by 
other methods. To assess progress made in contact predictions in CASP8 predictions we have used 
identical methods and databases as in CASP7. In the following we briefly describe our method for contact 
prediction by training a Neural Network to classify patterns of contact. The main inputs to the neural 
network are a set of 25 measures of correlated mutation between all pairs of residues in two “windows” 
centered on the residues of interest. The individual pairwise correlations are a relatively weak predictor of 
contact, but by training the network on windows of correlation the accuracy of prediction is significantly 
improved.  
 
Method 
The Psipred4 version 2.3 software is used to generate a prediction for the secondary structure as well as 
giving a pair-wise multiple sequence alignment for the proteins sequence. For each pair of residues in the 
protein sequence we generate a pattern of inputs for a neural network as follows. 
 
Pairwise correlations. The multiple sequence alignment is used to calculate the (mutational) correlation 
between two columns of the multiple sequence alignment. The correlations are calculated as in Göbel et 
al.1, with the minor modification that the Blosum62 matrix rather than that of McLachlan is used to score 
the residue interchanges. Windows of length 5 of consecutive columns are found. For each pair of non-
overlapping windows the 25 correlations between columns of the first window with columns of the second 
are used as inputs to the neural network. The aim is to predict whether the middle residue of the first 
window is in contact with the middle residue of the second. 
 
Residue classes. Residues may be classified as non-polar, polar, acidic, or basic. For a pair of residues there 
are ten possible pair cases. Thus we have ten binary inputs, exactly one of which is set to one to encode the 
residue type of the pair we are attempting to predict on. 
Predicted secondary structure. For a given residue, its predicted secondary structure type is encoded as 
three binary inputs, being either helix, sheet or neither. For a given residue pair that we are attempting to 
predict with, the predicted secondary structure is input for the two residues as well as the two residues that 
are adjacent to them.  
 
Affinity score. A given residue pair is assigned an affinity score based on the type of each of the amino 
acids. This expresses the fraction of times residue pairs of a given type are in contact in a training set of 50 
proteins. 
 
Length of input sequence and residue separation. The length of the sequence and the sequence separation, 
each divided by 1000, are input for the pair we are predicting with.  
 
Network Architecture and Training 
The predictor neural network is a standard feed-forward network, with 56 inputs, ten hidden units, and a 
single output. The expected output is 1 for contacts and 0 for non-contacts.  
    
Proteins were randomly chosen from a representative set of proteins of the Protein Data Bank. The network 
was trained, validated and tested on disjoint sets of 100, 50 and 1033 proteins using back propagation with 
a momentum term with the Stuttgart Neural Network Simulator5.  
  
Testing the Trained Network 
The trained network was tested on a set of 1033 proteins of known structure. An average predictive 
accuracy of 21.7% was obtained taking the best L/2 predictions for each protein, where L is the sequence 
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length. Taking the best L/10 predictions gives an average accuracy of 30.7%. An automated prediction 
server can be found at  

http://foo.maths.uq.edu.au/~nick/Protein/contact.html 
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We describe a novel optimization approach to de novo protein structure prediction that combines iterated 
local search and multi-objective optimization. 
 
One of the fundamental bottle-necks in de novo protein structure prediction is conformational sampling: 
due to the high-dimensional and multimodal nature of the landscapes described by current energy 
functions, even powerful search techniques often converge to local optima and fail in identifying the 
minimum energy structures. One popular approach taken to ameliorate this problem is the generation of a 
large number of decoys, each obtained through a random restart of the search technique used. While this 
usage of random restarts has been shown to be successful in improving the overall search outcome, the 
approach is limited in the sense that restarts are performed independently of each other and that the 
information obtained by previous restarts is not exploited. In our work, we have designed an algorithm that 
maintains an archive of the best structures generated so far, and uses this knowledge to guide future search.   
 
Our method makes use of the principles of iterated local search. Iterated local search is a powerful meta-
heuristic, which is based on two key mechanisms: (i) a local search heuristic is used to locally optimize a 
given solution; and (ii) the optimized solution is perturbed in order to escape local optima; the perturbed 
solution is then further optimized using the local search heuristic. The search heuristic used in our approach 
is the Rosetta2 software for protein structure prediction, and Rosetta can be used to achieve both of the 
above effects, i.e. to perform random restarts and to achieve the perturbation and further optimization of a 
given solution. Specifically, in a given iteration, our algorithm chooses between two different types of 
steps: (i) with probability p, it performs a random restart of Rosetta; or (ii) with probability 1-p, it uses 
Rosetta to resume search near one of the solutions currently in the archive.  The probability p decreases as 
the algorithm progresses.  
 
We find that the quality of a given structure is more reliably assessed using a range of criteria (rather than 
the Rosetta low resolution energy only), and our algorithm therefore employs a multiobjective formulation. 
Specifically, candidate structures are evaluated with regard to four objective functions, namely the Rosetta 
low resolution energy, a short-range and a long-range hydrogen term and the radius of gyration (as 
implemented in Rosetta).  A candidate structure A is said to be dominated by another structure B if A is 
worse or equal than B under all objectives, and if A is worse under at least one objective. At a given 
moment in time, the archive of our method only maintains those solutions that are not dominated by any 
other candidate structure generated so far.  At the end of the run, the algorithm returns the set of structures 
in the final archive (rather than a single solution, as done by traditional scalar optimization techniques).   
 
Experimental results have shown that the algorithm successfully generates decoy structures that are 
significantly lower in energy (and also significantly better with respect to the other three objectives) than 
those obtained from standard runs of the Rosetta method. In the CASP experiment, our multiobjective 
iterated local search was used for predictions in the free modeling category. For each prediction, the 

http://foo.maths.uq.edu.au/%7Enick/Protein/contact.html
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algorithm was run 5 times for 5000 iterations, corresponding to 25000 calls of Rosetta. The final archives 
from all five runs were combined and filtered to exclude dominated solutions.  The Model 1 to Model 5 
submissions were selected from this set using a fully automated technique that considered solutions that 
performed particularly well under specific pairs of objectives.      
 
1. Simons, K.T., Kooperberg C., Huang, E., Baker, D. (1997) Assembly of protein tertiary structures 

from fragments with similar local sequences. J. Mol. Biol.. 268, 209-25. 
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In human expert mode we used results of our two automatic servers COMA and COMA-M as a starting 
point. Both servers are based on a newly developed profile-profile search and comparison method 
(manuscript in preparation). The difference between the two is that for model-building COMA-M can 
combine multiple templates, while COMA is taking just a single best template. The servers are described in 
more detail in a separate abstract.  
 
The degree of human intervention varied depending on the initial assessment of models produced by 
COMA/COMA-M in the context of results by other automatic methods participating in CASP8. If models 
had no obvious flaws and fared well relative to those obtained by other automatic methods, little or no 
human intervention was used. However, if the model assessment was suggesting that COMA/COMA-M 
models could be further optimized, both template selection and/or alignment were manually refined using 
additional techniques as described below.  
 
Template selection 
Template selection was usually based on the consensus results of transitive PSI-BLAST[12] searches using 
the PSI-BLAST-ISS tool[13]. In other words, the most representative structure of the target sequence 
family was considered to be the best template. If there were multiple templates, several structures that 
introduce sufficient conformational variability were selected. In high sequence similarity cases only 
BLAST results were used to choose template(s). When PSI-BLAST-ISS failed to detect any templates, 
those detected by COMA and other automatic servers were used. In cases of multiple templates, the 
selection was an iterative process and the final set of templates was dependent on evaluation of 
corresponding models. 
 
Sequence-structure alignments 
Unless the alignment was trivial, reliably aligned regions were first identified with PSI-BLAST-ISS[13]. In 
parallel, automatic server models were aligned with one of the representative templates using DaliLite[14] 
and all the corresponding pairwise alignments were merged into a single, PSI-BLAST-ISS-like alignment. 
Again, a good agreement between different models was considered to be an indicator of a reliable 
sequence-structure alignment region. For the remaining (unreliably aligned) regions alternative alignment 
variants were evaluated at the level of 3D models and the best variant was used in a final model. 
 
Model construction 
Three-dimensional structures were constructed automatically from sequence-template(s) alignments using 
MODELLER[15]. Residue side chains were positioned with SCWRL3[16]. No further optimization was 
performed.  
 
Model evaluation 
Models based on alternative template sets and/or alternative alignments were assessed by several methods 
including Prosa2003[4] profiles and Z-scores, and visual inspection. Optimization of both the set of 
templates and the sequence-structure alignment was performed in an iterative manner until model scores 
could not be improved anymore and a final model looked acceptable by visual analysis. 
 
1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 
Nucleic Acids Res 25, 3389-402. 
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We have constructed an ensemble of more than one thousand rule sets to participate in the residue-residue 
contact category of CASP. The rule sets were generated by our in-house machine learning system, 
BioHEL1. Three types of input information were used: (1) detailed information of three windows of 
residues centered at specific points within the protein sequence. (2) information about the connecting 
segment between the two target residues and (3) global sequence information. 
 
There are two windows of ±4 residues around the two target residues and one window of ±2 residues 
around the middle point in the chain between the two target residues4. For each residue in all of the three 
windows we included (1) a position-specific scoring matrix (PSSM) profile, computed with PSI-Blast3, (2) 
predicted secondary structure using PSIPRED5, (3) predicted five-state coordination number (CN)6, (4) 
predicted five-state relative solvent accessibility (SA)1 and (5) predicted five-state Recursive Convex Hull 
(RCH)1. CN, SA and RCH were predicted using BioHEL. 
 
The connecting segment is represented by the distribution of amino acids and predicted secondary structure 
states4, as well as the distributions of predicted CN, SA and RCH. The global sequence information 
included the sequence length and the distributions, for the whole sequence, of amino acids and predicted 
SS, SA, RCH and CN, the number of residues of separation between the two target residues4 and the 
contact propensity between the amino acid types of the two target residues7. In total 631 variables were 
used for the training process.  The training process followed the following steps: 
 

1.We selected a set of 2811 protein chains from PDB-REPRDB with a resolution less than 2Å, less 
than 30% sequence identify and without  chain breaks nor non-standard residues. 90% of the 
proteins (~490000 residues) were used for training, 10% for test. BioHEL was trained to predict 
RCH, SA and CN using the same 90% of proteins 

2.For the residue-residue prediction, this 90% was randomly halved, additionally removing any chain 
longer than 350 residues. Still, the training set contained 15.2 million pairs of residues, from 
which less than 2% were real contacts 

3.To create balanced training sets (in terms of contacts/non contacts) we randomly sampled the these 
15.2 million pairs 50 times to create 50 training sets, where each set contained around 300000 
residue pairs with a fixed 2:1 proportion of non-contacts to real contacts. 

4.We run BioHEL 25 times for each training sample with different initial random seeds, thus 
generating an ensemble of 1250 rule sets (50 training samples x 25 seeds) to perform the residue-
residue contact prediction. 

 
1. Stout, M., Bacardit, J., Hirst, D. and Krasnogor, N.. (2008) Prediction of Recursive Convex Hull 
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chains from the protein data bank (pdb). Nucleic Acids Res, 29:219–220. 
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The Jones-UCL group's main efforts in CASP8 were in improvements to our fragment assembly method 
(FRAGFOLD1 ) and a new fully automatic server for protein structure structure prediction and modelling 
(BioSerf). In addition we ran a number of existing servers for disorder prediction (DISOPRED2 2), fold 
recognition (mGenTHREADER 3 ), domain prediction (DomPred 4) and model quality assessment 
(MODCHECK-HD 5  and MODCHECK-Jury). 
 
For CASP8 target domains which we believed could not be reliably predicted using fold recognition 
methods, FRAGFOLD was used to generate up to 5 structures. This approach to protein tertiary structure 
prediction is based on the assembly of recognized supersecondary structural fragments taken from highly 
resolved protein structures using a simulated annealing algorithm. FRAGFOLD4 differs from previous 
versions mainly in the areas of improved long-range hydrogen-bonding and improved fragment selection, 
including a broader range of fragment types and lengths than in previous implementations. A new option to 
constrain distances within a model has also been implemented and used for some multidomain targets. As 
many as 5000 structures were generated for each target domain using a 300 CPU Beowulf cluster, and a 
simple rigid-body structural clustering algorithm used to select the models representing the largest clusters 
of conformations. Submitted predictions were made using little or no human intervention apart from initial 
domain assignment and preparation of input secondary structure and sequence alignment files. 
 
The mGenTHREADER method has been significantly improved since CASP7 (paper in preparation), but 
there are no significant changes in our DomPred and DISOPRED2 servers from the last CASP experiment. 
The two model quality servers are new. The MODCHECK-HD server is intended to rank close to native 
models and is based on a range of detailed atomic preference scores, whereas the MODCHECK-Jury 
method is aimed at selecting models according to the degree of structural clustering. MODCHECK-Jury 
makes use of a very simple superposition jury score and also produces residue-by-residue accuracy 
estimates. 
 
BioSerf, our new fully-automatic protein structure prediction server, was designed to perform structure 
predictions for a protein with any level of homology with known structures. As such, it uses a pipeline 
approach, with multiple potential template candidates identified and aligned using first BLAST, then PSI-
BLAST6. Secondary structure was predicted using PSIPRED7 , and lastly more template candidates were 
collected and aligned via mGenThreader. For each of those steps, trivial homologues with full coverage of 
the target terminated the template search, and a model was created using MODELLER8 . In cases where 
full coverage of the protein was not possible from reasonable confidence template predictions, including 
using multiple template alignments, the remaining fragments (and in some cases, complete proteins split in 
chunks of up to 150 residues) were used as input to FRAGFOLD. Additionally, the group of closest 
homologues were used to predict potential contacts so as to provide an additional energy model term to 
further improve the quality of the ab initio models. These predicted fragments were then clustered, with the 
representative closest to the largest centroid being used as an additional aligned template for the final 
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model prediction. In cases where the entire structure had no suitable templates, multiple candidate 
structures were returned, based on the centroids for the top two clusters, as well as the top scoring models 
for several energy terms. 
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In the first stage all targets were divided into three groups: these with dependable structural templates, these 
with poor and/or fragmentary templates and these for which we decided not to use any templates. The 
classification was based on the results from metaservers and on our analysis of structural consistency of the 
emerging templates. The three groups of targets were processed separately using different modeling 
pipelines. In all cases variants of newly developed CABS-based high resolution lattice modeling tools were 
employed. 
 
For the CM targets large sets of distance restraints were extracted from many (when available) templates 
and weighted by a newly developed procure based on local and global similarities between templates. Next 
Replica Exchange Monte Carlo (REMC) simulations were performed using the CABS engine1. The starting 
replicas were built basing on the templates’ structures. The resulting trajectories were clustered2 and the 
clusters’ centroids were subject to energy minimization3 after the all-atom reconstruction of the lattice 
structures4. Finally, five models were selected basing on the cluster sizes and the energy of the energy-
minimized structured. Thus, this pipeline was somewhat similar to that employed by Kolinski-Bujnicki 
group during CASP62. 
 
The border-line targets, with poor templates were processed using the new CABS-based modeling tool5 
called TRACER. TRACER uses a single template. Projected onto the CABS lattice the template provides a 
multi-featured three-dimensional scaffold, where various local properties of the template structure are 
assigned to the lattice points, including amino acid identities, chain direction, secondary structure 
assignment and hydophobicity profiles. The target chain is allowed to move around the space occupied by 
the template using the CABS force field and the local comparison of template properties and properties of 
the target chain. Thus the TRACER procedure is a unification of a true three dimensional threading with de 
novo modeling and does not require an initial alignment. An optimal (usually fragmentary) alignment of 
the emerging target structure with the template is successively build during the REMC simulations. Fold 
selection and refinement is done in a similar fashion as it was done for the CM targets. 
 

mailto:kolinski@chem.uw.edu.pl
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The template-free de novo modeling also employs the CABS tools. The simulations were done either 
without any distance restraints or with a small number of weak restraints imposed onto strongly predicted 
elements of secondary or supersecondary elements. In the cases of the template-free modeling larger sets of 
clusters from REMC simulations were analyzed and scored in order to detect the most-likely target 
structures. We would like to note that CABS free modeling allows also for dependable folding mechanism 
predictions for small proteins6-7. 
 
In all cases we did not perform any manual alignment adjustments or the expert-based structure corrections. 
The procedures are essentially automated. 
 
1. Kolinski,A. (2004). Protein modeling and structure prediction with a reduced representation.  Acta 

Biochimica Polonica 51, 349-371. 
2. Gront,D. & Kolinski,A. (2005). HCPM – program for hierarchical clustering of protein models. 

Bioinformatics, 21, 3179-3180. 
3. Kmiecik,S., Gront,D & Kolinski,A. (2007). Towards high-resolution structure prediction. Fast 

refinement of reduced models with all-atom force field. BMC Structural Biology  7, 43.  
4. Gront,D., Kmiecik,S. & Kolinski,A. (2007). Backbone building from quadrilaterals. A fast and accurate 

algorithm for protein backbone reconstruction from alpha carbon coordinates. J. Comput. Chem. 28, 
1593-1597. 

5. Kolinski,A. & Gront,D. (2007). Comparative modeling without implicit sequence alignments. 
Bioinformatics 23, 2522-2527. 

6. Kmiecik, S. & Kolinski,A. (2008). Folding pathway of the B1 domain of protein G explored by a 
multiscale  modeling.  Biophys. J.  94, 726-736. 

7. Kmiecik, S. & Kolinski,A. (2007). Characterization of protein folding pathways by reduced-space 
modeling. Proc. Natl. Acad. Sci. USA  104,12330-12335. 
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Correct prediction of residue-residue contacts in template-free targets would bring ab initio protein 
structure prediction a large step forward. The lack of such correct contacts, and in particular long-range 
contacts, is considered the main reason why these methods fail1. Thus residue-residue contact prediction is 
an important bioinformatics research area2 that could help identify the structures that are not reachable by 
homology modeling. 
 
We propose a novel hidden Markov model based method for predicting residue-residue contacts from 
protein sequences that is trained on homologous sequences, predicted secondary structure and a library of 
local neighborhoods (local descriptors of protein structure)3. The structural neighborhoods are composed of 
sets of at least three backbone fragments that are in proximity to each other in space but not necessarily 
along the amino acid sequence. These structural entities thus incorporate short-, medium- and long-range 
contacts between different backbone fragments. We used a library of 7151 commonly recurring local 
descriptors (local descriptor groups) general enough to allow reassembly of the cores of nearly all proteins 
in the PDB. 
 
HMMs are used to model local descriptor groups. Each position in the multiple alignment of structurally 
matching descriptors is modeled as a match state while the rest of the sequence (not matching the local 
descriptor) is modeled by insert states. Some groups may contain fragments of varying length because only 
parts of the fragments structurally match the group according to the defined similarity threshold3. This is 
handled by using delete states that are tied to specific match states. In order to ensure that whole fragments 
are not deleted there are two different types of delete states that are disconnected; delete states that are 
located in the beginning of the fragments and delete states that are located at the end of the fragments. We 
do not expect a significant sequence signal from these structurally unmatched positions, implying that the 
delete states have the same emission probabilities as the insert states.  
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The Viterbi algorithm was used to obtain the most probable alignment between local descriptor groups and 
a target sequence. We found that the best approach to discriminate targets that contain a local descriptor 
and targets that do not was to consider the sum of the log values from the match and delete state 
emissions/transitions only. This eliminates the problem of accounting for different sequence lengths when 
comparing scores from different targets. Each HMM was matched to the target and accepted if the Viterbi 
score was higher than an associated threshold shown to discriminate relevant targets in the training set. 
Contacts were then transferred to the target from the corresponding local descriptor group recognized by 
the HMM. Only contacts between residues located in different backbone fragments were considered. Each 
predicted contact was then given a score equal to the sum of the scores from all HMMs predicting that 
contact. Thus, contacts predicted by many different local descriptor groups were given a higher score than 
contacts predicted by fewer models. For each type of contact (short-, medium- and long-range) we chose 
the Npred = Pct · L best predictions, where L was the sequence length and Pct equaled 0.2, 0.5 or was taken 
from a spline fitting the actual distributions of contacts in proteins with known structure. 
 
1. Floudas,C.A., Fung,H.K., McAllistera,S.R., Mönnigmanna,M. & Rajgariaa,R. (2006) Advances in 

protein structure prediction and de novo protein design: A review Chemical Engineering Science. 61, 
966-988. 

2. Sitao,W., & Yang,Z. (2008) A comprehensive assessment of sequence-based and template-based 
methods for protein contact prediction. Bioinformatics, 24, 924-931 

3. Hvidsten,T. R., Kryshtafovych,A., & Fidelis,K. (2008) Local Descriptors of protein Structure: A 
systematical analysis of the sequence-structure relationship in proteins using short- and long-range 
interactions. Proteins: Structure, Function, and Bioinformatics, In Press. 
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In order to predict the three dimensional structures of all 127 CASP8 targets, we have developed a method 
that is based on global optimization of score functions in three stages of modeling1. For a given set of 
templates, we have considered many alternative alignments assisted by quality assessment. The whole 
procedure is composed of the following 7 steps: 
 
1. Fold recognition: To collect fold candidates of a given target sequence, we considered top scoring 
templates from the meta-server provided by http://bioinfo.pl/~3djury, as well as from the in-house fold 
recognition method called FoldFinder. FoldFinder is a profile-profile alignment method utilizing predicted 
secondary structures. We have used a fold database of 17163 protein chains obtained from PISCES2 at the 
95% sequence identity level. With these templates (we have considered up to 25 top-scoring templates), we 
performed a structural clustering from which typically 5 to 10 sets (lists) of templates are generated. These 
lists are the input to the following procedure. 
 
2. Multiple sequence/structure alignment by MSACSA3: We perform multiple sequence/structure 
alignment for each template list obtained from the fold recognition step. Unlike the other heuristic 
(progressive) alignment methods popular in the literature, we have applied a more thorough global 
optimization method to an in-house consistency-based scoring function similar to the COFFEE by using the 
conformational space annealing4 (CSA) method. We have constructed a pair-wise restraint library 
generated from profile-profile alignment between the query sequence and template sequences and 
structure-structure alignment between templates using TM-align5. Typically, a total of 100 alignments are 
generated for each list. 
 
3. First-level quality assessment to screen high-scoring alignments: For each alignment, we generate 25 
protein 3D models using MODELLER6 and these models are used to measure the quality of the alignment. 
For the quality assessment, we trained a support vector regression machine using feature vectors composed 
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of MODELLER energy, DFIRE energy, secondary structure propensity, solvent accessibility, 
hydrophobicity and in-house implementation of selected TASSER energy terms. For training, decoy 
structures generated from our CASP7 models are used. Typically, a total of 10-20 alternative alignments 
are chosen from the whole lists. 
 
4. 3D structure modeling by MODELLERCSA7 using the alternative alignments: 100 3D structures of a 
target protein are generated for each alignment by optimizing the MODELLER energy function using the 
CSA method. The resulting 1000-2000 models are input for the second-level quality assessment in the 
following step. 
 
5. Second-level quality assessment and structure clustering to select the best 5 models: We perform the 
identical quality assessment used in the step 3 to select the best alignment which produces best models on 
average according to the quality assessment score. The best 5 models are selected by structure clustering of 
the 100 models from the winning alignment. 
  
6. Re-modeling of insertion regions by a loop modeling method that utilizes fragment assembly and 
analytical loop closure: Insertions were identified from the sequence alignment and modeled so that the 
loop closure constraint is satisfied and deviation from fragment structures is minimized simultaneously. 
DFIRE score was used to select the best loop model. 
 
7. Side-chain modeling of the five selected models by ROTCSA: For side-chain modeling of each selected 
model, first, a rotamer library is constructed based on the consistency of the side chains from the final 100 
models obtained in the step 4. Into this library, we add a backbone dependent and sequence specific 
rotamer library similar to the SCWRL3.08. Finally, using the CSA, we optimize an in-house scoring 
function which contains energy terms from SCWRL and DFIRE. 
 
1. Joo,K., Lee,J., Lee,S., Seo,J., Lee,S.J. & Lee,J. (2007) High-accuracy template based modeling by 

global optimization. Proteins, 69(S8), 83-89. 
2. Wang,G. & Dunbrack, Jr. R.L. (2003) PISCES: a protein sequence culling server. Bioinformatics, 19, 

1589-1591. 
3. Joo,K., Lee,J., Kim,I., Lee,S.J. & Lee,J. (2008) Multiple sequence alignment by conformational space 

annealing. Biophys J., published online. 
4. Lee,J., Scheraga,H.A., & Rackovsky,S. (1997) New optimization method for conformational energy 

calculations on polypeptides: Conformational space annealing. J. Comput. Chem. 18, 1222-1232. 
5. Zhang,Y., & Skolnick,J. (2005) TM-align: A protein structure alignment algorithm based on TM-

score. Nucleic Acids Res. 33, 2302-2309. 
6. Sali,A. & Blundell,T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. 

Mol. Biol. 234, 779-815. 
7. Joo,K., Lee,J., Seo,J., Lee,K., Kim,B. & Lee,J. All-Atom Chain-Building by Optimizing MODELLER 

Energy Function Using Conformational Space Annealing. Submitted. 
8. Canutescu,A.A., Shelenkov,A.A. & Dunbrack,Jr. R.L. (2003) A graph theory algorithm for protein 

side-chain prediction. Protein Science 12, 2001-2014. 
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In CASP8 we submitted predictions for all the targets by processing them through three different pipelines.  
The Template-based Pipeline processed all the targets with PSI-BLAST1 E-value below 0.01 or 3D-Jury2 
score above 45.  The Model-selection Pipeline processed all the other targets.  In addition, a separate 
technique was tested on the refinement targets.  Nearly all the steps in the pipelines are amenable to 
automation, and we hope to run them under the server category at future CASPs. 
 
Template-based Pipeline – The top scoring PSI-BLAST or 3D-jury hit was used as our single template.  
We performed minor manual adjustments on the raw alignments for most targets.   Regrettably, these 
adjustments eventually proved to be deteriorating with two exceptions: 1) A correction of an obvious 
alignment error in a membrane protein targets. 2) Occasional elongation of the alignment on either side that 
was missed due to the local nature of PSI-BLAST.  We modeled de novo the gaps in the alignment, as well 
as regions that had very low similarity to the template with our novel loop-building protocol.  This protocol 
assembles loops from fragments chosen according to backbone conformation propensity3.  The resulting 
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ensemble of loops was clustered and scored with the MESHI4 force field.  The lowest energy 
representatives were incorporated into the final models.  
 
Model-selection Pipeline – We derived a composite and optimized energy function for the ranking of 
models in cases where a template to the target sequence cannot be reliably determined.  The new energy 
function ranked the models submitted by the participating servers.  Selected models were further refined by 
minimization under the knowledge-based potential of ENCAD5 prior to submission.  
 
Utilizing one of the most efficient machine learning approaches that prevents over-fitting the data – 
Support Vector Regression (SVR), we derived and tested a set of weights for a number of established 
energy functions and their individual terms such that the resulting composite energy function correlates 
best with the GDT_TS scores of the models. We used both low- and high-resolution knowledge-based and 
molecular dynamic atomistic potentials from ENCAD5, Rosetta6 and MESHI4.  We trained and tested our 
SVR using cross-validation on a representative data set from CASP7 targets (112 targets, 16410 server 
models).  We found that a major part of the discriminatory power of the learned composite energy function 
comes from the following four energy terms: Rosetta environment score, MESHI full solvation score, 
Rosetta de novo low-resolution centroid score, and ENCAD knowledge-based score. 
 
Model Refienement – We tested direct energy minimization under various potentials as a mean for further 
refining the proposed models.  The most promising potential was KB012, the ENCAD differentiable 
knowledge-based potential, which was used to generate the #1 submitted models.  KB01 is a mean-field 
approach for the atomic-pair interactions in proteins.  Training on the CASP7 refinement category led to 
improved GDT_TS score on all targets.  
 
1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman,DJ (1997) Gapped 

BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 
25:3389-3402. 

2. Ginalski K, Elofsson A, Fischer D, and Rychlewski L (2003) 3D-Jury: a simple approach to improve 
protein structure predictions. Bioinformatics. 19:1015-1018.  

3. Shortle D. (2003) Propensities, probabilities, and the Boltzmann hypothesis. Protein Sci. 12:1298-
1302. 

4. Kalisman, N., Levi, A., Maximova, T., Reshef, D.,  Zafriri-Lynn, S., Gleyzer, Y., Keasar, C. (2005) 
MESHI: a New Library of Java Classes for Molecular Modeling. Bioinformatics. 21:3931-3932. 

5. Summa, C. M., Levitt, M., (2007) Near-native Structure Refinement Using in Vacuo Energy 
Minimization. Proc. Natl. Acad. Sci. U.S.A. 104:3177-3182. 

6. Rohl CA, Strauss CE, Misura KM, Baker D. (2004) Protein structure prediction using Rosetta. 
Methods Enzymol. 383:66-93. 
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LOOPP is a homology modeling server. It is based on a template detection algorithm learned by 
mathematical programming techniques that combines a large number of signals and significantly enhances 
typical detection capabilities (PSI-BLAST) by about 50 percent. It also uses a novel algorithm for 
alignment, and it finally builds atomically detailed models with Modeller (using the identified templates 
and our alignments of the target sequence into them). The strength of the algorithm is (perhaps) in the very 
large training and test sets that we developed and use. Weaknesses include misses of some trivial PSI-
BLAST signals (the training emphasizes difficult signals). The algorithm is fast and takes (at most) hours to 
build about 20 models per proteins. Assessment of final models is done by a comprehensive score which is 
a combination of signals designed by a similar technique to the approach we developed for template 
detection.   
 



58 

 
Los_Alamos_PFIG 

Prediction of Functional Sites in Predicted Protein Structures Using Dynamics 
Perturbation Analysis  

J. D. Cohn1, M. E. Wall1,2,3 
1 Computer, Computational, and Statistical Sciences Division, 2 Bioscience Division, and 3 Center for 

Nonlinear Studies 
Los Alamos National Laboratory, Los Alamos, NM 87505 USA 

mewall@lanl.gov 
 
Dynamics perturbation analysis (DPA)1-3 finds regions in a protein structure where proteins are “ticklish,” 
i.e., where interactions cause a large change in protein dynamics. Such regions were shown to predict the 
locations of native binding sites in a docking test set3. Recently, we showed that an accelerated algorithm, 
Fast DPA, also predicts the locations of native binding sites4. Fast DPA is highly scalable and takes only a 
few minutes to predict functional sites in a typical protein domain. We have also demonstrated its use for 
high-throughput prediction of functional sites in 50,000 protein domains5. Although we have demonstrated 
that Fast DPA can be used as a part of genome-wide protein structure prediction pipelines, the performance 
of the method for prediction of functional sites in predicted structures was untested. 
 
We submitted 127 Fast DPA predictions for evaluation in the CASP8 human function prediction 
experiment.  Our implementation of Fast DPA was similar to a previous application4. Given an input PDB 
structure, MSMS6 was run to generate test points on the surface of the protein. Protein vibrations were 
modeled using an Elastic Network Model7, with a cutoff distance for interactions between protein Cα atoms 
of 8.5 Å. The cutoff distance between a test point and the protein was 14 Å, and the interaction strength 
between a test point and protein atoms was 12 times the strength of the interaction between protein atoms. 
For each test point, the relative entropy Dx was calculated between protein conformational distributions 
with and without the test point interaction. 
 
To predict functional sites, the distribution of Dx values was fit to an extreme value distribution. Points with 
Dx values in the upper 4% of the distribution were selected and spatially clustered using the OPTICS 
algorithm8 with a distance threshold of 6 Å and a minimum of 3 points per cluster. Cα atoms within 6 Å of 
any point in a cluster were selected and were used to define predicted functional sites. 
 
Although our predictions were submitted as human function predictions, we used an automated method, 
which is more in the spirit of the server prediction category. We implemented Fast DPA as in Ref. [4] to 
analyze models 1-5 predicted by the BAKER-ROBETTA server for the CASP8 experiment. Predictions in 
CASP format were prepared by listing residues from the predicted functional sites for model 1 in the 
“Binding site” field.  In addition, we counted the total number models for which each residue was included 
in the predictions.  The resulting counts were listed in the “Comment” field as a measure of confidence for 
each predicted residue in a binding site. 
 
1. Ming D. & Wall M.E. (2005). Quantifying allosteric effects in proteins. Proteins 59,697-707. 
2. Ming D. & Wall M.E. (2005). Allostery in a coarse-grained model of protein dynamics. Phys Rev Lett 

95,198301. 
3. Ming D. & Wall M.E. (2006).  Interactions in native binding sites cause a large change in protein 

dynamics.  J.  Mol. Biol.  358,213-223. 
4. Ming D., Cohn J.D. & Wall M.E. (2008).  Fast dynamics perturbation analysis for prediction of 

functional sites.  BMC Structural Biology 8,5. 
5. Cohn J.D., Ming D. & Wall ME. (2008). Prediction of Functional Sites in SCOP Domains using 

Dynamics Perturbation Analysis. AFP-Biosapiens 2008, July 18--19, Toronto, Canada. Extended 
abstract available at http://precedings.nature.com/documents/2209/version/1  

6. Sanner M.F., Olson A.J. & Spehner J.C. (1996). Reduced surface: an efficient way to compute 
molecular surfaces. Biopolymers 38,305-320. 

7. Atilgan A.R., Durell S.R., Jernigan R.L., Demirel M.C., Keskin O. & Bahar I. (2001). Anisotropy of 
fluctuation dynamics of proteins with an elastic network model. Biophys J  80,505-515. 

8. Ankerst M., Breunig M.M., Kriegel H.P. & Sander J. (1999). OPTICS: ordering points to identify the 
clustering structure. Proceedings of the ACM SIGMON International Conference on Management of 
Data 1999, 28,49-60. 
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The basic protocol for our CASP8 server (MARINER - MinnesotA pRotein modelINg servER) was to 
select a set of templates using profile and secondary structure methods, perform multiple sequence as well 
as structure alignments, followed with a model building step.  
 
Given a target protein sequence, we primarily use DOMPro3 to identify the possible domain boundaries, 
which are further verified and changed based on domain prediction results using results of several other 
domain prediction methods. Each predicted domain for the target, is treated individually, where we predict 
the secondary structure using YASSPP1. (YASSPP uses a two level kernel based method to determine the 
secondary structure elements for the  protein sequence.).   
 
Profile-profile alignment that incorporates both YASSPP  and PSI-BLAST profiles is used to identify the 
top template candidates. The template database for this search was restricted to a set of 9000 non-redundant 
proteins (with pairwise sequence identity less than 30%). Using the identified top templates, a multiple 
structure alignment was constructed from the template structures (using MUSTANG). The resulting 
multiple structure alignment was used to induce a multiple sequence alignment. The target sequence was 
then aligned to the induced sequence alignment, and pairwise alignments between the set of template-target 
sequences were used to force the final modeling by MODELER. The target models were then refined using 
side-chain refinement algorithm SCWRL. The model quality was evaluated using MODELER's output. It is 
well known that using multiple templates lead to improvement of structure prediction results. With this 
server, we wanted to test a simple way of selecting multiple templates and integrating with  a multiple 
structure alignment program. The potential limitation of this server is to have a single protocol for all target 
proteins, irrespective of the hardness of the target. In the future, we intend to refine our selection scheme 
and improve the sensitivity of the multiple structure alignment program by additional constraints, specific 
to modeling. 
We also tried selection of templates using direct profile-based kernel methods2,3.  We  classify each of the 
domain sequences in one of the 945 fold classes obtained from the SCOP (Version 1.69) database. We 
specifically use the Smith-Waterman profile based kernel function with optimized parameters to learn 945 
one-versus-rest discriminatory models. For every target domain sequence we  classify the domain into one 
of the fold classes. To allow for possibility of errors at this classification stage we pick the three top scoring 
fold models. Having selected the top scoring fold classes, which by definition have a tendency to share 
similar protein structure irrespective of the sequence identity, we select a set of templates from these fold 
classes. These templates are selected with Smith-Waterman alignment algorithm using position specific 
scoring matrices.  
 
1. Karypis, G. (2006). YASSPP: Better Kernels and Coding Schemes Lead to Improvements in SVM-

based Secondary Structure Prediction. Proteins: Structure, Function and Bioinformatics. 64(3), 575-586. 
2. Rangwala, H.S. and Karypis, G. (2005). Profile Based Direct Kernels for Remote Homology Detection 

and Fold Recognition. Bioinformatics. 31(23), 4239-4247. 
3. Cheng, J., Sweredoski, M., and Baldi, P. (2006). DOMpro: Protein Domain Prediction Using Profiles, 

Secondary Structure, Relevant Solvent Accessibility, and Recursive Neural Networks. Data Mining and 
Knowledge Discovery. 13(1), 1-10. 

4. Rangwala, H. S. and Karypis, G. (2006). Building Multiclass Classifiers for Remote Homology 
Detection and Fold Recognition. BMC Bioinformatics (under review). 

 
 



60 

Mariner1 

Disordered Region and Functional Site Prediction Using MONSTER/PROSAT 

H. Rangwala1 and G. Karypis2  
1 - Computer Science/Bioinformatics, George Mason University, Fairfax,VA 22030 

 2 - Computer Science, University of Minnesota, Minneapolis, MN 55455 
rangwala@cs.gmu.edu 

 
Availability:  http://bio.dtc.umn.edu/monster 
  http://bio.dtc.umn.edu/prosat 
 
We predicted residues of the protein to be in the disordered region prediction or being functionally active 
(i.e., have a tendency to bind to small molecules or ligands) using PSI-BLAST derived profile information 
for a local set of residues within a discriminatory learning framework. 
 
For effective development and training of  residue-wise prediction models, we have developed a general 
purpose  protein residue annotation toolkit called PROSAT. This toolkit uses a  support vector machine 
framework and is capable of predicting both a  discrete label or a continuous value.  PROSAT allows use of 
any type  
of sequence information with residues for annotation. For every residue, PROSAT encodes the input 
information from the residue and its neighbors. We introduce 
a new flexible encoding scheme that differentially weighs information extracted from neighboring residues, 
based on the distance to the central residue. PROSAT also uses an exponential  second-order kernel 
function shown to be effective in capturing pair-wise interactions between residues, and hence improve the 
classification and regression performance for the annotation problems. 
 
To the best of our knowledge, PROSAT is the first tool that is designed to allow life science researchers to   
quickly and efficiently train SVM-based models for annotating protein residues with any desired property.  
The  kernel functions implemented are also optimized for speed, by utilizing fast vector-based operation 
routines within the CBLAS library. 
 
The dataset used for training the disordered region prediction model was identical to the one used for the 
DisPro3 program. This dataset consisted of 723 sequences (215612 residues) with the maximum pairwise 
sequence identity being 30%. The ligand-binding prediction model was trained using 400 sequences 
derived from the PDBBind4 database with maximum pairwise sequence identity being 40%. This dataset 
was used in our recent work on homology modeling of ligand-binding specific regions1. Predictions for the 
disordered prediction,  and ligand binding predictions can be accessed via our web server called 
MONSTER (http://bio.dtc.umn.edu) or by training models using the PROSAT toolkit. 
 
MONSTER is a server for predicting the local structure and function properties of protein residues. 
MONSTER provides residue-wise annotation services that include 
secondary structure, transmembrane-helix region,  disorder region, protein-DNA binding site, ligand-
binding site, local structure alphabet,  solvent accessibility  
surface area, and residue-wise contact order  prediction. 
 
1. Kauffman C., Rangwala, H., and Karypis, G. (2008). Improving Homology Models for Protein-Ligand 

Binding Sites. Proceedings LSS Computational Systems Biology Conference. 211-222. 
2.  Rangwala H., Kauffman C., and Karypis G. (2007).  A generalized framework for protein sequence 

annotation. Proceedings of the NIPS workshop Machine Learning in Computational Biology, Whistler, 
Canada. Available at http://www.cs.umn.edu/~karypis 

3.   J. Cheng, M. Sweredoski, and P. Baldi. Accurate Prediction of Protein Disordered Regions by Mining 
Protein Structure Data, Data Mining and Knowledge Discovery, vol. 11, no. 3, pp. 213-222, 2005 

4. Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. "The PDBbind Database: Methodologies and 
updates", J. Med. Chem., 2005; 48(12); 4111-4119. 
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Manual predictions were submitted in the disorder prediction (DR) category using the DISOclust method1. 
The same protocol used for the DISOclust server predictions was followed, however, in this case all server 
models were used to produce predictions rather than just those obtained from the nFOLD3 server. For each 
target, the tarball containing all CASP8 server models was submitted to the ModFOLD server2 and the 
DISOclust option was selected. The resulting predictions were then uploaded using the CASP8 manual 
submission form.  
 
Quality assessment (QMODE1) was carried out for all server models using ModFOLD version 2.0. This 
novel method attempts to combine the best features of the ModFOLD and ModFOLDclust methods2,3. 
ModFOLDclust is more accurate for ranking multiple models than ModFOLD, however it cannot produce a 
score for a single model as it relies on clustering with other models. Conversely, whilst ModFOLD can 
produce a score for a single model it is generally less accurate and does not provide per-residue accuracy 
predictions. Version 2.0 of the ModFOLD method combines the 6 scores from the ModFOLD method with 
the clustering score from ModFOLDclust using an artificial neural network, producing a single score for 
each model. The beta version of the ModFOLD 2.0 server is now being developed, which is able to carry 
out QMODE2 predictions on either single or multiple models. Each model is firstly analysed using 
ModFOLD version 1.1 and then it is compared with models obtained from the nFOLD3 server using the 
ModFOLDclust method. The combined prediction scores are then returned to the user. 
 
For the tertiary structure (TS) category, manual predictions were made purely using ModFOLD version 2.0 
for model selection. The top five server models, according the ModFOLD 2.0 ranking, were selected and 
submitted as TS predictions. The only modifications made to the models were in cases where the full 
backbone did not exist, in which case the program BBQ4 was used to reconstruct the chain. In addition, for 
each model the ModFOLDclust predicted per-residue error was added into the B-factor column for each set 
of ATOM records. 
 
1. McGuffin,L.J. (2008) Intrinsic disorder prediction from the analysis of multiple protein fold 

recognition models. Bioinformatics. 24, 1798-1804. 
2. McGuffin,L.J. (2008) The ModFOLD Server for the Quality Assessment of Protein Structural Models. 

Bioinformatics. 24, 586-587. 
3. McGuffin,L.J. (2007) Benchmarking consensus model quality assessment for protein fold recognition, 

BMC Bioinformatics. 8, 345. 
4. Gront,D., Kmiecik,S., Kolinski,A. (2007) Backbone building from quadrilaterals: a fast and accurate 

algorithm for protein backbone reconstruction from alpha carbon coordinates. J Comput. Chem. 28, 
1593-1597. 
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Novel fold topologies that are not yet represented in the PDB are often found in large macromolecular 
complexes or membrane proteins outside individual soluble domains. Structure determination is 
challenging for such proteins as many of these systems evade crystallization, alternative approaches such as 
cryo-electron microscopy or EPR spectroscopy yield low-resolution or sparse data sets, and these systems 
are too large for computational de novo protein structure prediction. The presented algorithm determines 
tertiary structures from sequence by assembling predicted secondary structure elements (SSEs) of α-helices 
and β-strands in space. This method seeks to overcome size and complexity limits of previous approaches 
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by discontinuing the amino acid chain in the folding simulation and limiting the sampling of flexible loop 
regions. Employing a Monte Carlo1 procedure, the sampling trajectory is guided by knowledge based 
potentials that evaluate amino acids' pair interaction and environment, SSE packing, loop closure, and 
protein compactness. The method is tailored to be used in conjunction with low-resolution or sparse 
experimental data sets which often provide more readily restraints for regions of defined secondary 
structure. 
 
The method was used to produce models for given target sequences. The submission candidates were pre 
selected from these models based on low energy and formation of tight clusters. This was followed by 
model completion protocol using Rosetta2 to add loops and side chains to the submission candidates. 
 
Three secondary structure prediction methods, PSIPRED3, SAM4 and JUFO5, have been equally weighted 
to achieve a consensus three state secondary structure prediction. Stretches of sequence with consecutive α-
helix or β-strand predictions above a given threshold were identified as α-helical and β-strand SSEs.  
 
The predicted SSEs were then passed to the assembly protocol. The assembly method is a simulated 
annealing Monte Carlo minimization employing the Metropolis criterion6. The following Monte Carol steps 
are utilized to generate new protein models throughout the minimization process: SSEAdd:  A selected SSE 
from the predicted SSEs is added to the protein model. SSERemove: A selected SSE is removed from the 
protein model. SSESwap: Two selected SSEs are exchanged. SSERotate: A selected SSE is rotated along an 
internal axis. SSETranslate: A selected SSE is translated along an internal axis. SSETransform: A small 
rotation and translation is applied to a SSE in a single step. SSEFlip: A selected SSE is inverted in the 
direction of its main axis. One trajectory consists of 10,000 steps.  

The assembly protocol was used to create 50,000 models. From this a group of submission candidates were 
selected. The best model by energy and the model closest to the top ranked BIOINFO7 homology model by 
C-alpha RMSD were immediately chosen. In addition the best 10,000 models by energy were clustered 
using the statistical package R8. Clusters were calculated according to C-alpha RMSD1009 using average 
linkage. Between ten and twenty of the largest clusters were chosen, and the cluster center and the lowest 
energy model from each cluster were selected for the loop building and high resolution refinement. A last 
candidate was determined by running mammoth10 over models from the selected clusters against a ~1800 
structure database (culled by PISCES11) and choosing the best by Z-score. 
 
The models have been completed by applying Rosetta’s loop building protocol which generated up to 1,000 
models for each pre selected model. All models were subjected to high resolution refinement by 
undergoing eight iterations of alternating gradient based backbone minimization and side chain repacking 
in Rosetta. From the resultant models for each candidate, the best model by Rosetta score was selected for 
final submission. A fifth model was chosen at the submitter’s discretion.  
 
1. Metropolis, N. & Ulam, S. (1949). The Monte Carlo method. J Am Stat Assoc 44, 335-41. 
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4. Karplus, K., Katzman, S., Shackleford, G., Koeva, M., Draper, J., Barnes, B., Soriano, M. & Hughey, 
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Function and Bioinformatics 61, 135-142. 
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We predicted disordered regions in proteins by using meta prediction system named metaPrDOS1. This 
prediction system comprises two main steps. In the first step, an input sequence is submitted to each 
disorder predictor, and prediction results from all predictors are collected. We used seven predictors: 
PrDOS2, DISOPRED23, DisEMBL4, DISPROT (VSL2P)5, DISpro6, IUpred7 and POODLE-S8. Each 
predictor will perform its own prediction for each residue, and the result is obtained as a disorder tendency. 
In the second step, the meta predictor integrates the prediction results and determines the disorder tendency 
for each residue. Thus, the dimension of the input vector for meta predictor corresponds to the number of 
component predictors. We adopted the support vector machine (SVM) as the meta predictor. Finally, the 
decision value of the SVM is scaled from 0.0 to 1.0, and it is returned as a prediction result. 
 
1. Ishida, T. and Kinoshita, K. (2008) Prediction of disordered regions in proteins based on the meta 
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score matrices. Proteins, 53, 573–578. 
4. Linding R, et al. (2003) Protein disorder prediction: implications for structural proteomics. Structure, 

11, 1453–1459 
5. Peng K, et al. (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 

7, 208. 
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METATASSER employs the 3D-jury1 approach to select threading templates from SPARKS22, SP33 and 
PROSPECTOR_34, which provide aligned fragments and tertiary restraints as an input to TASSER5. In our 
implementation of the 3D-jury approach, the ten top-scoring templates from each threading methods are 
compared with each other using the structural alignment method TM-align6 with the TM-score7 used as the 
similarity measure. For Medium/Hard targets, in addition to the tertiary restraints from templates, restraints 
derived from predicted supersecondary structures chunks are used8. In TASSER5, the template derived 
continuous fragments blocks are kept rigid and are off-lattice to retain their geometric accuracy, while 
unaligned regions are modeled on a cubic lattice by an ab initio procedure and serve as linkage points for 
rigid body fragment rotations. Parallel Hyperbolic Monte Carlo (MC) sampling (PHS)9 is used to explore 
conformational space by rearranging the continuous fragments excised from the templates. Conformations 
are selected using an optimized force field that includes knowledge-based statistical potentials describing 
short-range backbone correlations, pairwise interactions, hydrogen-bonding, secondary structure 
propensities, and consensus contact restraints. Multiple independent TASSER simulations are performed 
for each target sequence and structures are clustered using SPICKER10. The top five cluster centroids 
selected from each of the simulations are ranked using TASSER-QA11. The top five ranked cluster 
centroids are submitted as final models after building the side-chains using PULCHRA12. 
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Recently developed Protein Folding Shape Code (PFSC) is a powerful tool for protein structure 
comparison.1  In the PFSC approach, a set of 27 PFSC vectors is mathematically derived from an enclosed 
space mapping all possible folding shapes of five successive C� atoms.  With PFSC, any protein 3-D 
structure is able to be described with one-dimensional string, which represents the changes of folding 
structures from N-terminus to C-terminus along protein backbone, including regular secondary and 
irregular tertian structures.  
 
Based on the PFSC, the protein structures are able to be compared with alignment of one-dimension folding 
shape strings, which is called as Protein Folding Shape Alignment (PFSA).  In the PFSA, all global and 
local structures of protein will treated with equal weight.  The algorithm of alignment will be utilized to 
evaluate the similarity or dissimilarity of protein structures.  Therefore, ambiguous procedure of 
superposition of 3D structures will be avoided.  The similarity score will be obtained as global 
measurement and the detail local structure comparison will be displayed by one-dimension folding shape 
strings for each residue.  
 
With PFSA, the predicted protein structures are compared with the target protein in CASP8.  The score of 
PFSA ranks predicted protein structures according with structural global similarity.  The local structures are 
able to be compared with PFSC alignment table, and the structural similarity and dissimilarity are able to 
be displayed in detail on residue-residue level.  
 
1. Yang, J. Comprehensive description of protein structures using protein folding shape code. Proteins 

2008;71.3:1497-1518. 
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Our goal during the CASP8 experiment was to combine "ItFix" modeling tools to refine and corroborate 
template-based models created using RAPTOR1 and when no templates were available, to generate ab 
initio structures. The modeling tools include a Ca-level statistical potential, trimer sampling, and iterative 
fixing for the prediction of secondary structure. In the ItFix algorithm, secondary and tertiary prediction is 
integral to and a consequence of the folding process. Hence, the algorithm may share some benefits that 
real proteins gain by folding along a robust and efficient pathway. When RAPTOR produced multiple 
models of similar energy, the ItFix ab initio folding method provided additional information for selecting 
the best model by comparing the secondary structure and 3D contacts determined from ab initio simulations 
with the respective secondary structure and contacts of each RAPTOR-generated model. An important 
aspect of our strategy was to analyze the RAPTOR structures and determine if and how much ab initio 
folding was necessary for each target sequence, thereby maximizing the utilization efficiency of available 
resources. We could then determine whether a template-based model needed some specific refinement or 
whether ab initio folding was necessary for structure prediction. 
 
The ItFix refinement protocol for refining the RAPTOR model focused primarily on regions where the 
template modeling was presumed to be least accurate (e.g., at insertions). The refinement operation 
typically consisted of breaking the chain inside the misaligned region and then subjecting that same region 
to ab initio folding with a constraining term added to the energy function to reconnect the broken ends of 
the chain. Importantly, the ItFix conformation-sampling tools allowed a high level of flexibility in sampling 
chain conformations. For example, if the confidence in the secondary structure prediction was high, the 
backbone sampling was made contingent on that secondary structure for maximal efficiency of 
conformational search, while allowing flexibility when warranted. 
 
Allowing flexibility in the ItFix conformational sampling protocol was equally useful when RAPTOR was 
unable to produce a template-based model for a given sequence, and the ItFix ab initio folding tools were 
necessary. When the PSIPRED secondary structure prediction for the target sequence yielded a very high 
confidence prediction at a given position, we fixed the conformational sampling at that position to retain 
the predicted secondary structure, while leaving all other positions open to search all secondary structure 
types. The ItFix ab initio folding algorithm then allowed the unknown secondary structures to be 
determined through successive rounds of folding simulations. This iterative process produced a folding-
enhanced secondary structure for the given sequence, along with an ensemble of tertiary structures from 
which a predicted tertiary structure was chosen. 
 
Our statistical potential includes only main chain heavy atoms and side chain Ca atoms2. In addition to 
amino acid type, the statistical potential depends on secondary structure and side chain orientation. This 
energy function is minimized using a Monte Carlo Simulated Annealing algorithm in which the elementary 
moves involve the sampling of one pair of ����backbone torsional angles at randomly chosen positions. 
These angles are selected from a library of trimers that match the target amino acid sequence and that 
satisfy any specified secondary structure. To enhance the number of trimers, we generate a multiple 
sequence alignment (MSA) for the target sequence by performing a BLAST search of the protein sequence 
database for amino acid sequences that are homologous to the target. Amino acids types that occur 
frequently at a position in the MSA are added to a substitution matrix of allowed amino acids at that 
position. This process increases the diversity of angles to be sampled and also improves the distribution of 
secondary structures within the fragment library. As such, the use of MSA's is an invaluable enhancement 
to the accuracy of both secondary and tertiary structure predictions. 
 
1. Xu, J., Li, M., Kim, D., and Xu, Y. (2003) RAPTOR: optimal protein threading by linear 
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2139. 
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Predictions were submitted in the quality assessment (QA) category using the ModFOLD server1. The 
server includes two different methods: ModFOLD, which was used for QMODE1 predictions and 
ModFOLDclust which was used for QMODE2 predictions. 
 
The original ModFOLD protocol combined scores obtained from the ModSSEA method2, the 
MODCHECK method3 and the two ProQ methods4 using a neural network trained with the TM-score5. The 
latest implementation of the ModFOLD method (version 1.1) has been re-trained and now includes two 
additional secondary structure scores, similar to those used by Eramian and colleagues6, as inputs to the 
neural network. 
 
The server also includes an option for clustering multiple models using the ModFOLDclust method. The 
method carries out pairwise comparisons of models in order to produce both global and local predictions of 
model accuracy. The global clustering score is based on the 3D-Jury method7, whereby each model is 
compared to every other model and the average structural similarity score is calculated. However, in this 
application, the TM-score is used for pairwise comparisons, with a score cut-off of >0.2. This emulation of 
the 3D-Jury score has been previously benchmarked on the set of CASP7 server models and was shown to 
significantly outperform every method tested for the selection of the highest quality models2.  
 
In addition to the global clustering score, the ModFOLDclust method incorporates the scoring of the local 
model quality on a per-residue basis. The local model quality is evaluated by using a score similar to the 
average S-score8, which was originally used for model evaluation in the 3D-SHOTGUN method 9 and was 
more recently benchmarked using the Pcons server10. The idea in this implementation is to reuse each 
pairwise model superposition, carried out in the calculation of the global score, in order to evaluate the 
local structural conservation of each residue. Here, the S-score is used to evaluate residues that are within 
3.9Å according to pairwise TM-score superpositions, where the TM-scores >0.2. The S-score is defined as: 
Si = 1/(1+(di/d0)2), where Si ranges from 0 to 1, di is the distance between structurally aligned residues and 
d0 is the distance threshold (3.9). An Si score of 0 is given if di >3.9Å. The S-scores for each residue are 
then summed and the mean score is taken. The mean S-score for each residue is then converted to the 
predicted distance from the native structure, by simply rearranging the equation: di = d0√((1/Si)-1).  
 
The ModFOLD web server is available at the following URL:  
http://www.reading.ac.uk/bioinf/ModFOLD/ 
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The correct identification of near-native structures from a large pool of previously generated decoys is an 
important step in most protein structure prediction methods. In the case of globular proteins one expects 
that the closer the predicted structure to the native one (i.e., the smaller the corresponding RMSD) the 
higher its stability. Thus, the quantitative assessment of the relative stability of the predicted protein 
structures, e.g., against gradual heating by all-atom molecular dynamics (MD) simulations, provides an 
alternative for ranking the quality of these structures. We have used this approach to develop and 
implement the MD-Ranking (MDR) method. MDR was tested by us in the CASP8 competition as part of 
our MUFOLD-MD server. 
 
Our MUFOLD-MD server for predicting 3D structures of a target protein, using as input its primary 
structure (amino acid sequence), has two interconnected modules. The 1st one uses the publicly available 
Rosetta software1-4 to generate up-to ten thousands structures (using the ab-inition method) from which the 
64 lowest energy structures are retained. The 2nd module contains the implementation of our MDR 
method, which is used to select the top 5 structures from the models returned by the 1st module. 
 
The decoy generation in the 1st module is preceded by gathering secondary structure information from the 
amino acids sequence using the PSIPRED method5 and by building fragment libraries from the NCBI 
database files. The main decoy generation code was compiled on a 64-bit operating system with the open-
source GCC compiler. We have used 32 dual-core Intel Xeon EM64T-2.8GHz CPUs to generate 10000 low 
resolution (backbone atoms) structures. We found that due to the parallel nature of the decoy generation 
procedure, many of the structures built on different CPUs were identical; in some cases the total number of 
unique structures was reduced from 10000 to less than 2000. The generated decoys are further filtered with 
the Rosetta energy function by selecting the top 64 distinct structures, with lowest energy. These structures 
are used as input for the MDR method. 
 
Our MDR method consists of several important steps. First, an all-atom, high-resolution structure is built 
for each of the 64 predicted low resolution structures. For this, the coordinates of the missing side-chain 
heavy atoms are determined by using the program PULCHRA6, and the hydrogen atoms are added by using 
PSFGEN, which is part of the visual molecular dynamics (VMD) package7. Next, the obtained structures 
are optimized by removing the bad contacts through energy minimization. Finally, the stability of the 
structures is tested by monitoring the change of their RMSD (with respect to their low-resolution 
structures) during the MD simulation of their scheduled heating at a rate of 1 K/ps. The MD simulations are 
carried out in vacuum by coupling the system to a Langevin heat bath whose temperature can be varied 
according to a desired protocol. All energy minimization and MD simulations were performed by 
employing the CHARMM force field8, 9 and the parallel NAMD2.6 MD simulation program10. Based on 
extensive testing of the MDR method we have found that statistically the best ranking parameter of the 
predicted structures is their mean RMSD during heating from 40K to 140K. This can be achieved through 
100ps long MD simulations that take a matter of hours on a single dual core Intel Xeon EM64T-2.8GHz 
CPU. 
 
It should be noted that the success of the MDR method, for ranking the predicted low-resolution structures, 
relies heavily on how well the high-resolution (all-atoms) structures are constructed by PULCHRA and 
PSFGEN. Also, the omission of the explicit solvent in the MD simulations may influence the final ranking 
of the structures. 
 
The MUFOLD-MD server was used for protein structure prediction in the CASP8 competition. Once the 
native structures for the CASP8 targets were released we were able to assess the quality of our predicted 
structures and the efficiency of the MDR method. The results of this analysis will be presented during the 
CASP8 meeting.  
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In protein tertiary structure prediction, it is a crucial step to select near-native structures from a large 
number of candidate structural models. Despite much effort to tackle the problem of protein structure 
selection, the discerning power of current methods is still unsatisfactory. We have used machine learning 
techniques to develop a new ranking method, which has improved ability of differentiating good protein 
structures from bad ones. Our ranking method has been implemented as our MUFOLD-QA server and 
tested by us in the CASP8 QA prediction. 
 
The main idea of MUFOLD-QA is to apply machine learning methods based on the values of various 
energy and scoring functions for the candidate structures. This is similar to the consensus approach, which 
was successful in previous CASP competitions. In the model quality assessment (QA) category in CASP7, 
the accuracy of structure evaluation achieved by the consensus approach was consistently better than other 
methods1. The scoring functions we used include OPUS2, Model Evaluator, Rapdf3, Dfire energy4, Hopp 
score5, and a geometric potential6. The scoring functions are normalized to z-scores. The consensus method 
that we implemented using machine learning methods is more sophisticated and usually better than 
individual energy or scoring functions.  
 
The ranking generated by our MUFOLD-QA server for predicted structures had been optimized for the 
purpose of structural model selection. Although we had not targeted at the requirement of CASP8 QA 
prediction initially, we modified our method and submitted our predictions. We will present some 
assessments of our method in comparison with others at the CASP8 conference.  
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MULTICOM is our human expert predictor participating in the prediction of tertiary structures, model 
quality assessment, domain boundaries, residue-residue contacts, and disorder regions. Unlike our 
MULTICOM server series that generated their own predictions, our MULTICOM human predictions 
started from all CASP8 server predictions. The server predictions were improved by automated ranking, 
combination, refinement, and some human interventions. The methods are described in each category as 
follows. 
 

1. Tertiary Structure Prediction (TS) 
Model Ranking: The server predictions of a target were downloaded from the CASP8 web site. The 
models were evaluated by our model evaluation tool ModelEvaluator1, which assigned a predicted GDT-
TS2 score to each model. The models were ranked by their predicted GDT-TS scores.  
 
Model Combination and Refinement. The top 50% of models were retained for combination and 
refinement. Each of the top five models was used as a seed model to do global-local model combination. 
The seed model was compared with all other models using the structure comparison tool TM-Score [3]. All 
the models that were globally similar to the seed model were chosen, i.e. > 80% of the regions in the 
models can be aligned with the seed model with less than 4 Å RMSD. The models and the seed model were 
used as templates for Modeller 7v7 4 to generate a refined model, which was submitted to CASP. The 
model was essentially an averaged combination of selected models, which tends to be better than each 
individual model, according to our own benchmark. If no globally similar model was found for the seed 
model, which often happened for hard targets, the long local fragments of the models that were similar to 
the seed model were chosen. The minimum length of the local fragments started from 80 residues and may 
be reduced to make sure that some long local fragments were found. The structure of the local fragments 
and the seed model were combined and fed into Modeller, which generates a refined structure model. The 
approach may combine good regions from different models together in order to improve over the original 
seed models. According to our preliminary assessment, the procedure generated very good models that are 
sometime even better than all CASP server models. The combination method indeed can refine original 
input models. The combination and refinement procedure was fully automated. In rare cases, our human 
expert intervened the process to manually select seed models according to human insights.  
 

2. Model Quality Assessment (QA) 
The MULTICOM model quality assessment procedure has two fully automated steps. MULTICOM first 
downloaded all CASP8 QA server predictions, including our MULTICOM-CLUSTER, MULTICOM-
CMFR, MULTICOM-REFINE, and MULTICOM-RANK. The predicted scores of the models in these 
predictions were averaged together to generate a consensus prediction. The consensus predicted quality 
score of the models were then used to rank all the models. The top five ranked models were selected as 
reference models for model comparison. Each model was compared against the reference models by TM-
Score3. The GDT-TS score that resulted from the comparison with one reference model is the measure of 
the similarity between them. The averaged GDT-TS score over five reference models was used as the 
predicted global quality of the model.  
 
During the comparison, a superimposition between each model and the reference model was generated. The 
superimposition was used to calculate the distance between the positions of a residue in the model and the 
reference model. The average distance over five reference models was used as a predicted local quality of 
the residue. The basic procedure of MULITCOM human quality assessment is the same as our 
MULTICOM-CLUSTER quality assessment, except that MULTICOM-CLUSTER used only our own 
model evaluation tool to rank models for model comparison.  
 
In our preliminary assessment, we computed the global correlation between true GDT-TS scores and 
predicted GDT-TS scores for all the models and the per-target correlation for the models of each target. 
The global correlation is 0.935 and the average per-target correlation is 0.908. The average loss, the 
average difference of the GDT-TS score between the best models with highest real GDT-TS score and the 
No. 1 models ranked by the predicted GDT-TS score, was 4.6.  
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3. Domain Boundary Prediction (DP) 
Our human domain boundary predictions were based on our server (MULTICOM-CMFR) predictions and 
human insights. The CASP tertiary structure models for a target were downloaded and ranked by our model 
quality assessment methods1. The top model was parsed into domains manually. The consensus prediction 
based on the MULTICOM-CMFR server and human parsing was submitted to CASP8.  
 

4. Disorder Prediction (DR) 
Our human disorder predictions were the consensus predictions based on CASP8 server predictions 
including our own MULTICOM-CMFR.  
 

5. Residue-Residue Contact Prediction (RR) 
Our human residue-residue contact predictions were the consensus predictions of CASP8 residue-residue 
contact prediction servers including our three servers: MULTICOM-CMFR, MULTICOM-RANK and 
MUProt. We tried to test if a community wide effort can improve contact predictions, which is still a very 
challenging problem.  
 
1. Wang, Z., Tegge, A.N., Cheng, J. (2008). Evaluating the absolute quality of a single protein model 

using support vector machines and structural features. Proteins, in press.  
2. Zemla, A. (2003). LGA: a method for finding 3D similarities in protein structures. Nucleic Acids 

Research. 31, 3370-3374.  
3. Zhang, Y., Skolnick, J. (2004). Scoring function for automated assessment of protein structure 

template quality. Proteins. 57, 702-710.  
4. Sali, A., Blundell, T.L. (1993). Comparative protein modeling by satisfaction of spatial restraints. J. 

Mol. Bio. 234, 779-815.  
 

MULTICOM-CLUSTER 

Multi-Template Model Generation and Hybrid Model Quality Assessment by 
MULTICOM-CLUSTER 

J. Cheng1,2, Z. Wang1, A. N. Tegge2 
1 Computer Science Department, 2 Informatics Institute, University of Missouri, Columbia, MO 65211, USA 

chengji@missouri.edu 
 
MULTICOM-CLUSTER is a server in our MULTICOM series. It participated in tertiary structure 
prediction and model quality assessment, which are described in the following two sections. 
 

1. Tertiary Structure Prediction (TS) 
MULTCOM-CLUSTER made structure predictions in four steps: (1) template-identification via alternative 
profile alignments and a machine learning method; (2) multiple-template combination; (3) model 
generation; (4) model ranking.  
 
Template Identification.  PSI-BLAST [1] was used to search a query protein sequence against the NCBI 
Non-Redundant protein sequence database to build three different kinds of sequence profiles including the 
Position Specific Scoring Matrix (PSSM) of PSI-BLAST, the hidden Markov model (HMM) of hhsearch 
[2], and the profile of COMPASS [3]. The PSSM profile, HMM, and COMPASS profile were searched 
against our in-house template sequence database, template HMM database, and template COMPASS 
profile database to identify homologous templates by PSI-BLAST, hhsearch, and COMPASS, respectively. 
The query-template alignments generated by PSI-BLAST, hhsearch, and COMPASS were kept in three 
different sets and ranked according to e-values. In addition, SPEM [4], a global profile-profile alignment 
tool, was used to align the query with the top 10 templates found by a sensitive machine learning fold 
recognition method [5]. This alignment created the fourth set of query-template alignments.  
 
Multi-Template Combination. The most significant query-template alignment in each set was chosen and 
greedily combined with the rest of the alignments from the same set to form a multiple sequence alignment 
centered on the query sequence. This was done using a multi-template combination algorithm described in 
[6]. The most significant alignment was then removed and the second most significant alignment was 
combined with the remaining query-template alignments in order to generate a multiple sequence alignment 
using the same algorithm. The process was repeated up to 10 times to generate up to 10 multiple alignments 
in each set.  
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Model Generation. Each query-template alignment and the corresponding template structures were fed 
into Modeller 7v7 [7] to generate 10 models, among which the model with minimum Modeller energy was 
chosen as a predicted model. If no significant template was found by hhsearch (e-value < 10 -3) and the 
length of query protein is less than 120 residues, Rosetta [8] was called to generate 200 models. The 200 
models were clustered by Rosetta and the centroid models of several large clusters were chosen as 
predicted ab initio models. During CASP8, Rosetta was used to generate models for several hard targets.  
 
Model Ranking. All the models were assessed by our model quality assessment tool ModelEvaluator [9]. 
ModelEvaluator compared the secondary structure, solvent accessibility, contact map and beta-sheet 
topology of a model with those predicted from its primary sequence by the SCRATCH suite [10]. The 
comparison resulted in a number of features. The features were fed into Support Vector Machines to predict 
the GDT-TS score of the model. The predicted GDT-TS [11] scores were used to rank the models. The top 
five ranked models were submitted to CASP.  
 
According to our preliminary assessments, MULTICOM-CLUSTER worked well on both easy and hard 
targets. It was very effective on high-accuracy targets. Particularly, it generated the models with the highest 
GDT-TS scores for a number of targets (T410, T0418, T0426, T0442, T0453, T0460, T0490_2).   
 

2. Model Quality Assessment (QA) 
In the QA category, MULTICOM-CLUSTER used a novel hybrid approach to assess both global and local 
model quality of CASP8 server models. It first used ModelEvaluator to predict the GDT-TS score for each 
model. The models were ranked by predicted GDT-TS scores. The top five ranked models were chosen as 
reference models. Then each model was superimposed against the top five models one by one using the 
structure comparison tool TM-Score [12], which resulted in a GDT-TS score. The average GDT-TS score 
between each model and the five reference models was the predicted global quality of the model. This 
method is a hybrid combination of the single-model evaluation method and the model comparison 
approach. We preliminarily evaluated the method on 113 targets whose experimental structures had been 
released. We computed the global correlation between true GDT-TS scores and predicted GDT-TS scores 
for all the models, and the per-target correlation for the models of each target. The global correlation and 
the average per-target correlation are 0.92 and 0.90 respectively. The loss, the difference of the GDT-TS 
score between the best model with highest real GDT-TS score and the No. 1 model ranked by the predicted 
GDT-TS score, was calculated. The average loss of GDT-TS score on 113 targets is 6.0. The method was 
more accurate than single-model approaches and achieved the performance comparable to the clustering or 
consensus QA methods.  
 
The hybrid method was also used to predict the local quality of a residue in a model. During the structure 
comparison between a model and each reference model, the superimposition of the model and the reference 
model was generated. The distance between the position of a residue in the model and its counterpart in the 
reference model was calculated. The average distance over the five reference models was calculated and 
used as the predicted local quality of the residue.  
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MUTICOM-CMFR is a server in the MULTICOM series. MULTICOM-CMFR participated in tertiary 
structure prediction, domain prediction, model quality assessment, disorder prediction and contact map 
prediction. Here we describe the methods in each category.  
 
1. Tertiary Structure Prediction (TS) by MULTICOM-CMFR 
The special features of both MULTICOM-CMFR include two-level template identification, alternative 
alignments, multi-template combination, and model evaluation. MULTICOM-CMFR and MULTICOM-
RANK mainly differs in the level-1 template identification. The entire structure prediction process is 
described as follows. (1) Level-1 Template Identification for Easy Targets. A query protein was first 
searched against the NCBI Non-Redundant protein sequence database to identify homologous sequences by 
PSI-BLAST [1]. The group of homologous sequences was used to build a Position Specific Scoring Matrix 
profile (PSSM) for MULTICOM-CMFR. The PSSM profile was searched against the template protein 
sequence database by PSI-BLAST. The templates found by PSI-BLAST and their alignments were 
collected. The query-template alignments were ranked by e-values. (2) Multi-Template Combination and 
Model Generation. The pairwise query-template alignments produced in step (1) were combined into 
multiple sequence alignments to generate models [3]. (See MULTICOM-RANK abstract for details) (3) 
Level-2 Template Identification for Hard Targets. If less than five significant templates were found, a 
sensitive machine learning fold recognition method [4] was used to rank templates in a large template 
library. (See MULTICOM-RANK abstract for details) (4) Alternative Alignments, Model Generation 
and Evaluation. Five alternative alignment tools (MUSCLE [5], Lobster [6], SPEM [7], COMPASS [8], 
hhsearch) were used to generate alignments between the query and the templates identified in step (3). The 
alignments were fed into Modeller [9] to generate models. The models were evaluated by ModelEvaluator 
[10], and the top ranked models were submitted. (See MULTICOM-RANK abstract for details).  
 
2. Model Quality Assessment (QA) 
In the QA category, MULTICOM-CMFR is a single-model, structure-based model quality assessment 
method. MULTICOM-CMFR predicted the absolute quality score of a single protein model from its 
structural features as in ModelEvaluator [10].   
 
Given a model, MULTICOM-CMFR compared the secondary structure, solvent accessibility, beta-sheet 
topology and contact map extracted from the model with those predicted from the primary sequence by the 
SCRATCH suite. The comparison resulted in a number of fitness scores such as secondary structure 
matching scores. Since sequence-based predictions are reasonably good, the structural features of a good 
model are expected to match better with the sequence-based predicted features than those from a bad 
model. So the fitness scores are informative indicators of the model quality. These fitness scores were fed 
into a support vector machine trained on a sub set of CASP6 models, which predicted the quality score (i.e. 
GDT-TS) of the model. The methodology of MULTICOM-CMFR is similar to MULTICOM-REFINE 
(QA) except that MULTICOM-CMFR discarded partial models in which the coordinates of some residues 
are missing.  
 
We preliminarily assessed the methods based on the released experimental structures of 113 targets. We 
calculated the GDT-TS scores of CASP8 models based on experimental structures. We computed the 
global correlation between true GDT-TS scores and predicted GDT-TS scores for all the models, and the 
per-target correlation of the models of each target. The global correlation is 0.78 and the average per-target 
correlation is 0.75. The average loss, the average difference of the GDT-TS score between the best model 
with the highest real GDT-TS score and the No. 1 models ranked by predicted GDT-TS scores, was 7.05. 
According to the results, MULTICOM-CMFR seemed to work pretty well among single-model, non-meta 
methods.  
 
3. Hybrid Domain Boundary Prediction (DP) by MULTICOM-CMFR 
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MULTICOM-CMFR used a hybrid approach to predict protein domain boundaries. If a good model based 
on one or more significant templates was generated for a query protein, the structure-based domain parser 
PDP [11] was called to parse the models into domains similarly as in DOMAC [12]. If no good model was 
generated for a query protein, a novel ab intio domain prediction method (manuscript in preparation) was 
called to predict domain boundaries. The method first searched query protein against the NCBI non-
redundant protein sequence database in order to identify homologous protein sequences using PSI-BLAST. 
The pairwise alignments between the query and each homologous protein sequence were used to identify 
evolutionary signals as candidate domain boundaries. A window of sequence and structural features 
including sequence profile, predicted secondary structure and solvent accessibility around the candidate 
domain boundaries were extracted. These features were fed into a pre-trained support vector machine to 
predict if the candidate site was a domain boundary. The predicted domain boundary sites were used to cut 
proteins into domains.  

 
4. Contact Map Prediction (RR)  
MULTICOM-CMFR used a re-trained 2-Dimensional Recursive Neural Network [13] to predict residue-
residue contacts.  

 
5. Disorder Region Prediction (DR) 
Disorder prediction was first predicted by a 1-Dimensional Recursive Neural Network (1D-RNN) taking as 
input the profile of the sequence, and predicted secondary structure and solvent accessibility [15]. The 
predicted disorder probabilities of the residues were re-scaled so that the ratio of residues with disorder 
probability >= 0.5 is close to the ratio of the disorder residues in the training dataset used to train 1D RNN 
[16].  
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MULTICOM-RANK is a server in the MULTICOM series. MULTICOM-RANK took part in tertiary 
structure prediction, model quality assessment, and contact map prediction.  
 
1. Tertiary Structure Prediction (TS)  
The special features of MULTICOM-RANK include two-level template identification, alternative 
alignments, multi-template combination, and model evaluation.  
 
Level-1 Template Identification for Easy Targets. A query protein was first searched against the NCBI 
Non-Redundant protein sequence database to identify homologous sequences by PSI-BLAST [1]. The 
group of homologous sequences was used to build a hidden Markov model (HMM) profile. The HMM 
profile was searched against the template protein HMM profile database by hhsearch [2]. The templates 
found by hhsearch and their alignments were collected. The query-template alignments were ranked by e-
values.  
 
Multi-Template Combination and Model Generation. The most “significant” (i.e. e-value < -20 and 
cover ratio > 75%) query-template alignment was selected to combine with alignments ranked below it into 
a multiple sequence alignment by a greedy multi-template combination algorithm [3]. The process was 
repeated up to five times to generate up to five multiple sequence alignments, starting from each of the five 
top-ranked “significant” query-template alignments. Each multiple sequence alignment and the associated 
template structures were fed into Modeller [4] to generate 10 models, from which the model with minimum 
energy was selected as a predicted model. The models ordered by the e-values of the query-template 
alignments were submitted to CASP8. If five models could be generated in this way, the prediction process 
was done.  
 
Level-2 Template Identification for Hard Targets. If less than five significant templates were found, a 
sensitive machine learning fold recognition method [5] was called to rank templates in a large template 
library. The top 50 templates were selected for further analysis.  
 
Alternative Alignments, Model Generation and Evaluation. Five alternative alignment tools including 
MUSCLE [6], hhsearch, lobster [7], SPEM [8], and COMPASS [9] were used to generate alternative 
alignment for the query and each template. The alternative alignment approach may generate a better 
alignment than a single alignment tool. The 250 (50 × 5) query-template alignments were fed into Modeller 
to generate 250 models. The models were evaluated and ranked by our model evaluation tool 
ModelEvaluator [10]. The top ranked models are submitted to CASP. According to our preliminary 
assessments, MUTICOM-RANK worked well, especially on high-accuracy targets. MULTICOM-RANK 
produced the models with the highest GDT-TS scores for targets T0408, T0411, T0418, T0425, T0428, 
T0453, and T0509.  
 
2. Contact Map Prediction (RR)  
MULTICOM-RANK used support vector machines [11] to predict contact maps. Both methods are ab 
initio approaches without using any template information.  
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MULTICOM-REFINE is a server in our MULTICOM series. MULTICOM-REFINE participated in 
tertiary structure prediction and model quality assessment, which are described in the following two 
sections.  
 

1. Tertiary Structure Prediction 
MULTICOM-REFINE server focused on ranking and refining structural models generated by our three 
other MULTICOM servers: MULTICOM-CMFR, MULTICOM-RANK and MULTICOM-CLUSTER. It 
worked as follows. 
 
Model Ranking. The models of a target generated by MULTICOM-CMFR, MULTICOM-RANK and 
MULTICOM-CLUSTER were collected together. ModelEvaluator [1] was used to predict the quality 
(GDT-TS [2] scores) of the models. The top 50% of the models generated by MULTICOM-CMFR and 
MULTICOM-RANK, in addition to all the models generated by MULTICOM-CLUSTER, were selected 
for model combination and refinement. 
 
Model Combination and Refinement. All the selected models were pooled together and ranked by their 
predicted GDT-TS scores. The models were combined and refined by a structure alignment-based global-
local model combination algorithm as follows. First, one model out of the top five ranked models was 
selected as an initial seed model. The model was compared against all other models using a structure-
comparison tool TM-Score [3]. The models where 80% of the regions can align with the seed model with 
less than 4 Å RMSD were considered globally similar to the seed model and selected for combination. The 
seed model and the selected models were used as structure templates for Modeller 7v7 [4] in order to re-
generate 10 models for the query protein. The model with the minimum Modeller energy was selected as a 
refined model for the target protein. By repeating the process up to five times, up to five refined models 
were generated from the top five ranked models. The global model combination procedure worked for easy 
targets where many similar models were generated.  
 
If no globally similar models were found, which often happened for hard targets, a local model 
combination algorithm was used to combine a seed model with other locally similar models. The seed 
model was compared against other models using TM-Score. The long fragments of the models that can 
align with the seed model with RMSD < 3 Å and GDT-TS score > 50 were selected. The minimum length 
of the fragment was set to 80 residues initially. It was repeatedly reduced by 5 if no similar fragments were 
found during an iteration of model comparison.  The structures for the fragments and the initial seed model 
were fed into Modeller to generate 10 models, and the model with minimum energy was chosen as a 
refined model. After the global-local combination algorithm was finished, the five refined models based on 
the top five initial seed models were submitted to CASP.  
 
Preliminary Results. Our global-local model combination method is a kind of iterative modeling and 
refinement technique that combines models in order to improve model quality. It combines globally similar 
models directly and only integrates similar local structures from locally similar models. This approach 
performs very well on high-accuracy targets. According to our preliminary assessment, the refinement 
method improved the model quality for a number of targets when compared to the original models. It 
produced the models with the highest GDT-TS score for T0404, T0459, T0475, and T0506_2.   
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2. Model Quality Assessment (QA) 
In the QA category, MULTICOM-REFINE is a single-model, structure-based model quality assessment 
method. MULTICOM-REFINE predicted the absolute quality score of a single protein model from its 
structural features as in ModelEvaluator [1].  
 
Given a model, MULTICOM-REFINE compared the secondary structure, solvent accessibility, beta-sheet 
topology and contact map extracted from the model with that predicted from the primary sequence by the 
SCRATCH suite [5]. The comparison resulted in a number of fitness scores such as secondary structure 
matching scores. Since sequence-based predictions are reasonably good, the structural features of a good 
model expect to match better with the sequence-based predicted features than those from a bad model. So 
the fitness scores are informative indicators of the model quality. These fitness scores were fed into a 
support vector machine trained on CASP6 and CASP7 models to predict the quality score (i.e. GDT-TS) of 
the model. The basic idea of MULTICOM-REFINE (QA) is similar to MULTICOM-CMFR (QA) except 
that MULTICOM-REFINE can handle partial models in which the positions of some residues are missing.  
 
We preliminarily assessed the methods based on the released experimental structures from 113 targets. We 
calculated the GDT-TS scores of CASP8 models based on experimental structures. We computed the 
global correlation between true GDT-TS scores and predicted GDT-TS scores for all the models, and the 
per-target correlation for the models of each target. The global correlation is 0.80 and the average per-target 
correlation is 0.73. The loss, the difference of the GDT-TS score between the best model with highest real 
GDT-TS score and the No. 1 model ranked by the predicted GDT-TS score, was calculated. The average 
loss of GDT-TS score on 113 targets is 8.0.  According to the results, MULTICOM-REFINE seemed to 
work pretty well among single-model, non-meta methods.  
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When modeling proteins, all modelers go through usual procedures i.e. searching proper template(s), 
finding the best alignment(s), predicting the most accurate secondary structure prediction, forecast folding 
of the protein in super secondary structure and tertiary structure, qualify and assess all gathered data and 
finally do protein modeling and assessment. They usually go back and improve the models by using 
different template(s) and alignment(s) and repeat modeling until the best model fulfills them and meet the 
reality. Lots of sites, servers, computers and software are exploited during a protein modeling project 
however some modelers develop their own facilities including software and algorithms. The challenge 
appears when trying to resolve a model for the entire protein including loops. Loops are parts of proteins 
which fold as they want and can affect the quality and accuracy of a protein.  
 
We report here a deep trial study of loop refinement in improvement of 7 models for 5 CASP targets. As 
mentioned, this study utilized usual procedures to fined template(s), alignment, secondary structure 
prediction, folding prediction, motif prediction, modeling and quality assessment of CASP targets. UCLA, 
NCBI and EBI sites, ExPasy, PDB, FUGUE and PSSM servers and many other bioinformatics web sites 
and servers as well as software such as MODELLER 9v3, MolMol, ViewerLite, Autodock, Chem3D, 
Rasmol, etc. applied for modeling the targets. What_Check, ERRAT, and verify3D were the methods of 
protein 3D structure assessment to assess stereochemistry, atom environment and solvent accessibility of 
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models respectively. Trial-error method was the choice until no more improvement was achieved for 
models. Then models were energy minimized as whole and improper loops separately. Different windows 
were selected on loops for energy minimization and the windows were shrunk until a few residues 
remained unrefined .Problematic residues in loops were then selected and minimized in third step until 
changing the conformation of those residues were not advantageous any more. In the forth step other 
residues of neighbor segments of the protein in a 3D environment which were not necessarily the neighbor 
residues in the raw sequence were minimized with the problematic loop residues together in a box using 
MODELLER’s loop model class. Then, the whole proteins were energy minimized by Means of MM+. 
RMS gradient was decreased in a step wise approach. It was of surprise to see that energy minimization, 
while improving model’s performance in tests dramatically, could damage the structure’s performance if 
excessively applied. To avoid damage to 3D structure due to excessive refinement, a very conservative 
approach was selected in this step. Finally, side chains of all of protein’s amino acids were selected and 
significantly energy minimized.  Of course model improvement was tracked during the model refinement 
applying What_Check, ERRAT, and verify3D methods. 7 CASP models submitted by our team looks 
promising and show high quality compared to the released structures of the targets.  
 
We think there is still way to set up satisfying method for enhancing the folding of loops due to the nature 
of loops, their exposure to the surface of proteins and their size. But when facing a protein in which loops 
could play a critical role like antibodies or proteins interacting other proteins one must always be careful 
about the quality of the loops.  
 
1. Saberi M.R., Razazan A., Ramezani H. and Baratian A. How do the web facilities help predictors from 

head to toe of homology modeling? CASP6 Abstract book, P 166. 
2. Saberi M. R., Baratian A., Sadeghian H. Loop refinement and geometry optimization: key steps in 

protein modeling. CASP7 Abstract book, P 79-80. 
3. Cheng X, Cui G, Hornak V, Simmerling C. (2005) Modified replica exchange simulation methods for 

local structure refinement. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. Apr, 
28;109(16):8220- 30. 
 
 

MUProt 

Model Ranking, Model Combination and Refinement by MUProt 

J. Cheng1,2, Z. Wang1 and A. N. Tegge2 
1 Computer Science Department, 2 Informatics Institute, University of Missouri, Columbia, MO 65211, USA 

chengji@missouri.edu 
 
MUProt is a server in our MUTICOM series. Like the MULTICOM-REFINE server, MUprot server 
focused on ranking and refining models generated by our three other MULTICOM servers, including 
MULTICOM-CMFR, MULTICOM-RANK and MULTICOM-CLUSTER. MUProt differs from 
MULTICOM-REFINE mainly in the model ranking step. 
 
Model Ranking. The models of a protein target generated by MULTICOM-CMFR, MULTICOM-RANK 
and MULTICOM-CLUSTER were collected together. The models were clustered by Spicker [1]. The 
model closest to the centroid of the largest cluster was ranked first. ModelEvaluator [2] was used to predict 
the quality (GDT-TS scores) of the remaining models. All the remaining models were ranked by their 
predicted GDT-TS [3] scores. The top five models were selected as reference models. All the models were 
compared with each of the reference models by TM-Score [4]. TM-Score produced a GDT-TS score for 
each comparison. The average GDT-TS score over the five reference models was used as the predicted 
quality of each model. The models were re-ranked by the predicted quality score.  
 
Model Combination and Refinement. The top five ranked models were used as the seed model to 
combine with other models by a global-local model combination procedure. This step is the same as in 
MULTICOM-REFINE (see MULTICOM-REFINE’s abstract for details). The five refined models resulted 
from model combination were submitted to CASP.  
 
According to the preliminary assessments, MUProt’s ranking and model refinement approach improved the 
quality of original models in many cases. For instance, it generated models with highest GDT-TS scores for 
targets T0390, T0404, T0426, and T0432.  
 
In addition to tertiary structure prediction, MUProt also took part in residue-residue contact prediction. It 
used a support vector machine and a large feature set to predict contact maps [5]. The method is similar to 
MULTICOM-RANK except that it was trained with a few more input features.  
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MUSTER1 is a recently developed threading program aiming at improving the accuracy of the sequence 
profile-profile alignment algorithm with the help of structural profile information. Besides the sequence 
profile-profile alignment, the alignment score of MUSTER incorporates five types of structural 
information: (1) match of secondary structures of query and templates; (2) alignment of sequence-based 
query profile with structured-based template profile; (3) match of solvent accessibility of query and 
templates; (4) match of torsion angles (φ and ψ) between query and templates; (5) hydrophobic scoring 
matrix. In a benchmark test of 500 non-homologous proteins, it was found that the average TM-score2 of 
the first threading alignment to native is nearly 5% higher than the PPA algorithm3 which is based on 
sequence profile-profile alignment and secondary structure match. 
 
The template library of MUSTER is collected from the PDB4 with homologous proteins with sequence 
identity >70% removed. However, we found that the template library thus constructed often missed better 
template structures for some targets. To have a complete pool of the template structures, we created 7 non-
redundant libraries with sequence identity cutoffs <70%. We first construct the 1st library as usual from all 
the solved structures in PDB. For multiple homologous proteins, we select the one which was solved in the 
highest resolution. For multiple-domain proteins, we keep both the full-chain and the individual domains in 
the library. To construct the 2nd library, we first collect non-redundant proteins from the PDB structures 
which are exclusive to the 1st library. Then we add the proteins with missed folds (based on sequence 
identity) from the 1st library with the purpose of keeping the 2th library complete. For creating the 3rd 
library, we first select non-homologous proteins from those which are not in the 1st and the 2nd libraries and 
then add the proteins with missed folds from the 1st and the 2nd libraries to make the 3rd library complete. 
This procedure is repeated 7 times until seven different complete libraries (the number of 7 is picked up 
somewhat arbitrarily) are generated. For each target, we thread the sequence through the 7 template 
libraries independently and rank all the alignments together by their Z-scores, and the redundant threading 
alignments from the same template are removed at the same time. In this way, the templates with correct 
folds missed in the 1st library may be found by MUSTER on other libraries, which will eventually increases 
the likelihood of MUSTER to identify correct folds. 
 
After the threading, all the alignments are clustered based on structural similarity TM-score2 >0.9/0.85/0.8 
for Easy/Medium/Hard targets, respectively. Following the clustering, all threading alignments in the same 
cluster are fed into MODELLER5 to build a full-length model where the spatial restraints represented by C-
alpha distances collected from the clusters are used as well. We submitted top five models ranked by the 
highest Z-score of threading alignments in the clusters.  
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Tertiary structure predictions were submitted in the automatic server category using the latest version of the 
nFOLD protocol. The previous versions of nFOLD1,2 aimed to improve mGenTHREADER2,3 through the 
incorporation of several additional model quality assessment scores as inputs to the underlying neural 
network. These extra inputs included the Secondary Structure Element Alignment (SSEA) score and model 
quality assessment scores from MODCHECK4 and ProQ5. 
 
The latest version of the method, nFOLD3, maintained the original idea, in that it attempted to select the 
optimum models using a consensus of model quality assessment programs (MQAPS). However, the 
ModFOLD6,7 model quality assessment program was used to rank models, which were built using 
alignments from several alternative profile-profile methods. 
 
The SP38, SPARKS8, and HHsearch9 methods were run in house for each target against a bespoke template 
library. A series of profile-profile alignments were generated and 3D models were built using Modeller10. 
Each model was then assessed individually using ModFOLD version 1.1. The ModFOLD output score for 
each model was then combined with the initial rank of the target-template alignment assigned by each 
individual alignment method. 
 
Preliminary results indicated that using ModFOLD for model selection improved the performance 
compared with using the rankings from each individual alignment method alone. Overall, the nFOLD3 
method appears to be competitive with several other popular independent servers. The nFOLD3 server also 
appears to have predicted the best model for CASP8 target T0417, compared with those predicted by all 
other servers. 
 
The nFOLD3 web server is available at the following URL: 
http://www.reading.ac.uk/bioinf/nFOLD/ 
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We initiated a course aimed at structure prediction for undergraduate students. The course was offered 
within the Faculty of Life Science and was open for all students but most of the participants were from the 
Bioinformatics track at Tel-Aviv University, Israel. The course focused on combining homology modeling 
with other publicly available sequence and structure prediction tools to produce model-structures. The 
course subjects introduced various well-known bioinformatical methods that can be utilized for protein 
modeling. This included methods for sequence homology detection, construction of multiple sequence 
alignments, fold recognition approaches, secondary structure prediction methods and also structure-based 
function prediction approaches. Since homology modeling was the main course subject, we gave large 
emphasis to proper template detection and selection. We also accentuated methods that enable the 
generation of accurate query-template pairwise alignments as a crucial step for producing high quality 
models. 
 
The final task for the course was participating in the CASP8 experiment. Using the tools presented in the 
course, the students incorporated a combined computational modeling approach, consisting of homology 
modeling, fold recognition, secondary structure prediction and evolutionary conservation analysis. In brief, 
templates were detected using sequence homology tools and fold recognition methods. Query-template 
pairwise alignments were generated using multiple sequence alignments and fold recognition methods. The 
alignments were then refined using structure prediction algorithms. Models were built via the NEST 
homology modeling algorithm[45]. Model evaluation and additional pairwise alignment refinement were 
conducted using the ConSurf webserver (2, http://consurf.tau.ac.il). Overall, the course students submitted 
ten models for the CASP8 experiment. The students appeared to be very excited about the course and in 
particular about the final project. 
 
The submitted models showed the significance of using evolutionary conservation analysis for guiding 
model evaluation and, to some extent, for model refinement. Generally speaking, it is well known that 
protein structures present an evolutionary conserved core while non-functional solvent-accessible residues 
are variable3. This expected evolutionary conservation pattern can thus be utilized to examine the reliability 
of a produced model-structure. Therefore, evolutionary conservation scores were mapped on the ten 
generated models using the ConSurf webserver ([46], http://consurf.tau.ac.il) in order to evaluate the 
models' validity. Moreover, in cases which the evolutionary conservation patterns of the model-structures 
did not match the expected distributions, we reassessed both the template selection and the pairwise 
alignments to improve the initial models.  
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Panther_server is a single alignment – single model server using a profile-profile alignment tool and a 
molecular mechanics modeling protocol.  It selected up to five top sequence alignments and could produce 
up to five different submissions.  The ranking between targets was solely based on sequence alignment 
quality, and no model quality ranking was used.  Thus, model 1 was not always the “best” model, but 
generally, at least one of the five models was of competitive quality for comparative modeling.   
 
The sequence alignment used a full-dynamic programming algorithm where the cost function was based on 
the Kullback entropy (1) between the query and database sequence profiles.  Profiles were calculated with 
psi-blast1 and corrected for sample bias using the equilibrium frequency distribution of amino acids.  No 
gap penalty was used or needed. 
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Since full dynamic programming is computationally expensive a quicker prescreen algorithm simply 
searched for consecutive maxima of the Kullback entropy, and reported possible hits that were searched 
with the full algorithm.  The Kullback entropy improves the signal to noise especially when compared with 
measures like the correlation between the profiles, and makes the alignment clearer.  It does not correct for 
errors in profile estimation.  
 
Model refinement was done with the program AMMP2 using the current potential set (version tuna).  In 
order to build insert regions, a database of common 10-mer protein structures were overlapped with the 
ends of the insert and the closest fit was used as a basis for distance restraints for the peptide backbone.  
Insertions that were too long for reliable identification of a 10-mer were truncated.   
 
Side chains were refined using an annealing procedure based on local dominating sets.  The local 
dominating set consists of a partition of the contact graph between side chains, where the total depth along 
any branch of the graph is limited.  It can be loosely thought of as the side chain and its neighbors.  
Members of the local dominating set were given small random deviations in the cα cβ torsion.  The model 
was then minimized and if the energy decreased (or randomly if the energy increased), the changes were 
accepted.   
 
The server was designed to be secure and to achieve a good load balance in a distributed computing 
environment.  Input data from the website (http://bmcc3.cs.gsu.edu) were sanitized and written into an xml 
description of the task to be accomplished.  This makes it difficult to implement a cross-site scripting attack 
because the potential attacker does not directly input commands.  The xml packet was sent to an internal 
server (via the loopback interface 127.0.0.1) which parsed it and scheduled the tasks based on system load.  
Each stage parses the xml to ensure that it is correctly formed, and the xml describes the parameters and 
data for the calculation, but does not give commands directly to the server. 
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We recently developed a generative probabilistic model of local protein structure, which can be considered 
as a potential alternative to the popular fragment assembly method. CASP8 was an opportunity to test the 
sampling performance of this new method.  Our long-term goal is a complete description of the structure 
prediction problem in terms of probabilistic models. However, the modeling of non-local interactions is 
still in very early development, and we had limited expectations for our overall performance in the current 
CASP exercise. 
 
Sampling procedure 
A Markov Chain Monte Carlo (MCMC) simulation procedure was implemented using the generalized 
multi-histogram method1. As a proposal distribution, we used a probabilistic model of the local structural 
preferences of a protein backbone (TorusDBN2). The model uses a bivariate angular distribution to capture 
the dihedral bond angle preferences in continuous space, and makes it possible to sample candidate protein 
conformations that are locally compatible with a given amino acid sequence, or to resample parts of a 
structure while maintaining consistency along the chain. The produced structures have high quality local 
structure, and in contrast to fragment assembly based methods, TorusDBN is a well-defined probability 
distribution, making it a more natural component of an MCMC simulation. As input to the local model we 
used the predicted secondary structure labeling from PSIPRED3. 
 
Energy function 
In addition to the energy described by the local model, we used three energy terms, describing hydrogen-
bonding, compactness and multi-body contacts, respectively. The first was based on a energy term known 
from the literature4, while the latter two are very preliminary. Currently, the non-local energy terms are the 
greatest weakness of our method. We hope to make significant progress in this area in time for the next 
CASP. 
 
Clustering procedure 
A new clustering technique was designed to handle the large number of samples produced by the 
simulation procedure. Proteins were represented using a space-curve representation, where each 
conformation can be described as a 30-dimensional vector5. This representation made it possible to cluster 
protein sets with millions of structures, using the Euclidean distance between these vectors as a measure of 
structural deviation. The 10% lowest energy structures produced during sampling were clustered using this 
approach. 
 
Structure refinement 
Both the lowest energy structures obtained during simulation and structures from the largest clusters were 
investigated in greater detail. Side-chains were added using IRECS6, and the CHARMM program7 with an 
implicit solvent forcefield was used for refinement. 
 
Results 
We submitted 5 predictions for assessment. For two of these, our predictions had a similar fold, with a 
GDTTS of ~0.5. Of the remaining three targets, two turned out to be largely disordered. For the last target 
we did not predict any native-like conformations, which is partly due to using the wrong secondary 
structure as input to our model. 
 
1. Ferkinghoff-Borg ,J. (2002) Optimized Monte Carlo analysis for generalized ensembles. Eur. Phys. J. 
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8937. 
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De novo prediction of protein tertiary structure on the basis of amino acid sequence  remains one of the 
outstanding problems in biophysical chemistry. We have developed an all-atom free energy forcefield 
PFF01/021 which stabilizes a wide array of proteins. Recently we have implemented these techniques in 
POEM@HOME (http://boinc.fzk.de), a world-wide distributed computational architecture. 
 
We will discuss advantages and limitations of this approach for protein folding and structure prediction. 
Using this framework we have participated in CASP8 as human predictors in the context of quality 
assessment (POEM-QA) and structure prediction (POEM). In the structure prediction approach, decoy 
libraries are generated which we subsequently ranked in the refinement simulations using POEM@HOME. 
The structure corresponding to the lowest-energy cluster of the ranked decoys is then used for a prediction. 
We will discuss both the impact of decoy generation and of the refinement protocol on the quality of the 
prediction.  
 
PFF02 enabled us to separate inadequately built decoys from near-native conformations in the POEM 
group. The universality of a free-energy approach like PFF02 allowed the usage of several structure 
generation techniques in a combined framework. 
 
In the quality assessment approach, we ranked all submitted server models in short refinement simulations 
and find excellent selectivity: POEM-QA is capable, on the basis of its energy criterion alone, to select one 
of the best conformations from all submitted models.  
 
1. Herges, T. & Wenzel, W. (2004) An all-atom forcefield for tertiary structure prediction of helical 

proteins.  Biophys. J. 87, 3100. 
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Pro-sp3-TASSER is an automated protein structure prediction approach that uses the PRO-SP3 threading 
method to identify templates and TASSER[1] to refine the models.  PRO-SP3 threading consists of five 
different threading scores, one derived from the SP3 [2] and four from PROSPECTOR_3[3] threading 
methods. Targets are classified by their SP3 threading Z-score into Easy, Medium and Hard categories. For 
Medium/Hard targets, alternative alignments are generated by a parametric approach[4] and good 
alignments selected by TASSER-QA[5]. The top templates identified by each threading score along with 
their alternative alignments are combined to derive contact and distant restraints for model refinement by 
short TASSER simulations.  For Medium/Hard targets, chunk-TASSER [6] is also used to generate full 
length models.  Multiple short TASSER or chunk-TASSER runs are used to generate an ensemble that has 
up to 150 full-length models. Subsequently, the top 20 models are selected from the ensemble by TASSER-
QA. These are used to generate contact and distance restraints for longer TASSER modeling. Special 
attention is paid to possible multiple domain targets. We check the coverage of the top template as 
identified by its SP3 score; if more than 50 residues are unaligned, the unaligned and aligned regions are 
modeled separately in addition to modeling the full length target sequence. The separately modeled, 
possible domains are then overlapped onto the full length models in the second round of TASSER 
refinement.  Other special cases are when the Z-score of the first SP3 template is 2.0 units higher than the 
second template or when a single template has > 50% sequence identity to the target; then, only models 
from the first or the single high sequence identity template are used in TASSER simulations. Final models 
are selected from both rounds of TASSER runs by TASSER-QA.  Main-chain and side-chain atoms are 
rebuilt by PULCHRA[7] from the Cα only  models.  
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Structural domains [1] of a protein are regions that are either compact, globular modules, or are clearly 
distinguished from flanking regions. Domains can be viewed as semi-independent three-dimensional units 
in proteins; they may fold independently and may constitute units of evolution. These units are stabilized 
by various kinds of  interactions or forces occurring among composing them amino acids. Among examples 
of such forces one can distinguish for example chemical bonds or compact amino acid packing enforced by 
solvent. The basic idea is to recognize, somehow, these interactions or spatial contacts and recognize 
domains on that basis. It is worth to note that such contacts could also appear between separate domains. 
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That fact makes problem harder to solve. In the following sections novel algorithm for decomposing 
tertiary structure into domains has been outlined. 
 
Although it is hard to define domain as a formal entity, it is possible to provide 
some basic features of the valid domain. A domain should have at least 40 residues, be compact, have small 
cross-domain interface and not too many segments. Segment is a fragment of sequence composing part of a 
domain (c.f. [2] and [3]). 
 
The most straightforward approach to tackle the problem  is to represent protein structure as a graph of 
contacts and then to partition the graph into stable clusters. In such a case one has to identify contacts and 
then convert each residue in protein chain into vertex in the graph, and represent each contact as an edge. 
For purpose of contact identification  we used distances between geometrical centers of side-chains and 
distances between C_Alpha carbons. 
Given the protein graph one can apply graph clustering approaches for determination of potential domains. 
However most efficient clustering methods need prior knowledge about number of clusters. To overcome 
this problem the idea of the structure coloring using simple rules has been proposed. The proposed method 
contains following steps: contact graph generation, identification of small stable substructures, merging 
these substructures into clusters and final refinement of the assignments. 
 
Exemplary results showed that proposed method has large potential. For the test set presented in [3] and [4] 
the algorithm gives similar results to one of the other compared approaches or SCOP [5, 6] database. 
 
The proposed method produces comparable results, in sense of assignment conformity, to the other 
approaches known from literature, however it has  lower complexity.  Therefore it can be useful in protein 
structures analysis. 
 
1. Taylor WR (1999). Protein structural domain identification. Protein Eng. 12(3), 203-16.  
2. Holm L. and C. Sander C. (1994). Parser for protein folding units. Proteins: Structure, Function, and 

Genetics, 19, 256–268. 
3. Xu Y. and Xu D. and Gabow HN (2000). Protein domain decomposition using a graph theoretic 

approach. Bioinformatics, 16,12:1091-1104, 2000. 
4. S. Jones, M. Stewart, A. Michie, M.B. Swindels, C. Orengo and J.M. Thornton Domain assignments 

for protein structures using a consensus approach: characterization and analysis. Protein Sci., 7:233–
242, 1998. 

5. A.G. Murzin, S.E. Brenner, T. Hubbard and C. Chothia SCOP: a structural classification of proteins 
database for the investigation of sequences and structures. Journal of Molecular Biology., 247:536–
540, 1995. 

6. A. Andreeva, D. Howorth, S.E. Brenner, T.J.P. Hubbard, C. Chothia and 
A.G. Murzin SCOP database in 2004: refinements integrate structure and sequence family data. 
Nucleic Acid Research., 32:226–229, 2004 
 
 

ProteinShop 

Protein Structure Prediction Using ProteinShop 

Ch. Hu1, N. Max1,2 and S. Crivelli1,2 
1Dept. of Computer Science, Univ. of California, Davis, CA 95616, 

 2Lawrence Berkeley Laboratory, Berkeley, CA 94720 
SNCrivelli@lbl.gov 

 
We describe a novel ab-initio method to predict the tertiary structure of new folds. This method uses a two-
phase approach: first, it thoroughly samples the conformation space using secondary structure predictions; 
then, it selects the best models using a combination of different model-evaluation functions. The analysis of 
the results suggests that this method generates good models although imperfect predictions of secondary 
structure influence its accuracy. However, these models are successfully selected by the combined scoring 
function in just a few cases. 
 
Phase I of our method is based on BuildBeta, a ProteinShop1 tool that automatically creates all possible 
beta-sheet arrangements from either a prediction file containing the sequence of amino acids and secondary 
structure prediction from servers2,3 or a coordinate file in PDB format. When reading a prediction file, 
BuildBeta generates an extended conformation featuring alpha-helices and beta-strands according to those 
predictions. This extended conformation is folded into all possible beta sheet arrangements using inverse 
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kinematics to adjust the flexible backbone in the coil regions and to ultimately decide whether an 
arrangement is feasible or not. For each arrangement of beta strands into beta-sheets, BuildBeta uses the 
beta strand alignment scores computed from the tables of Zhu and Braun4 to decide which residues in the 
beta-strands should be hydrogen-bonded. Once the sheets are formed, BuildBeta places alpha helices at 
suitable positions parallel to the constructed beta-sheets.  
 
BuildBeta also permits to pre-specify rigid “core” regions made up by one or more sheets; then, it 
automatically builds around those pre-specified sheets. This is a possible scenario when predicting proteins 
that are new folds: the homology modeling servers cannot find any structure that is homologous to the 
structure of the target but they may find protein structures that have some fragments or cores that are 
homologous. We use ProteinShop to build an initial partially folded structure for every homologous 
structure found by assigning to the dihedral angles in the core regions the same values as those in the 
homologous structure while keeping the rest of the dihedral angles at the ideal values depending on 
whether they are predicted to be alpha helix or beta strand. The correspondence between the superimposed 
rigid-body portions is determined by the alignment generated by the meta-server5. BuildBeta reads the 
resulting coordinate file that specifies the beginning and end of the core and automatically extends its 
partial beta sheets by packing the beta strands that are not part of the core. 
 
BuildBeta’s combinatorial approach may generate an enormous number of possible configurations. Phase II 
selects protein-like models from all initial structures generated in Phase I. First, it uses simple structure 
validation scores to quickly filter out unreasonable models, trimming the initial pool of models to a more 
reasonable set. We visually inspect this set and eventually manipulate these structures to create new folds 
that are added to the pool. Then, a final score combining physical energy scores and statistic scores is 
applied to further reduce the set of models. Finally, we pick five models among the best ranked ones 
according to the combined score. 
 
Method Description: Phase I 
This phase thoroughly samples the conformation space by generating models with all possible 
arrangements of predicted beta strands into beta sheets. First, we use the BioInfoBank meta-server5 -- that 
uses the 3D-jury consensus approach6 -- to select those targets that are likely to have new folds. Second, we 
create one or more consensus secondary structure prediction files according to the secondary structure 
predictions from the servers2,3. BuildBeta reads those prediction files and assigns ideal values to the 
backbone dihedral angles of residues predicted to be alpha helices and beta strands and uses ProteinShop’s 
inverse kinematics algorithm to rotate and translate the backbone of the flexible coil regions to fully 
automatically construct beta sheets. BuildBeta creates all possible arrangements of beta strands into beta 
sheets and uses sequence-matching specificity4 to align the strands to form hydrogen bonds. BuildBeta 
arranges helices into likely position parallel to beta-sheets to avoid the collision between secondary 
structure motifs as well as bury hydrophobic residues. Finally, we use Modeller7 to refine the coils between 
strands and helices. 
 
Phase II 
This phase implements a filtering and selection procedure to trim the huge set of structures generated in 
Phase I. First, we use simple model validation scores to remove unreasonable models in order to quickly 
reduce the size of the initial set. These scores include collision score, compactness score and radius of 
gyration from Crysol8 as three independent filters. Second, we develop a combination score based on 
Dfire9, RAPDF10, ProSA11 and Crysol to select a list of about one hundred candidates from the remaining 
set. Finally, we select five models according to a combination score and human intuition with convenient 
interactive operations implemented in ProteinShop. 

 
1. Crivelli,S., Kreylos,O., Hamann,B., Max,N. & Bethel,W. (2004) ProteinShop: A tool for interactive 

protein manipulation and steering. Journal of Computer-aided Molecular Design. 18, 271-285. 
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In the template-based modeling of protein structures, the template selection and generation for the 
alignment between the target and the template are the two critical steps, since they will significantly affect 
the accuracy of the final model prediction.  Here, we develop a novel substitution matrix that combines 
both sequence and structure information for the detection of remote homologs. Our alignment algorithm 
combines two scoring systems: (1) the S2A2-matrix, a 60×60 substitution matrix based on secondary 
structure propensities of 20 amino acids. We consider 3 types of secondary structure (α-helix, β-sheet and 
other); (2) the sequence profile matrix, i. e. PSSM generated by PSI-BLAST1. 
 
In this study, we applied numerous enhancements and modifications to our previous protein structure 
prediction server (PS)2 thereby improving the reliability and applicability of the method. The main 
difference in methodology between the present work and our previous study is to use the S2A2-matrix for 
the template selection and the alignment between the target and the template. Our previous study utilized a 
consensus strategy, which combines PSI-BLAST and IMPALA, for these two critical steps. We evaluated 
the accuracies of the S2A2-matrix on the template selection and the alignment by using Lindahl benchmark 
and ProSup benchmark, respectively. For the template selection, we compared the S2A2-matrix with other 
methods on Lindahl benchmark, which consists of 976 proteins, for the fold recognition. The average 
accuracy of S2A2-matrix (64.1%) is significantly better than the accuracies of PSI-BLAST (34.6%) and 
profile-profile alignment (56.9% for prof_sim). At the superfamily level, the S2A2-matrix, PSI-BLAST, 
and prof_sim identified 75.6%, 25.9%, and 61.3% respectively, of homologous pairs that were ranked in 
the top 5. At the fold level, the S2A2 matrix, PSI-BLAST, and prof_sim identified 54.5%, 4.7%, and 
39.6%, respectively, of homologous pairs.  
 
For the alignment between the target and the template, the S2A2-matrix was evaluated on the ProSup 
benchmark which consists of 127 protein pairs with significant structural similarity but with sequence 
identity of no more than 30%. 
 
The total numbers of correctly aligned residue pairs of the S2A2-matrix and prof_sim are 9470 and 8009 
pairs, respectively. The percentage σ0, the average percentage of correctly aligned residues divided by the 
length of the structural alignment per protein pair, of the S2A2 matrix, PSI-BLAST, and prof_sim are 
58.7%, 35.6%, and 43.6%, respectively. Finally, we evaluated the (PS)2 using the S2A2 matrix for 
template-based modeling of protein structures. We find that the S2A2 matrix is able to significantly 
improve the performance on the detection of remote homologous templates. Please note that the key 
difference between the S2A2-matrix and the other recognition methods is that our method using only 
sequence information when searching the template database. 
 
In summary, these results demonstrated that the S2A2-matrix is very useful for the template selection and 
the generation for the alignment between the target and the template. We believe that our approach should 
be useful in structure prediction and modeling, especially, in detecting remote homologous templates.  
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We participated in the quality assessment category of CASP8 with four servers. Two servers operate on 
single models, namely the composite scoring function QMEAN1,2 and its derivative QMEANfamily. The 
other two servers, QMEANclust2 and selfQMEAN, take into account structural density information 
contained in the ensemble of models. 
 
QMEAN is a composite scoring function consisting of a linear combination of six structural descriptors: 
The local geometry is analyzed by a torsion angle potential over three consecutive amino acids. A distance-
dependent pairwise Cβ potential as well as an all-atom potential with 167 atom types are used to assess 
long-range interactions. A solvation potential describes the burial status of the residues. Two simple terms 
describing the agreement of predicted and calculated secondary structure3 and solvent accessibility4 are also 
included. 
 
QMEANfamily additionally takes into account information from evolutionary closely related proteins of 
the same family. An ensemble of supplementary models is generated for protein sequences sharing at least 
40% sequence identity to the target using the starting model as template. The QMEANfamily score is the 
average QMEAN score of these models covering the protein family. 
 
QMEANclust combines structural density information provided by the ensemble of models with the 
QMEAN scoring function as a pre-filter. Only a fraction of the best models ranked by QMEAN scores is 
used in order to derive the structural density information. The consensus score of a given model is its 
median GDT_TS to all models in the subset. This approach allows us to counteract the inherent limitations 
of purely consensus based methods which tend to select models from the most dominant structural cluster 
thereby missing possible outstanding predictions. 
  
We also investigated whether compiling target-specific statistical potentials based on the models submitted 
for a given target can improve model selection in a similar way as described by Samudrala and co-
workers6. The selfQMEAN scoring function is based on specialized statistical potentials which have been 
trained on the ensemble of models for a given target. The counts extracted from each model are weighted 
according to the model´s QMEANclust score which increases the influence of more reliable models on the 
calculation of the statistical potentials. 
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Evolved from a pure threading software package, RAPTOR in CASP8 contains the following modules: a 
threading module (i.e., the original RAPTOR), an alignment-based model quality assessment program, a 
multiple sequence alignment module and an ab initio folding program. The strategy used by RAPTOR in 
CASP8 is as follows. First, a target is threaded to all the templates and the quality of each sequence-
template alignment is predicted by a model quality prediction program. According to the predicted GDT 
score, different methods are employed. If there are multiple templates with very good predicted GDT 
scores, then we build a multiple sequence alignment between the target and some selected templates, based 
on which a 3D model is built by MODELLER. If all the templates have very low predicted GDT score, 
then ab initio folding is employed to build a 3D model. Otherwise, a threading-generated 3D model is 
directly submitted. The new RAPTOR was not ready for the first 1/3 CASP8 targets at all and was under 
development during the whole CASP8 season. Therefore, this new RAPTOR was not fully benchmarked 
yet.  
 
Quality assessment. Different from many model quality assessment methods that directly work on a 3D 
model, our quality prediction program takes as input an alignment and generates a predicted GDT score. 
Tested on the alignments generated by RAPTOR for the CASP6 and CASP7 targets, the average prediction 
error of GDT score is approximately 0.04 and the correlation coefficient between the predicted and real is 
more than 0.9 for all the alignments and approximately 0.8 for low-quality ones. This quality prediction 
method is built upon an idea described in [1], which uses SVM to predict the number of correctly aligned 
positions in an alignment. Current implementation uses better features to describe an alignment and 
employs an SVM variant to predict the GDT score. 
 
Multiple template method. The top two templates are always used and then we enumerate all the possible 
combinations of the remaining good templates (at most 5 templates are used in total). For a given set of 
multiple templates, T-coffee and TM-align are used to generate a multiple sequence alignment from the 
pairwise alignments produced by threading. Then ProQ and DFIRE are used to rank all the generated 
models and select the best combination of multiple templates. MetaMQAP is also examined and looks like 
it is highly consistent with ProQ in model ranking. 
 
Ab initio folding method. We have developed a probabilistic graphical model for ab initio folding, which 
employs Conditional Random Fields (CRFs) and directional statistics to model the protein sequence-
structure relationship. Different from the widely-used fragment assembly method and the lattice model 
method, our graphical model can explore protein conformations in a continuous space according to their 
probability. The probability of a protein conformation reflects its stability and is estimated from PSI-
BLAST sequence profile and PSIPRED-predicted secondary structure. Experimental results indicate that 
this new method compares favorably with the fragment assembly method (e.g., Rosetta) and the lattice 
model (i.e., TOUCHSTONE II). Our method performs well on some hard targets such as T0480, T0495_2 
(by Rosetta’s domain definition), T0496_1, T0496_2, and T0510_3. A preliminary version of this method 
is available at [2], in which only a first-order CRF model for conformation sampling is described. Current 
implementation [3] employs a second-order CRF model for sampling and drives conformation optimization 
by a simple energy function consisting of Sali’s DOPE, Baker’s KMBhbond and a simplified solvent 
accessibility potential ESP. 
 
Finally, a new threading program based on a probabilistic graphical model and a boosting method was also 
developed in late CASP8 and tested on only several targets [4]. 
 
1. Xu, J.. (2005) Fold recognition by predicted alignment accuracy. IEEE/ACM Trans. on Comput Biol 

and Bioinfo. 2005 Apr-Jun;2(2):157-65. 
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2. Zhao, F., Li, S., Sterner, B. and Xu, J.. (2008) Discriminative learning for protein conformation 
sampling. Proteins. 2008 Oct;7 3(1):228-40. 
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RBO-Proteus 

De Novo Structure Prediction Using Model-Based Search 

TJ. Brunette and O. Brock 
University of MassachusettsAmherst 

oli@cs.umass.edu 
 
The RBO-Proteus server replaces the Monte Carlo-based search in Rosetta de novo1,2  with our own 
search protocol, model-based search (MBS)3. We are motivated by the fact that conformational space 
search is currently viewed as one of the most important obstacles towards accurate protein structure 
prediction. Our search method differs from existing approaches in that it actively guides conformational 
space exploration towards promising regions based on information from an all-atom energy function. Our 
notion of guidance during search is distinct from the concepts of diversification and intensification often 
used in the context of optimization. Whereas diversification and intensification describe how to perform 
search in a given region of conformation space, our method guides search by choosing where to search. The 
selection of favorable conformation space regions should be guided by the most pertinent and accurate 
information available. In de novo protein structure prediction the most accurate information comes from the 
all-atom energy function. While such information previously was deemed too computationally expensive, 
model-based search is able to guide conformation space exploration with this information without incurring 
a substantial performance penalty. 
 
Model-based search initially computes a number of short Monte Carlo trajectories. The resulting 
conformational space samples are analyzed based on their energy and spatial proximity and then clustered 
into meaningful regions of the search space. These regions are meaningful because they contain samples 
from Monte Carlo trajectories that with high probability would lead to a single local minimum in the 
energy landscape. Model-based search is now able to assess the quality of all samples in a region based on 
the all-atom energy potential. Given a number of regions and an estimate of their likelihood to contain the 
native conformation, model-based search then guides the exploration of conformation space by selecting 
which of the regions to search further and how much computational resources to expend per region. 
Regions are then searched with additional short Monte Carlo trajectories and the process continues for a 
fixed number of times. By eliminating regions from the ongoing exploration that are unlikely to contain the 
native structure, model-based search is able to increase the sampling density in the most promising regions, 
thereby actively guiding search based on highly accurate information about the all-atom energy landscape.  
 
In contrast to most Monte Carlo-based search methods, which treat parallel trajectories as independent, 
model-based search effectively monitors the progress of these parallel trajectories and aborts some of them 
in order to restart them in more promising regions of conformation space. This selectively increases the 
sampling density in promising regions of the search space without the computational burden associated 
with increasing sampling density over the entire search space. 
 
Due to our integration with Rosetta, model-based search inherits the following algorithmic features.  Local 
search for low-energy conformations starts from an extended backbone conformation.  The local, 
Metropolis Monte Carlo-based search progresses in a number of stages.  As the search progresses through 
the different stages, the move set changes, the number of local search steps are varied, and the accuracy of 
the energy function is increased. The energy function progresses gradually from a coarse-grained low-
resolution energy function that considers secondary structure, residue environment, and inter-residue 
pairing to a full-atom energy function that includes side chains and solvation effects.  Additional details 
about the move sets, and energy functions can be found in the literature1,2. 
 
Each iteration of model-based search uses the same move set and energy function as the corresponding 
stage in Rosetta.  The first stage of model-based search occurs after an initial 4,000 Monte Carlo fragment 
insertions have been attempted for each sample. The remaining 32,000 Monte Carlo steps inside Rosetta 
are divided into the 13 stages of Rosetta’s Monte Carlo-based search. For these stages, the parameters of 
model-based search are adjusted so that each run finishes in approximately 24 hours on 80 processors. For 
example, proteins with less than 100 residues use 3,000 extended proteins and five all-atom evaluations to 
evaluate a region. Proteins larger than 150 residues use 500 extended structures and a single all-atom 
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evaluation per region. For proteins longer than 250 residues, only the non-all-atom energy function is used. 
The 5 lowest scoring models are submitted. 
 
1. Bonneau R., Strauss C.E., Rohl C.A., Chivian D. Bradley P., Malmstrom L. Robertson T. & Baker D. 

(2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol. 322, 
65-78  

2. Rohl,C.A., Strauss,C.E.M.., Misura,K.M.S.,& Baker,D. (2004). Protein structure prediction using 
Rosetta. Methods in Enzymology. 383, 66-93. 

3. Brunette T. & Brock O. (2008) Guiding conformational space search with an all-atom energy function.  
Proteins: Structure, Function and Bioinformatics. 
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Experiments in Expectation Maximization for Model Building 
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Rehtnap is an experimental crazy mixed up server built very quickly before the start of CASP-8 in order to 
try out using an expectation maximization algorithm (EM algorithm) for protein structure prediction.  
Instead of aligning sequences, it aligns structures so it is in a sense a “backwards” server.  EM algorithms 
have the potential for merging many different sources of information to produce a model that is as 
consistent with all of the sources as is possible.  This initial implementation suffered from two issues 
common to EM approaches, namely convergence in the presences of dissonant information and under-
prediction in the absence of information.  Nonetheless, when it converged (for example T0444), it could 
perform well.  It had the interesting property of predicting small, reasonably accurate fragments when it 
could not find sufficient information to produce an overlapped set of fragments. 
 
The fundamental idea behind rehtnap is based on the observation that homology between proteins consists 
of runs of similar sequences without insertions or deletions and gap regions where there is no homology.  
Sometimes homology between proteins is only seen for short regions and it would be good to use this 
information in building a model.   
 
The algorithm consists of three phases.  First, a profile-profile scan is used to find regions of significant 
sequence homology.  Observationally, a significant homology was defined as a run of at least 10 
consecutive local maxima with a z-score of 2.5 or at least 15 consecutive local maxima with a z-score of 2.  
The z-score was normalized against the variation of the two profiles with each other.  Second, each of these 
alignments was used to extract and convert a fragment of a structure into an initial model where only the 
homologous atoms were retained.    The set of fragments were correlated with each other to produce an 
overlap matrix and the degree of structural correlation between fragments was used to eliminate structural 
outliers.  Then a graph was constructed that spanned the largest subset of this matrix.  Finally, the 
fragments were iteratively superimposed on the average of the superimposed fragments and the model 
constructed by energy minimization in a manner similar to that used by panther_server.   
 
The fundamental difficulty rehtnap had was due to dissonant information.  Even though individual 
fragments could superimpose with high precision (rmsd < 1Å for more than 6 residues), the presence of 
conformation change and regions where there were few samples meant that the convergence of the whole 
ensemble of fragments to a consistent mean structure could be difficult.  Future work will examine both 
improved approaches to monitoring convergence and handling what is a “multi-modal” solution as well as 
examining using other computational geometric spaces as a way to enhance convergence. 
 
The other major source of difficulty for rehtnap was its inability to find enough continuous or sufficient sets 
of fragments.  The current algorithm selects the deepest graph that can be derived from the fragment 
overlap matrix, which is not always the best graph.  For example the alignment algorithm easily detected 
the symmetric structure of T0472 and two “half” graphs were generated from the overlap matrix, but it did 
not find a fragment that allowed the two half models to be merged into a single model.  This property leads 
to consistent under-prediction.    Rehtnap will not predict models without information.   Future work will 
examine how to bring more information to the system by improving or replacing the fragment location 
algorithms as well as using other techniques to generate or determine fragments. 
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SAINT 

Protein structure prediction incorporating cotranslation  

F.P.E. Huard1, C.M. Deane2, J.J. Ellis1 and G.R. Wood1 
1 -  Department of Statistics, Macquarie University, NSW 2109, Australia 
 2 – Department of Statistics, University of Oxford, Oxford OX1 3TG, UK 

gwood@efs.mq.edu.au 
 
Recent in vitro4 experiments and in silico3,6 computational studies have shown that cotranslation affects the 
folding pathway of some proteins, especially for ancient folds. To our knowledge, the sequential nature of 
translation has not yet been incorporated into structure prediction algorithms. SAINT (Sequential 
Algorithm Initiated at the Nitrogen Terminus) is designed to incorporate cotranslational effects into a 
fragment-insertion-based protein structure prediction algorithm. 
 
In brief, this first version of SAINT is a cotranslational version of a simplified Rosetta. Residues are 
extruded from a virtual ribosome and progressively folded; this is done many times and a central 
configuration selected. Details of the process are now presented.  
 
We simulate translation from the ribosome by iteratively elongating the length of protein to be folded 
starting from the N-terminus. At each iteration, a fragment of s amino acids is added at the C-terminus of 
the current model. Fragments are added in a fully extended conformation, with (φ, ψ, ω) = (-150°, 150°, 
180°) for all residues. All segments have equal length, except for the last one which has a length between 
one and the segment length for evident reasons. Each time the chain length increases from ks to (k + 1)s 
amino acids, the conformation simulated is permitted to change; the (k + 1)th fold is an evolution of the kth 
predicted fold. Structural moves are determined by a folding algorithm, and acceptance of moves is decided 
using a simulated annealing framework. The final fold of the protein is obtained after all residues are 
added. The Figure shows an example using the 101 residue long 1qc7 domain. The chain is elongated 
sequentially using 11 fragments of nine residues and two residues for the last extrusion.  This domain was 
chosen for illustration purposes because it shows evidence for cotranslational folding2. 
 
We chose a de novo method for structure prediction at each step of the elongation process. De novo protein 
structure prediction by fragment assembly has proved successful in recent years (see for example results 
available on the CASP7 website). Fragment assembly, or fragment recombination, consists of two steps: 
first, the targeted sequence is divided into overlapping windows of consecutive residues and local fragment 
structures are assigned to each; second, the local structures are assembled to build models and those of low 
potential energy are retained1. 
 
In this first version of SAINT we use Rosetta ab initio7 as a protein structure predictor using fragment 
recombination. The fragments were built with the Rosetta software; all three- and nine-residue fragments 
for a window are built from non-homologous proteins of known structure (so producing a fragment 
library). Rosetta uses a torsion space representation in which models are notated using a list of (φ, ψ, ω) 
torsion angles. A full atom representation of the model is reconstructed for evaluation by the scoring 
function. A window in the model is selected randomly and its torsion angles are replaced by the ones of 
another fragment from the library, thus generating a new tertiary structure. 

 



 
Figure. Cotranslational structure prediction of the 1qc7 domain (101 residues). Residues are extruded in 
segments of length nine, except for a last segment of two residues. In this example, two hundred runs were 
carried out; the simulation presented above led to a final structure, among those predicted, which was 
closest (4.5Å RMSD) to the crystal structure. We can observe that secondary structures form early in the 
process of elongation, and remain present through to the final extrusion. The N-terminus is represented in 
black.  
 
The probability of a new tertiary structure, using Bayes’ Theorem, is decomposed into a product of two 
terms: the first reflects the likelihood of the structure regardless of the sequence while the second is a 
measure of the fitness of the sequence for the given decoy. Final acceptance is determined according to the 
simulated annealing strategy7. We retained the original knowledge based scoring function5 in which terms 
describing solvation and electrostatics are based on residue distribution in the structure. Atom steric overlap 
is penalized in the function, and globally compact structures reflecting favourable Van Der Waals 
interactions are preferred. 
 
We use a total of 34000 fragment insertion attempts for proteins up to 100 residues in length, and we 
increase this total on a pro rata basis above this figure (e.g. a chain of 143 residues will be simulated by 
1.43 times the standard number of insertions). We consider it reasonable to increase the total number of 
fragment insertion attempts for longer polypeptides. We distribute the total fragment insertion attempts in 
proportion to the length partially extruded.  
 
For each free-modelling CASP target 1000 predictions were made and the resulting configurations 
clustered using standard software available in the statistical package R.  Selection of a central cluster and 
then central configurations within this cluster were chosen; the results were examined with standard 
consistency software and a decision made as to the most likely configuration.  
 
1. Bujnicki, J.M. (2006) Protein-structure prediction by recombination of fragments, ChemBioChem. 7, 

19-27. 
2. Deane, C.M., Dong, M., Huard, F.P.E., Lance, B.K. & Wood, G.R. (2007) Cotranslational protein 

folding - fact or fiction? Bioinformatics 23, 142-148. 
3. Huard, F.P.E., Deane, C.M. & Wood, G.R. (2006) Modelling sequential protein folding under kinetic 

control. Bioinformatics 22, e203-e210. 
4. Nicola, A.V., Chen, W. & Helenius, A. (1999) Co-translational folding of an alphavirus capsid protein 

in the cytosol of living cells, Nature Cell Biol. 1, 341-345. 
5. Rohl, C.A., Strauss, C.E.M., Misura, K.M.S. & Baker, D. (2004) Protein structure prediction using 

Rosetta, Meth. Enzymol. 383, 66-93. 
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6. Sikorski, A. & Skolnick, J. (1990) Dynamic Monte Carlo simulations of globular protein folding, J. 
Mol. Biol. 215, 183-198. 

7. Simons, K.T., Ruczinski, I., Kooperberg, C., Fox, B.A., Bystroff, C. & Baker, D. (1999) Improved 
recognition of native-like protein structures using a combination of sequence-dependent and sequence-
independent features of proteins. Proteins 34, 82-95. 
 

SAM-T08-2stage 

G. Shackelford and K. Karplus 
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Protein structure prediction continues to be a challenge despite the gains from model builders such as I-
TASSER, Rosetta, and undertaker. The best predictions today depend on templates, known protein 
structures whose sequence is sufficiently similar in part or in whole to the target sequence. These templates 
provide important constraints in building accurate models. However there are target sequences which have 
weak or no templates. 
 
 
To explore possible new approaches to template-free modeling, CASP6 added residue-residue contact 
predictions as a new category. Subsequently we developed a contact predictor for CASP7 using local 
structure predictions along with paired statistics including a novel correlation statistic. Its predictions were 
assessed as the best for CASP7[1]. Since then we have developed a new neural network for CASP8 that 
employs more inputs[2]. While developing the new predictor, we discovered that by just using local 
structure predictions, we could build a good predictor. Until then we had assumed that the paired statistics 
were the main source of predictability and the local structure predictions added only a small amount. 
 
With this new result, we revisited an issue that arises in developing a contact predictor: the sparseness of 
positive examples. Actual contacts are only about 3% of the total possible pairs of residues. Originally we 
dealt with the sparseness by reducing the number of negative examples to get a better balance of negative 
and positive examples while training. The new two-stage predictor resolves this issue by providing a 
second stage neural network with an enriched set of predictions where the positive examples comprise 
about 10% of the total examples; no balancing is required. 
 
The first stage uses only local structure predictions and regularized amino acid composition as inputs. We 
limit resulting predictions to 10*sequence_length. Then paired statistics are calculated for this restricted set 
of pairs. These statistics along with the log(rank) of the first stage predictions and matching local structure 
predictions provide the inputs for training a second neural network. The results is a gain of about 3% in 
overall accuracy. 
 
We also used a new measure, weighted accuracy, that takes the background probability based on separation 
into account when assessing predictions. In general, the probability that two residues are in contact goes 
down as the separation increases. The CASP7 assessors dealt with this issue by dividing predictions into 
three categories: those with separation of 6 or greater, 12 or greater, and 24 or greater. 
 
Using this measure we find that the two-stage predictor may provide better accuracy but lower weighted 
accuracy. This can be explained if we assume the two-stage predictor making more correct predictions but 
the predictions have smaller separations than those of a single-stage predictor. 
 
Initially this was a disappointment since we have assumed that accurate contact predictions with large 
separation would be more useful in model building. However other research [3,4] suggests that there is a 
need for solutions and constraints involving the super-secondary structure, such as beta sheets and bundled 
helices. Accurate contact predictions with smaller separation may be more useful than previously 
anticipated. 
 
1. Shackelford, G. and Karplus, K.. (2007). Contact Prediction using Mutual Information and Neural 

Nets. Proteins: Structure, Function, and Bioinformatics, 69(S8):159-164.  
2. Karplus, K. CASP8 abstract for SAM-T08 predictions.  
3. Kuhn, M., Meiler, J. and Baker, D. (2004). Strand-loop-strand motifs: Prediction of hairpins and 

diverging turns in proteins Proteins: Structure, Function, and Bioinformatics, 54(2):282 – 288. 
4. Kaur, H. and Raghava, G.P.S. (2004). Prediction of alpha-turns in proteins using PSI-BLAST profiles 

and secondary structure information. Proteins: Structure, Function, and Bioinformatics 55 (1):83 - 90 
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The SAM-T08 hand predictions used methods similar to SAM_T06 in CASP7 and SAM_T04 in CASP6 
[2]. 
 
We start with a fully automated method that was essentially the same as the SAM-T08-server, though we 
froze the code for the server but had several bug fixes and minor improvements for the version used in hand 
prediction during the summer.  The automated method includes improved neural networks for local 
structure prediction [3] and improved residue-residue contact prediction (see SAM-T08-2stage) [5]. 
 
One major change for the method this time was the use of C-beta distance constraints derived from the 
alignments to templates. These were used to select among the initial alignments and during at least the first 
run of optimization. The addition of these constraints kept all-alpha structures correctly copied from 
alignments from being pulled apart by the optimization---a problem that we had in CASP7 and earlier 
experiments. 
 
After the automatic prediction was done, we examined it visually and tried to fix any flaws that we saw.  
This generally involved rerunning undertaker with new cost functions, increasing the weights for features 
we wanted to see and decreasing the weights where we thought the optimization has gone overboard. 
Sometimes we added new templates or removed ones that we thought were misleading the optimization 
process. We often did "polishing" runs, where all the current models were read in and optimization with 
undertaker's genetic algorithm was done with high crossover. These did not usually make much difference 
to the appearance of the model, but often resolved small clashes or breaks. 
 
Some improvements in undertaker since CASP7 include better communication with SCWRL for initial 
model building form alignments (now using the standard protocol that identical residues have fixed 
rotamers, rather than being re-optimized by SCWRL), more cost functions based on the neural net 
predictions, multiple constraint sets (for easier weighting of the importance of different constraints), and 
some new conformation-change operators (Backrub and BigBackrub). 
 
We also created model-quality-assessment methods for CASP8, which we applied to the server predictions 
to get metaserver results. For each target, we did two undertaker optimizations from the top 10 models with 
two of the MQA methods (SAM-T08-MQAU and SAM-T08-MQAC [1,4]), and considered these models 
as possible alternatives to our natively-generated models. For some of the targets, we did even more meta-
server runs, optimizing from some or all of the server models with various cost functions. 
 
For some targets, we tried breaking the protein up into domains, in an attempt to get more structure 
searching for domains with few homologs, avoiding contamination of the multiple alignments by 
neighboring domains. 
 
All results, intermediate files, and working notes are available on the web at 
http://www.soe.ucsc.edu/~karplus/casp8/ 
 
Note: for almost all the targets this summer "we" means Kevin Karplus---students provided some assistance 
on only 9 targets:T0387, T0388, T0419, T0437, T0443, T0465, T0476, T0484, and T0500. 
 
1. Archie, J.and Karplus, K. Applying Undertaker Cost Functions to Model Quality Assessment. 

Proteins: Structure, Function, and Bioinformatics accepted.  
2. Karplus, K., Katzman, S., Shackelford, G., Koeva, M., Draper, J., Barnes, B., Soriano, M., and 

Hughey, R. (2005) SAM-T04: what's new in protein-structure prediction for CASP6. Proteins: 
Structure, Function, and Bioinformatics, 61(S7):135-142.  

3. Katzman, S., Barrett, C., Thiltgen, G., Karchin, R. and Karplus, K. Predict-2nd: a tool for generalized 
protein local structure prediction. Bioinformatics (advanced access 30 Aug 2008). Supplementary 
material doi:10.1093/bioinformatics/btn438 

4. Paluszewski, M. and Karplus, K. Model Quality Assessment using Distance Constraints from 
Alignments. Proteins: Structure, Function, and Bioinformatics, in press.  

5. Shackelford, G. and Karplus, K.. (2007). Contact Prediction using Mutual Information and Neural 
Nets. Proteins: Structure, Function, and Bioinformatics, 69(S8):159-164.  
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The SAM-T08 server predictions use methods similar to SAM_T06_server in CASP7, but with more 
multiple-sequence alignments, more local-structure alphabets, better calibration of HMMs, and better 
handling of initial models from alignments by undertaker.  Here is a quick overview of the steps: 
 
Use the SAM-T2K, SAM-T04, and SAM-T06 methods for finding homologs of the target and aligning 
them. 
 
Make local structure predictions using neural nets and the multiple alignments.  These neural nets have 
been newly trained for CASP8 with an improved training protocol. The neural nets for the 3 different 
multiple sequence alignments are independently trained, so combining them should offer improved 
performance. 
 
We currently use 15 local-structure alphabets:  
    STR2  an extended version of DSSP that splits the beta strands 
  into multiple classes (parallel/antiparallel/mixed, edge/center) 
    STR4  an attempt at an alphabet like STR2, but not requiring DSSP. 
  This alphabet may be trying to make some irrelevant 
  distinctions as well. 
    ALPHA an discretization of the alpha torsion angle: 
  CA(i-i), CA(i), CA(i+1), CA(i+2) 
    BYS  a discretization of Ramachandran plots, due to Bystroff 
    PB  de Brevern's protein blocks 
 
    N_NOTOR 
    N_NOTOR2 
    O_NOTOR 
    O_NOTOR2 alphabets based on the torsion angle of backbone   hydrogen bonds 
 
    N_SEP 
    O_SEP alphabets based on the separation of donor and 
  acceptor for backbone hydrogen bonds 
 
    CB_burial_14_7 a 7-state discretization of the number of C_beta 
  atoms in a 14 Angstrom radius sphere around the C_beta. 
  near-backbone-11 an 11-state discretization of the number of 
  residues (represented by near-backbone points) in a  
  9.65 Angstrom radius sphere around the sidechain proxy 
  spot for the residue. 
 
    DSSP_EHL2 CASP's collapse of the DSSP alphabet 
  DSSP_EHL2 is not predicted directly by a  neural net,  
  but is computed as a weighted average of the other  
  backbone alphabet predictions.  
 
We make 2-track HMMs with each alphabet with the amino-acid track having a weight of 1 and the local 
structure track having a weight of 0.1 (for backbone alphabets) or 0.3 (for burial alphabets). We use these 
HMMs to score a template library of about 14000 (t06), 16000 (t04), or 18000 (t2k) templates. The 
template libraries are expanded weekly, but old template HMMs are not rebuilt.  The target HMMs are used 
to score consensus sequences for the templates, to get a cheap approximation of profile-profile scoring, 
which does not yet work in the SAM package. 
 
We also used single-track HMMs to score not just the template library, but a non-redundant copy of the 
entire PDB. This scoring is done with real sequences, not consensus sequences. 
 
All the target HMMs use a new calibration method the provides more accurate E-values than before, and 
can be used even with local-structure alphabets that used to give us trouble (such as protein blocks). 
 
One-track HMMs built from the template library multiple alignments were used to score the target 
sequence. We plan to use use multi-track template HMMs in future, but we have not had time to calibrate 



97 

such models while keeping the code compatible with the old libraries, so the template libraries currently 
use old calibrations, with rather optimistic E-values. 
 
All the logs of e-values were combined in a weighted average (with rather arbitrary weights, since we still 
have not taken the time to optimize them), and the best templates ranked.  
 
Alignments of the target to the top templates were made using several different alignment settings on the 
SAM alignment software. 
 
Generate fragments (short 9-residue alignments for each position) using SAM's "fragfinder" program and 
the 3-track HMM which tested best for alignment. 
 
Residue-residue contact predictions are made using mutual information, pairwise contact potentials, joint 
entropy, and other signals combined by a neural net.  Two different neural net methods were used, and the 
results submitted separately. 
 
CB-CB constraints were extracted from the alignments and a combinatorial optimization done to choose a 
most-believable subset.  
 
Then the "undertaker" program (named because it originally optimized burial) is used to try to combine the 
alignments and the fragments into a consistent 3D model.  No single alignment or parent template was used 
as a frozen core, though in many cases one had much more influence than the others.  The alignment scores 
were not used by undertaker, but were used only to pick the set of alignments and fragments that undertaker 
would see.   
 
The cost functions used by undertaker rely heavily on the alignment constraints, on helix and strand 
constraints generated from the secondary-structure predictions, and on the neural-net predictions of local 
properties that undertaker can measure. The residue-residue contact predictions are also given to 
undertaker, but have less weight.  There are also a number of built-in cost functions (breaks, clashes, burial, 
...) that are included in the cost function. 
 
The automatic script runs the undertaker-optimized model through gromacs (to fix small clashes and 
breaks) and repacks the sidechains using Rosetta, but these post-undertaker optimizations are not included 
in the server predictions.  They can be used in subsequent re-optimization. 
 
1. Katzman, S., Barrett, C., Thiltgen, G., Karchin, R. and Karplus, K. Predict-2nd: a tool for generalized 

protein local structure prediction. Bioinformatics (advanced access 30 Aug 2008). Supplementary 
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We present a new approach for addressing the MQA problem. This approach is described in details in the 
corresponding paper1. It is based on distance constraints extracted from alignments to templates of known 
structure, and is implemented in the Undertaker2 program for protein structure prediction. Novel features 
are that we extract non-contact constraints as well as contact constraints and we select the good distance 
constraints using contact number probability distributions.  
 
The most successful MQA methods in the past have been either consensus methods (looking for features 
shared by many models in the set) or similarity to a single predicted model3. The best MQA algorithm at 
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CASP7 was Pcons4 which used a consensus approach where consensus features are extracted from other 
predictions and used to score the models. The Pcons method therefore needs the predictions from other 
methods and can not be used to assess the quality of a single model. Our method differs from Pcons since it 
does not depend on other predictions when the distance constraints are derived from templates. 
 
We use the following steps to extract the distance constraints: 
 
1) Templates and alignments are found using SAM_T06 which is a profile HMM that excels in detecting 
remote homologs. 
2) The distances between pairs of residues in contact are extracted for each alignment found in step 1.  
3) For each pair of residues that are in contact in at least one alignment, a consensus distance is computed. 
After this step, the templates and alignments are therefore reduced to a table of so-called desired distances 
between residues.  
4) Weighted constraints are constructed from the desired distances (based on E-values of the templates). 
Our distance constraints are cost functions that only depend on the distance between two C-beta-atoms and 
have the lowest cost at the desired distance computed in step 3. 
5) Our optimization algorithm selects a subset of the distance constraints computed in step 4 using 
predicted contact number distributions. We select constraints so that residues predicted to have more 
contacts have more constraints also. 
6) Each model is scored according to the distance constraints selected in step 5. 
The results shown in in the paper by Paluszewski and Karplus1 indicate that our method is comparable to 
the best ranked methods at CASP7 (Pcons and Lee) without using consensus-based methods. When the 
distance constraints are combined with the other Undertaker cost functions our MQA method can be 
improved even further as described by Archie and Karplus5. 
 
The assessments by the SAM-T08-MQAO team is purely done using the distance constraints from 
alignments described here. Additionally, the distance constraints from alignments have also been applied 
by the SAM-T08-MQAU and SAM-T08-MQAC teams. Here, the distance constraints are combined with 
other Undertaker cost functions using the optimization technique described by Archie and Karplus5. The 
distance constraints from alignments are also used for assisting with selection of models and optimization 
in SAM-T08-server and SAM-T08-human TS predictions. 
 
1. Paluszewski, M. and Karplus, K. (2008). Model quality assessment using distance constraints from 

alignments. Proteins: Structure, Function and Bioinformatics, (to appear). 
2. Karplus, K., Karchin, R., Draper, J., Casper, J., Mandel-Gutfreund, Y., Diekhans, M. and Hughey, R. 

(2003). Combining local-structure, fold-recognition, and new-fold methods for protein structure 
prediction. Proteins: Structure, Function, and Genetics, 53(S6):491--496. 

3. Cozzetto, D., Kryshtafovych, A., Ceriani, M. and Tramontano, A. (2007). Assessment of predictions in 
the model quality assessment category. Proteins: Structure, Function, and Bioinformatics. 69(S8):175--
183, 6. 

4. Wallner, B. and Elofsson, A. (2007). Prediction of global and local model quality in CASP7 using 
Pcons and ProQ. Proteins: Structure, Function, and Bioinformatics, 69(S8):184―193. 

5. Archie, J. and Karplus, K. (2008). Applying Undertaker cost functions to model quality assessment. 
Proteins: Structure, Function, and Bioinformatics, (to appear). 
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For structure prediction, Undertaker1 uses SAM-generated fragments and alignments to generate protein 
conformations.  Conformations most likely to be similar to the real structure are chosen using a combined 
cost function—a weighted sum of individual cost functions.  Each individual cost function measures a 
characteristic that good predictions should have.  For example, some of the most important cost functions 
for quality assessment measure how well models satisfy distance constraints predicted from alignments2 
and how well models incorporate local structure features, including residue burial3 and alpha torsion 
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angles,4 predicted by neural networks.5  To address the model quality assessment problem in CASP8, we 
needed to assign weights to each cost function appropriate for quality assessment.  Our approach was to 
define a measure to judge quality assessment methods, to optimize weights on the Undertaker cost 
functions to maximize this measure, and to convert Undertaker's combined cost function values to a 
prediction of GDT_TS in the range [0, 1].  Our measure to judge quality assessment methods and our 
optimization strategy is summarized here, but is described in detail elsewhere.6 
 
The SAM-T08-MQAO group (described in another abstract) used only contact and noncontact predictions 
from alignments.  In addition to the alignment-based constraints, SAM-T08-MQAU included the rest of 
Undertaker’s cost functions and did not include any consensus-based methods.  The SAM-T08-MQAC 
included all Undertaker cost functions as well as some additional consensus terms such as the median TM-
score.7 Median TM-score was calculated by computing the TM-score between a given model and the first 
model submitted by each server group.  The median score is a powerful consensus term.8  Other consensus 
terms, calculated in a similar fashion, were median RMSD, median GDT_TS, and median MaxSub.   
 
For a given CASP target, each model has a predicted quality score and an actual GDT_TS score.  Two 
obvious approaches to judge the effectiveness of a quality assessment method are to measure the GDT_TS 
of the predicted-best model and to measure the correlation between predicted quality and GDT_TS.  We 
adopt an approach that is a hybrid of both of these methods by using a weighted version of Kendall's tau, 
placing more weight on observations with a better predicted quality.  The behavior of the weighted version 
of Kendall's tau can  be altered with a parameter.  If the parameter is zero, the measure is equivalent to 
Kendall's tau; as the parameter approaches infinity, the measure becomes linearly related to the proportion 
of models with lower quality than the predicted-best model.  We subjectively chose a weighting parameter 
of 3, which places about half of the weight on the predicted-best quarter of models.  Our weighted tau is a 
special case of a weighting described elsewhere9 that can still be computed in O(n log n).10 
 
For optimization, we chose to maximize an objective function of the average weighted tau for CASP7 
targets with solved structures in the PDB.   Both human and server models were included in our training 
set.  We used a greedy algorithm devised to select only those cost functions useful for quality assessment.  
This algorithm started with an empty pool of useful cost functions, and only cost functions in the pool were 
used to compute predicted model quality.  During each iteration, a cost function was chosen which, when 
added to the pool, increased the value of the objective function by the largest amount.  The algorithm 
stopped when adding another cost function to the pool would fail to increase average correlation by a 
meaningful amount.  For each method, we trained two sets of weights—one for easy targets and one for 
hard targets—based on the theory that different cost functions might be useful for each category.  The 
difficulty of a target was judged by the e-value of the best SAM alignment. 
 
Finally, on CASP7 data, Undertaker's combined cost function appears to have an approximately linear 
relationship with GDT_TS.  However, to convert the combined cost function to the range [0, 1] we used a 
standard sigmoidal function with constants set by fitting CASP7 data. 
 
Our results using five-fold cross validation on CASP7 data indicate that our method does quite well in 
comparison to other methods used in CASP7.6  We look forward to the CASP8 results to see how our 
method performs on a new data set alongside state-of-the-art methods. 
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Initial models 
We select initial starting models from the CASP8 server model set. First we filter out half of the server 
models by sequentially applying our knowledge based residue specific all atom probability discriminatory 
function (RAPDF),1 a van der Waals energy term, the hydrophobic compactness factor,2 and an 
electrostatics term, all available within the RAMP suite.3 With the remaining structures (usually ~120), we 
apply an iterative density calculation which cycles between a cluster density calculation and removal of 
outliers.4 Centroids for the five largest clusters are then selected for further analysis. 
 
RAPDF and consensus based constraint selection 
Restrained torsion angle dynamics has been used in many studies to produce highly accurate models from 
experimentally derived interatomic distance constraints. To exploit this method in structure prediction, a 
sufficiently accurate and abundant set of constraints is required. We report a method that obtains a distance 
constraint set sufficient to increase the accuracy of protein structure prediction. Specifically, we use 
consensus interatomic distances amongst multiple initial predictions, RAPDF to weight the distances, and a 
compilation method that further improves the set. In regard to RAPDF, we offer a novel and perhaps even 
more appropriate use for this tool: to select and weight interatomic distances for use as constraints in model 
refinement. Here our philosophy is that the probabilities derived from a Bayesian analysis of distances 
observed in a structurally non-redundant database of experimentally derived protein conformations versus 
random, are likely to be useful to build models similar to the native state and that observed by experiment. 
 
We select interatomic distances for which at least four of the five models show consensus in 0.5 Ångstrom 
distance bins. We score these consensus distances with RAPDF. Next we apply a batch-by-batch method 
starting with the highest RAPDF scored consensus distances, to select a single distance for each residue 
pair. We weight each distance by the RAPDF score and whether they were observed in four or all of the 
five input models, and finally create three constraint sets using different distance cutoffs (12 Å, 16 Å, 20 
Å). 
 
Model building and final selection 
The three constraint sets are each used in fifty rounds of CYANA6 restrained torsion angle dynamics 
simulations, where a Ramachandran plot is used to approximate probabilities for torsion angles. Each round 
produces twenty all atom models; in sum three thousand conformations are made, for which we apply the 
same selection protocol as reported above in “Initial models.” In this case, the discriminatory function filter 
retains one thousand models, which are minimized by ENCAD7 and side chains are optimized by 
SCWRL3.0.8 Finally the iterative density method selects five models for submission to CASP. 
 
Preliminary analysis 
Tertiary structure category: The similarity of our final predictive models to conformations produced 
using experimental data depends strongly upon that of the five input structures. We find that our models are 
always better than four of the five starting models, observe a mean 0.12 Å CαRMSD improvement, and 
observe at least eleven cases where the refinements produced better models than any server. The most 
exciting outcome from this experiment is that the success of this refinement protocol does not depend upon 
the method used to produce the initial models – it does not matter what method(s) make the input set, our 
method makes them better. Further, while the final result depends entirely upon the quality of the input 
models, improvement is seen for initial models of high and low quality. Thus this method is useful for all 
CASP8 methods for real modeling work. 
 
Refinement category: Based on the strengths of NMR to produce the core accurately, and Xray diffraction 
to produce all atom orientations accurately, we used different structural similarity measures in the iterative 
density cluster calculations to select our final models: for NMR targets we used TMscore,9 and for Xray 
targets we used CαRMSD. For the nine refinement targets which we submitted properly (see “Erratum” 
below), we observed a dichotomy of measured similarity by TMscore or RMSD, correlating with the 



experimental method used to produce the models. Simply, for NMR refinement targets we produced 
improvement by TMscore but not CαRMSD, and for Xray diffraction targets we produced a mean 0.09 Å 
CαRMSD improvement but less significant improvements by TMscore.  For NMR refinement target 
TR464 we were excited to see 0.075 TMscore improvement, while this same model is measured by 
CαRMSD as 4.78 Å further from the experimental conformation than the refinement template. This 
underscores the importance of similarity measurement in initial and final model selection, which has been 
discussed by Zhang and Skolnick.9 
 
The refinement templates were of a very high quality, which appropriately places a considerable challenge 
to refinement methods. In accordance with this challenge, we produced 0.36 Å CαRMSD refinement from 
one of the most accurate templates, TR488, which was already 1.43 Å CαRMSD from the experimental 
model (see figure). 
 
Automated but not a “server” submission 
The torsion angle dynamics simulations (CYANA) are our bottleneck; while we automated the entire 
process, the time required to sufficiently sample the conformational space prevented us from submitting 
this as an automated server. Nonetheless, we are in the process of building a server for public use. 
 
Erratum 
Around halfway through the experiment we noticed that our filtering method was working in reverse: the 
best models were being filtered out. Thereafter, depending upon the mean RAPDF score (normalized by 
length), we either applied the filtering and iterative density method, the iterative density method without 
filtering, or simply used the five I-TASSER10 models. Additionally, errors occurred in submitting four of 
the twelve refinement targets, such that: only one model was submitted for TR453; five errant models were 
submitted for TR429; and no models were submitted for TR389 or TR454. 

 
 
Refinement target TR488. Our submitted model (purple) represents a refinement of 0.36 Å CαRMSD 
from the experimental structure (white), with respect to the 1.43 Å CαRMSD template (cyan) 
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For a given protein, the residues and their degree of functional importance can be thought of as a signature 
representing the function. We have recently developed a combination of knowledge and biophysics-based 
functions to elucidate the relationships between the structural and the functional importance of individual 
residues and positions1.  The calculation of such a meta-functional signature (MFS), which is a collection 
of continuous values representing the functional significance of each residue in a protein, was applied here 
to the blind prediction of functional sites in the CASP8 experiment. 
 
Meta-functional signature calculation 
The protein meta-functional signatures using both sequence and structural information (MFScomplete) were 
calculated with predicted structures using sequence & evolutionary conservation, structural stability, and 
amino acid type scores.  Briefly, sequence conservation score was calculated from positional relative 
entropy using amino acid frequencies estimated by a hidden Markov model; evolutionary conservation 
score was calculated by a state to step ratio of residue type changes in a phylogenetic tree built for each 
position; structural stability score was calculated with a residue-specific all atom probability 
discriminatory function (RAPDF) score as each amino acid was mutated to one of 19 naturally occurring 
alternatives; and amino acid type score was derived from the prior probability of an amino acid being 
identified as functionally important in two databases of catalytic and ligand binding residues. 
 
Additionally, sequence-only meta-functional signatures (MFSsequence) were calculated from the sequence & 
evolutionary conservation and amino acid type scores to evaluate the ability of the novel method to identify 
functional sites in the absence of experimental and predicted structures.  The MFScomplete and MFSsequence 
scores were calculated for proteins with known ligands noncovalently bound as indicated in the CASP8 
experiment (targets T0391, T0395, T0396, T0430, and T0431), as well as all other ligand bound targets in 
the experiment.  To further utilize our predicted structures in the identification of functional sites, we 
performed a simple spatial clustering of high MFScomplete scoring residues. 
 
Inclusion of homologous structures 
The spatial clustering of high MFScomplete scores occasionally indicated more than one functionally 
important site.  While this may be relevant in a biological context, multiple functional sites are less 
frequently represented in individual protein structures solved by diffraction or NMR.  Therefore, in cases 
where ligand-bound homologous experimental structures were available and the CASP8 target ligand was 
identified (with the exception of T0430), this information was used to aid in functional site residue 
prediction (MFScomplete + Homology).  To incorporate homology information in functional site prediction, a 
PSI-BLAST search2,3 was conducted using the target sequence to identify experimental protein structures 
with bound ligands.  The identified structures were aligned to predicted models with the matchmaker 
function of UCSF Chimera4, and the models were refined by energy minimization with the ligand using 
GROMACS molecular mechanics software5 and PRODRG ligand parameters6. 
 
Preliminary analysis 
Preliminary analysis has been conducted for proteins with known ligands as indicated in CASP8, and 
additionally all other ligand-bound CASP8 targets, for which the experimental structure has been released.  
This is summarized in the table below, with the exclusion of T0395 and T0396 from the known ligand 
bound set as the experimental structures were not available for analysis. 
 

Method Targets Sensitivity Precision 
all ligand bound 0.34 0.35 

MFScomplete metal ion 0.78 0.47 

all ligand bound 0.35 0.40 
MFSsequence 

metal ion 0.84 0.43 

MFScomplete + Homology known ligand bound 0.59 0.93 
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The sensitivity is higher for the CASP8 targets with known ligands (MFScomplete + Homology) compared to 
the remaining blind functional site predictions since the ligand geometry assists in identifying contacting 
residues, whereas MFScomplete and MFSsequence identify the most functionally important residues regardless of 
the specific contacts between a given ligand and protein.  The exception is targets with metal ions bound, 
for which the sensitivity is greatly increased.  Fewer residues bind to metal ions, thereby reducing the 
number of potential false negatives.  Additionally, the bonds necessary for coordinating metal ions in 
functional sites generally arise from the same types of residues involved in catalytic functionality (sought 
by MFS), such as histidine, cysteine, aspartic and glutamic acid.  The only binding residues not identified 
by MFS for the metal ion targets are those with atoms barely within the 5Å distance range ‘binding’ 
definition but not involved in covalent bonding. 
 
Using homology information in binding site prediction gives over two-fold improvement to precision since 
the number of false positives is reduced as the functional site residues predicted by MFScomplete or 
MFSsequence alone are limited to the known binding site of the homologous structures rather than including 
clusters in alternative regions of the protein. 
 
Summary and Conclusions 
The use of predicted structures to assist automated functional site identification has thus far been an 
unachieved goal in computational biology.  We previously showed that experimental diffraction structures 
can be exploited in functional site prediction by modeling energetic frustration with substrate absent1,7.  
Here we find that structural minimization procedures remove this signal, such that the performance of 
MFSsequence is generally better than MFScomplete.  The precision for selection of metal ion binding residues by 
MFScomplete was slightly improved over MFSsequence, presumably due to the tight spatial clustering of these 
sites.  This explanation is supported by a correlation between the precision of functional site prediction for 
ligand bound proteins and the quality of the predicted structures. 
 
The use of structural information present in our predicted models by homologous protein-ligand alignment 
clearly enhances sensitivity and precision for the targets addressed.  We further note that the identity of the 
bound ligand can make up for global differences in sequence, as the local similarity in geometric and 
chemical complementarity of proteins is the essence of ligand binding. 
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Our team focuses on de novo protein structure prediction. The strategy is based on the Langevin dynamics 
simulation of a coarse-grained protein chain, in which each amino-acid residue is expressed as one particle 
[1, 2]. First, we consulted the 3D-jury [3] and other servers to select the FM targets from all released 
targets. We prepared the fragment candidates for each 9-residue window of each presumed FM target. 
From these fragment candidates and also from other known protein structures, short and long range 
interactions among amino-acid residues were constructed to simulate the folding process to model 
structures: For short-range interactions, we constructed the two-body and multi-body potentials to 
reproduce the structural tendency of 9-residue fragment candidates. These potentials represent the 
propensity of secondary structures and other local structures. For long range interactions, we constructed 
the neighboring-number potential and the beta-sheet potential. The neighboring-number potential expresses 
the hydrophobic interaction and the exclusive repulsion. This potential was constructed from the known 
protein structures from which the fragment candidates were abstracted. The parallel and anti-parallel 
associations of a pair of beta-strands were represented by the beta-sheet potential. The strength of the 
pseudo-hydrogen bonds between residues in beta-sheets were weighted by using the prediction results of 
the BETApro [4]. 
 
Using this coarse-grained model, the Langevin molecular dynamics simulations were carried out for the 
selected targets starting from a stretched linear configuration with the simulated annealing method. For 
smaller targets, a few hundred folding simulations were carried out for each target to find low energy 
structures. For larger ones, we carried out the folding simulations as much as possible. 
 
From these structures obtained from folding simulations we selected the model structures by using the 
energy criterion and a newly developed scoring function [1]. 
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The structures of the target proteins were predicted using our hierarchical approach1 in which a polypeptide 
chain is initially treated at a united-residue level using our UNRES force field and the coarse-grained 
structures thus found are subsequently converted to all-atom structures.2,3  
 
In the UNRES model, the atoms of the peptide group and side chain of each amino-acid residue are 
replaced with two centers of interactions: the united peptide group (p) located in the middle between two 
consecutive α-carbon atoms and the united side chain (SC). The lengths of the virtual Cα…Cα and Cα…SC 
bonds are held fixed, but the virtual-bond angles, the virtual-bond dihedral angles, and the orientations of 
the Cα…SC virtual bonds are variable.  The interactions of this simplified model are described by the 
UNRES potential derived from the generalized cumulant expansion of a restricted free energy (RFE) 
function of polypeptide chains.1 The cumulant expansion enabled us to determine the functional forms of 
the multibody terms in UNRES. The energy function was optimized by applying our novel hierarchical 
optimization method targeted at decreasing the energy while increasing the native-likeness of structures of 
the training proteins.2  
 
To search the conformational space in the UNRES model, we used molecular dynamics which was recently 
introduced to UNRES3, enhanced with multiplexed replica exchange (abbreviated MREMD).4 MREMD 
searches were carried out at the range of temperatures from T=250 K to T=500 K. To speed up the search 
for larger proteins, information from secondary structure prediction by PSIPRED5 was used in the 
generation of the initial structures. Availability of parallel resources enabled us to treat proteins with size 
up to 300 amino-acid residues. To extract the candidate conformations from the results of MREMD 
simulations, we used a procedure developed in our recent work.2 First, by using the Weighted-Histogram 
Analysis Method (WHAM), we determined the heat-capacity curves and the folding-transition temperature. 
Then we chose the analysis temperature as a temperature by 10-20 K lower than the folding temperaure. 
Using the WHAM results, we calculated the probabilities of all conformations at the analysis temperature, 
clustered the conformations, and calculated the probabilities of the clusters. The conformations closest to 
the average structures corresponding to the found clusters were considered as candidate models. The 
clusters were ranked according to decreasing probability. 
 
1. Scheraga H.A., Liwo, A., Ołdziej, S., Czaplewski, C., Pillardy, J., Ripoll, D.R., Vila, J.A., 

Kaźmierkiewicz, R., Saunders, J.A.,  Arnautova, Y.A., Jagielska, A., Chinchio, M. & Nanias, M. 
(2004) The protein folding problem: global optimization of force fields. Frontiers in Bioscience 9, 
3296-3323. 

2. Liwo, A., Khalili, M., Czaplewski, C., Kalinowski, S., Ołdziej, S., Wachucik, K. & Scheraga, H.A. 
(2007) Modification and optimization of the united-residue (UNRES) potential energy function for 
canonical simulations. I. Temperature dependence of the effective energy function and tests of the 
optimization method with single training proteins. J. Phys. Chem. B, 111, 260-285. 

3. Khalili M., Liwo, A. Rakowski, F., Grochowski, P. & Scheraga, H.A. (2005) Molecular dynamics with 
the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical 
stability in the microcanonical mode. J. Phys. Chem. B, 109, 13785-13797. 

4. Nanias M., Czaplewski, C. & Scheraga, H.A. (2006) Replica exchange and multicanonical algorithms 
with the coarse-grained united-residue (UNRES) force field. J. Chem. Theory and Comput. 2, 513-528. 

5. McGuffin L.J., Bryson, K. & Jones, D.T. (2000) The PSIPRED protein structure prediction server. 
Bioinformatics 16, 404-405. 
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SELECTpro is a purely structure-based model scoring method that participated in the quality assessment 
category of CASP8. Two servers from our group participated in tertiary structure prediction in CASP8: 
FOLDpro1 is a template-based method using a machine learning approach to rank templates and builds 
models from the top ranked templates.  3Dpro uses the ranked list of templates from FOLDpro to generate 
a large set of models that are scored and ranked by SELECTpro. The human predictor ABIpro uses the top 
ranked server model from SELECTpro as input and rebuilds the low confidence portions of the model 
using the SELECTpro energy function and fragment assembly2 with simulated annealing. 
 
SELECTpro 
SELECTpro scores each model independently using both reduced representation and all-atom energy 
terms. SELECTpro takes a model backbone as input and by optimizing the side-chain positions using the 
all-atom energy terms. The reduced representation potential includes terms for predicted secondary 
structure (SSpro), predicted solvent accessibility (ACCpro), predicted contact map (CMAPpro), local 
structure independent residue pairing statistical and a novel β-strand pairing treatment. The reduced 
representation potential also includes statistical terms for local structure independent residue pairing3, and 
local structure dependent residue pairing4. The all-atom energy function includes terms for hydrogen 
bonding, electrostatics, solvation effects, and van der Waals interactions. For each target all models are 
scored and then ranked by the SELECTpro score. 
 
FOLDpro 
FOLDpro makes prediction in four steps. First, it extracts pairwise similarity features for a query and all 
templates in the library using alignment tools and structural feature predictors. It also uses PSI-BLAST5 to 
search the query against the template database. Second, a support vector machine (SVM) integrates 
pairwise features to evaluate the structural relevance of the query and the templates (in the same fold or 
not). It uses relevance scores to rank the templates. SVM ranking may not always put the best templates on 
the top of the positive template list. For instance a template in the same fold as the query may be ranked 
before a template in the same family. So the positive templates are re-ranked by the e-values of PSI-
BLAST search if available. Third, FOLDpro generates an alignment between the query and each of the top 
5 templates respectively. For templates that can be found by PSI-BLAST, PSIBLAST alignments are used. 
For harder templates, FOLDpro uses a global profile-profile alignment method COACH6 to generate the 
alignments between the query and the templates. Fourth, FOLDpro uses Modeller7 to build 3D structure for 
the query, based on its alignments with the templates. Multiple significant templates are combined to 
generate structures. 
 
1. Cheng,J. & Baldi,P. (2006) A Machine Learning Information Retrieval Approach to Protein Fold 

Recognition. Bioinformatics. 22, 1456-1463. 
2. Simons,K.T., Kooperberg,C., Huang,E. & Baker,D. ( 1997) Assembly of protein tertiary structures 

from fragments with similar local sequences using simulated annealing and Bayesian scoring 
functions. J. Mol. Biol., 268, 209-225. 

3. Simons,K.T., Ruczinski,I., Kooperberg,C., Fox,B.A., Bystroff,C. & Baker,D. ( 1999) Improved 
recognition of native-like protein structures using a combination of sequence-dependent and sequence-
independent features of proteins. Proteins, 34, 82-95. 

4. Zhang,Y., Kolinski,A. & Skolnick,J. (2003) TOUCHSTONE II: A New Approach to Ab Initio Protein 
Structure Prediction. Biophysical Journal, 85, 1145-1164. 

5. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

6. Edgar,R.C., & Sjölander,K. (2004) COACH: profile-profile alignment of protein families using hidden 
Markov Models. Bioinformatics, 20, 1309-1318. 
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HOMOLOGY MODELING 
The principal focus of the group is energy-based refinement employing a genetic algorithm driven by 
several statistical potentials1.  Our original plan was to build several homology models with MODELLER 
and PSIBLAST derived multiple sequence alignments, then use these models as templates for complete 
rebuilding with small fragments of protein structure selected on the basis of local side-chain and backbone 
energies2.  However, this approach proved to be too slow to keep pace with the rate of target release, so 
instead the tarball of server models provided by the CASP website was downloaded, and all models with 
CG atoms (approximately 180-240) served as the input structures for refinement. 
 
Almost all targets of length less than 200 amino acids were attempted, regardless of classification as 
“human/server” or “server only”.  A single refinement protocol was applied.  Briefly, the genetic algorithm 
program loads the model structures, adds heavy atom side-chains, does a grid search of major rotamers at 
each position, and a list of energy terms are scored.  The N best structures (ranked by a simple sum of z-
scores for a specified list of parameters) are selected as the initial population.  Two parents are selected at 
random, a child is formed by a single random cross-over, a rotamer grid search is carried out along with an 
energy minimization protocol involving changes in phi/psi/omega of turn residues.  The child structure is 
saved if it satisfies a specified improvement in the selected energy parameters.  After the population of 
structures has increased by N children, the 2N  1N selection restores the base population to N.  A list of 
tactics are employed to prevent premature convergence. 
 
To reduce the rate of random loss of diversity, the genetic algorithm is run as a series of epochs, consisting 
of 3 to 5 generations, with the best structures after the final generation saved to file.  Multiple cycles 
through the same epoch accumulates an ensemble of structures with different, more-or-less random subsets 
of backbone structure retained.  Epoch1 consisted of 3 generations with N = 100, initialized by 100 
randomly selected structures from the tarball, with selection for atomic solvation and local atomic 
interactions; 40 structures are saved after these 3 generations.  Epoch2 consisted of 4 generations, N = 200, 
initialized with randomly selected structures from epoch1; parameter selection was similar to epoch1 plus 
total atom-pair energy.  Epoch3 consisted of 5 generations with N = 200, with only total atom-pair, 
hydrogen-bond, solvation, and compactness selected.  The submitted model had the best sum of z-scores 
for these parameters. 
 
NEW FOLD PREDICTION 
The PSIPRED server is used to predict secondary structure, and the conserved hydrophobic residues in the 
PSI-BLAST multiple sequence alignment are assigned “core” positions, whereas residues that are charged 
or highly polar in more than 40 percent of homologues are assigned “surface” positions. 
 
The sequence is divided into large overlapping fragments (30-60 residues in length) that start and end at the 
ends of predicted helices/strands.  Approximately 2000 structures for each of these super-secondary 
structural fragments are constructed from pieces of backbone structure 3 to 8 residues in length taken from 
a collection of x-ray structures based on local statistical potentials2 without regard to the template’s amino 
acid sequence.  These constructed fragments are recombined in all possible orders to generate full length 
decoys low in energy (side-chain interactions plus solvation) and with favorable structural heuristics 
(compact hydrophobic core, turn relationships, etc.), which are then clustered and submitted to refinement 
by genetic algorithm.  For some targets the super-secondary structural fragments were submitted to epoch1 
of GA prior to assembly into full length decoys.  Major mistakes were made in the treatment of beta strand 
interactions. 
 
1. Fang, Q & Shortle, D (2006)  Protein refolding in silico with atom-based statistical potentials and 

conformational search using a simple genetic algorithm  J. Mol. Biol. 359:1456-1467.  
2. Fang, Q & Shortle, D. (2005) A consistent set of statistical potentials for quantifying local side- chain 

and backbone interactions.  Proteins 60: 90-96. 
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In the post-genome era, the rapid accumulation of protein sequences with unknown structure and function 
has motivated the development of computational tools for protein structure and function prediction at the 
proteome scale. Here, we present SiteHunter, an automated webserver for the prediction of protein-ligand 
and protein-DNA interactions through protein threading. SiteHunter comprises two method components: 
FINDSITE1 that detects binding pockets for small molecules, and DBD-Hunter2 that identifies DNA-
binding sites.  
 
Protein threading is capable of detecting remote, yet evolutionary related homologues. The conservation of 
functional sites among homologous proteins allowed us to develop FINDSITE, a highly accurate method 
for ligand-binding site prediction and functional annotation. FINDSITE employs template identification, 
structure superimposition and binding site clustering as follows: First, for a given target sequence, structure 
templates are selected by three threading procedures: PROSPECTOR_33, Sparks24 and SP35. Subsequently, 
template structures bound to ligands are identified and superimposed onto the target protein structure using 
the structural alignment algorithm TM-align6. In CASP8, we used TASSER7 models as the reference 
structures. After the superimposition, putative binding sites are inferred through the clustering of the 
template ligands, and the predicted sites are ranked according to the number of templates that share a 
common binding pocket. Considering a cutoff distance of 4Å as the hit criterion, benchmarks carried out 
for weakly homologous TASSER models demonstrated a success rate of 67.3% for identifying the best of 
top five predicted ligand-binding sites with a ranking accuracy of 75.5%. The median sensitivity and 
Matthew’s correlation coefficient (MCC) between predicted and observed binding residues are 0.64 and 
0.59, respectively. FINDSITE tolerates structural inaccuracies in protein models up to a RMSD of 8-10Å 
from the native structure. Furthermore, by exploiting the chemical properties of template-bound ligands 
that occupy predicted binding pockets, FINDSITE constructs ligand templates for use in ligand-based 
virtual screening. Each of the CASP8 targets was screened against the KEGG compound library and the 
top-ranked molecules were included as a part of the function prediction.  
 
The second component of SiteHunter carries out the DNA-binding function prediction. This component 
utilizes a knowledge-based method, DBD-Hunter, which requires either the structure or sequence as the 
input for a given target. In CASP8, we applied the prediction procedure that requires only the sequence 
input. The method combines structural template threading and a statistical pair potential derived from 
known DNA-protein complexes. First, the target sequence is threaded against a template library composed 
of DNA-protein complex structures with the threading program PROSPECTOR_3. For template hits with a 
Z-score better than a threshold value, the statistical potential energy between the target protein and the 
template DNA is calculated by evaluating DNA-protein contacts. The templates are then ranked according 
to their interfacial energies. If the lowest interfacial energy is below an energy threshold, the target is 
predicted to be a DNA-binding protein. For predicted DNA-binding proteins, we further infer DNA-
binding protein residues from their templates. In benchmark tests on 179 known DNA-binding proteins and 
4000 non-DNA-binding proteins, this method archives a sensitivity of 62% at a precision of 80% in the 
function prediction; and the mean sensitivity and MCC for binding residues prediction are 0.67 and 0.59, 
respectively.  
 
1. Brylinski,M. & Skolnick, J. (2008). A threading-based method (FINDSITE) for ligand-binding site 

prediction and functional annotation. Proc Natl Acad Sci U S A 105, 129-34. 
2. Gao,M. & Skolnick,J. (2008). DBD-Hunter: a knowledge-based method for the prediction of DNA-

protein interactions. Nucleic Acids Res 36, 3978-92.  
3. Skolnick,J., Kihara,D. & Zhang,Y. (2004). Development and large scale benchmark testing of the 

PROSPECTOR_3 threading algorithm. Proteins 56, 502-18. 
4. Zhou,H. & Zhou,Y. (2004). Single-body knowledge-based energy score combined with sequence-

profile and secondary structure information for fold recognition. Proteins 55, 1005-13. 
5. Zhou,H. & Zhou,Y. (2005). Fold recognition by combining sequence profiles derived from evolution 

and from depth-dependent structural alignment of fragments. Proteins 58, 321-8. 
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The SMEG-CCP approach (Sample MEan of Graphs Consensus Contact Prediction) uses contact 
information derived from server models to predict residue-residue contacts, 3D structures and model 
quality. 
 
For each target, the server predictions marked as model 1 were converted to contact maps using the CASP 
contact definition of 8Å between C-beta atoms (C-alpha for glycins). The sample mean1 of these contact 
maps contains for each contact the frequency of occurrence in the input ensemble. The frequencies were 
ranked in descending order and the top n were submitted as predicted contacts where n is the expected 
number of contacts in the given target. To determine n, we again used a consensus approach choosing n as 
the median number of contacts predicted in the server models. 
 
In many cases, the predicted contact maps are better in terms of prediction accuracy and coverage than the 
best input model (see e.g. Figure 1). 
 
From the predicted contact maps we calculated 3D models with the DISTGEOM2 program from the 
TINKER3 package. Each contact was translated into a distance restraint with 2.6Å lower and 8Å upper 
bound between C-beta atoms. 
 
The quality of server models was predicted based on the agreement of their contact map with the sample 
mean. For each contact present in a model, the number of structures in the ensemble that share that same 
contact gives an estimation of the likelihood of this contact being native. These values summed over all 
contacts in a model give the raw quality score for the model. 
Raw scores from a training set were fitted to GDT scores to derive quality estimates in terms of GDT. 
 
The method works particularly well for medium-difficulty targets where enough consensus information is 
available but agreement between models is not too high. 
 
In a real-world setting, the input models for this method can be obtained from structure- or contact 
prediction servers.  
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We are continuing development of a suite of structure prediction programs that were applied to analyze 
CASP8 targets.  Most of these programs can be used within window based Molquest 
(http://ww.molquest.com) computer package or run on the web server at http://www.softberry.com. 
Identification of disordered regions in proteins was made by the Pdisorder program that uses a combination 
of neural network (NN), linear discrimina
w
function At the second stage, we apply a smoothing procedure that computes chances for the positions of 
query sequence to be in ordered regions.  
 
Initial step in 3D modeling is selection of a template structure for a query sequence, or selection of a set of 
short similar fragments if we study a new fold, and obtaining template-query sequence alignment. This step 
is performed by Ffold program. Ffold alignment is made taking into account sequence similarity, 
secondary structure similarity of a query and the template proteins, as well as compatibility of query with 
solvent accessibility of  template protein. Secondary structure of a query protein is pre
S
program. As a result, a set of aligned template-query sequence pairs is obtained. Each alignment generates 
a model structure, and usually a few template-query pairs are selected for further modeling.  
 
Building side chain and loop coordinates for a query protein based on the template structure and sequence 
alignment is performed by Getatoms program. To generate a set of side chain conformations for side chain 
structure prediction, the program uses backbone-independent rotamer library. Rotamers for each residue are 
ranked according to their frequency of occurrence (statistical potential) and energy of interaction with 
backbone (VDW scoring potential). Unfavorable conformations are then filtered out using several single-
residue criteria, pairwise VDW interaction energy, and Goldstein DEE algorithm [1]. For remaining 
rotamers, an optimization procedure is performed to obtain a conformation with minimal VDW energy. 
The loop modeling procedure in Getatoms program is as follows. A large set of loop main chain 
conformations satisfying geometrical loop closure criteria is generated and ran
e
side chain optimization procedure as described above. A conformation with minimal energy is selected as 
loop model. This procedure is applied consequently for all the loops modeled.  
 
Models built by Getatoms program are further refined by MDynSB program, which performs energy 
minimization using AMBER force field (2) and optimization of a protein structure via molecular dynamics 
or optimization and folding of a protein via simulated annealing protocol in an implicit water solvent. 
Recently we have developed a useful extension of this program: MDdoc that realize ab initio docking of a 
molecular ligand or peptide by exhaustive  cavity search with global opt
o
the test set of 8 ligands the method achieved 100%  accuracy, i.e. the native binding mode are found as the 
mode with highest binding energy calculated in
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The Sternberg group entered four servers for structure prediction: Phyre_de_novo, Phyre2, Phragment and 
Poing. All four servers share a common core for homology detection. A weekly-updated HMM fold library 
based on SCOP and the PDB is constructed using PSI-Blast1 and a reduced redundancy sequence database 
(UNIREF50). Incoming query sequences are similarly processed to generate an HMM which is searched 
against the fold library using HHsearch2. Where HHsearch fails to detect confident matches we perform an 
homology network data mining procedure based on SCOOP3. These processes provides a limited list of 
potential templates and associated confidence scores. When a selected template leaves >30 residues of the 
query unmodelled, such regions are extracted, placed in the Phyre pipeline and the process repeated until 
the entire length of the query is modelled. Individually modelled domains are then reconnected using a 
modified fragment assembly protocol.  
 
The Phyre2 system simply selects the top five templates by confidence score, performs loop modeling on 
missing regions using a loop library and cyclic coordinate descent (CCD)4 and adds sidechains using the 
R3 algorithm5 and the sidechain rotamer library of Dunbrack6. For the Phragment server, if the top scoring 
template is less than 95% confident and the query is <150 residues in length, an in-house fragment 
assembly de novo prediction is performed. 
 
Poing is a fast new model for template-free protein structure prediction based upon Langevin dynamics 
with novel models for physicochemical effects. Three features of protein folding are modelled in a novel 
way. 1) The repulsive steric interaction between two particles depends upon the probability that atoms in an 
all-atom model of those particles a given distance apart would clash sterically, based upon analysis of 
sidechain and backbone conformations in the PDB. 2) The polar interactions of the backbone (i.e. hydrogen 
bonds) are modelled by initially calculating the likely position of the O and H atoms involved in the 
interactions. Forces between the associated backbone particles aim to bring the notional O and H atoms 
closer together. 3) We have enhanced the standard implicit solvent model of the Langevin equation by 
ensuring that drag and kicks only act upon parts of a particle exposed to solvent. This ensures that the 
internal parts of a protein are not subject to solvent effects, a key advantage of modelling an explicit 
solvent. In addition, kicks are more frequently initiated against hydrophobic residues which in turn drives 
hydrophobic collapse. The simplicity of the model leads to very fast folding. Proteins up to 90 residues can 
fold to a stable state in 5-20 minutes. Our current predictions use 100 fold replicates and require between 8 
and 30 CPU hours. As with the Phragment server, low confidence templates (<95%) that are less than 350 
residues in length (Poing is fast enough to process longer sequences than Phragment) are sent through the 
Poing folding system.  
 
Finally, the Phyre_de_novo server is our method to combine the best aspects of the three other servers. 
First, if multiple high confidence templates are detected by HHsearch or SCOOP, models are built from 
each template and structurally clustered. The models from the largest cluster are used to define the 
templates that will be used in a multiple template modeling phase using Modeller. In the absence of high 
confidence templates, the Poing folding system is used. Finally, large insertions or long unmodelled 
regions at the N- and C-termini are modeled by Poing in the context of the predicted model which is held 
fixed.  
 
1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. (1997). 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 25, 3389-3402. 

2. Söding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-
960. 

3. Bateman A & Finn, R.D. (2007) SCOOP: a simple method for identification of novel protein 
superfamily relationships. Bioinformatics 23(7):809-814  

4. Canutescu, A.A. & Dunbrack RL. (2003) Cyclic coordinate descent: A robotics algorithm for protein 
loop closure. Protein Science, 12:963-972. 

5. Xie, W. & Sahinidis, N.V. (2006) Residue-rotamer-reduction algorithm for the protein side-chain 
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ConFunc1 is a sequence based function prediction algorithm that identifies conserved residues associated 
with individual Gene Ontology (GO) functions. Our approach during CASP8 was to test if we could use the 
function predictions made by ConFunc to further infer binding site residues. ConFunc was run as two 
servers, the first ConFunc1D used solely sequence information to infer functional residues, while 
ConFunc3D incorporated structural data into the prediction process. The ConFunc approach was also 
extensively used for the human predictions made by the Sternberg group. 
 
The prediction of binding site residues is an important task, which while related to the prediction of 
function is also distinct from it. It was therefore necessary to modify the ConFunc approach for the 
prediction binding site residues. For a query sequence ConFunc identifies homologues using PSI-BLAST2. 
Those with GO annotations are further aligned using MUSCLE3. This alignment is split into subalignments 
with each subalignment representing a different GO function. Conserved positions are identified for each 
subalignment; Position Specific Scoring Matrices are generated for them and used to calculate an e-value 
for the similarity between the query sequence and each of the subalignments. The e-values associated with 
each GO term are finally used to infer function. ConFunc uses the identification of conserved residues to 
infer function, so in CASP8 we have taken this a step further by using the function prediction to direct the 
prediction of functional residues. 
 
The standard ConFunc prediction consists of a set of GO terms, so to predict binding sites for CASP, the 
most functionally specific predicted GO function was used as a starting point. The ConFunc1D server 
predictions were simply the conserved positions in the subalignment for this function.  Residues are 
conserved for functional roles, for example catalytic residues, however residues are also conserved for 
structural reasons and may be essential for the protein to maintain its fold. So the approach of ConFunc1D 
predicting all of the conserved residues as part of a binding site, is likely to include residues that are not 
present in a binding site and are conserved for other reasons.  
 
The ConFunc3D server attempts to refine the predictions made by the 1D server by incorporating structural 
information into the prediction process. The aim of this is to distinguish between residues conserved for 
functional and structural reasons. This is done by considering the solvent accessibility of the conserved 
residues and secondly their spatial location relative to one another. ConFunc3D ran BLAST to search for 
homologues of the target in the pdb to provide a template structure. The conserved residues from the 
subalignment were mapped onto the protein structure. Any conserved residues with a solvent accessibility 
less than 5Å2 (calculated using HSSP) were removed from the prediction, with the aim of removing 
residues that are completely buried in the core of the protein and therefore unlikely to be binding a ligand. 
A simple clustering of the residues was then performed such that only conserved residues within 5Å of 
another conserved residue were retained for the prediction. This step removes conserved positions that are 
isolated on the template structure and as ligands generally bind to multiple residues. 
 
Finally we made manual predictions, which in many cases were based upon the server predictions. We 
additionally used predicted structures from our Phyre4 servers and other server structure predictions for 
mapping of the residues as opposed to the identification of a template in the pdb.  
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We implemented a homology modeling pipeline to address the following questions: For which cases does 
the use of consensus information from multiple templates improve model quality compared to single 
template modeling?  
Can the predicted models and in particular regions with weak consensus be improved by physics-based 
refinement procedures? 
 
The pipeline consisted of eight basic steps of which six are fully automatic: 
 
1. Identify potential templates using a BLAST and PSI-BLAST search against a non-redundant PDB 
subset. 

2. In cases where no obvious templates can be found, use the Global Trace Graph1 method to detect remote 
homologs. 

3. Manually select templates using template clustering, secondary structure prediction2 and consensus 
information. 

4. Align selected template structures and extract consensus contacts and dihedral angles. 

5. Align the target sequence to a profile derived from the template alignment. 

6. Build homology models based on consensus contacts and angles using the DISTGEOM3 program from 
the TINKER4 package.  

7. Refine models with simulated annealing and molecular dynamics simulations5. 

8. Manually choose one or more models out of different sets of input templates and different refinements 
schemes for submission. 

We tried different all-atom refinement schemes, including simulated annealing and molecular dynamics 
simulations with different force fields and parameters. Preliminary results suggest that while local structure 
in regions of low consensus can be improved, overall model quality in terms of GDT-TS only gains 
minimally on average. 
 
Our method for target to multiple template alignment using a new multi-body potential was not ready in 
time for CASP8. As a consequence, the alignment quality  in step 5 suffered in many cases and yielded 
suboptimal models. 
 
1. Heger,A., Mallick,S., Wilton,C., Holm,L. (2007). The global trace graph, a novel paradigm for 

searching protein sequence databases. Bioinformatics 23(18), 2361-2367. 
2. Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. 

Mol. Biol. 292, 195-202.  
3. Hodsdon,M.E., Ponder,J.W. and Cistola,D.P. (1996). The NMR solution structure of intestinal fatty 

acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J. 
Mol. Biol. 264, 585-602. 

4. Ponder,J.W. and Richards,F.M. (1987). An efficient newton-like method for molecular mechanics 
energy minimization of large molecules, J. Comput. Chem. 8, 1016-1024. 

5. Lindahl, E., Hess, B. and van der Spoel, D. (2001). GROMACS 3.0: A package for molecular 
simulation and trajectory analysis. J. Mol. Mod. 7, 306-317. 
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Pair-wise residue-residue contacts in proteins can be predicted from both threading templates and 
sequence-based machine learning. Accordingly, protein targets can be categorized into two groups. For 
proteins with reliable threading templates, the accuracy of contact prediction collected from the templates 
dominates that from sequence-based ab initio prediction. For the targets where threading could not identify 
meaningful templates, the sequence-based contact methods are anticipated to generate better contact 
prediction than the template-based ones. Apparently, different methods are needed for treating different 
protein targets. 
 
We developed two contact prediction methods: LOMETS1 and SVMSEQ2. LOMETS is a meta-threading 
server with 9 locally-installed threading programs to generate threading alignments, i.e. FUGUE3, 
HHSEARCH4, PAINT, PPA-I, PPA-II1, PROSPECT25, SAM-T026, SP3 and SPARKS27,8. Contact 
predictions in LOMETS are generated by collecting those contact residue pairs which occur more 
frequently in the top-scoring threading templates.  
 
SVMSEQ is machine-learning-based ab initio contact prediction method which trains a variety of 
sequence-derived features on contact maps2. The features used by SVMSEQ include (1) Local window 
features: position-specific scoring matrices, secondary structure predictions, solvent accessibility 
predictions and (2) In-between segment features: the contact order, the compositional percentage of three 
different secondary structure elements and two different burial states for the in-between residues, state 
distributions of the in-between residues, and the local features of five selected in-between residues. Overall, 
for short/medium/long ranges (corresponding to the sequence separation in 6-11, 12-23 and ≥24 residues, 
respectively), there are 781/787/918 input features, which are used for SVM9 to classify the contact and 
non-contact pairs.  
 
In CASP8, we combine the two methods by assigning a consensus score for each contact pair, i.e.  
                                         Score=Scoresvmseq+w*ScoreLOMETS ,                         (1)    
where Scoresvmseq is the confidence score returned by SVM training, ScoreLOMETS is the relative frequency 
of the contacts appearing in the threading templates, and w is a weighting factor. Based on the training 
results of 105 proteins, we use w=2.2 for “Easy” and “Medium” targets and w=0.6 for “Hard” targets. The 
category of Easy/Medium/Hard is decided by LOMETS1: if there is at least one template with Z-score>Z0 
in each of the threading programs, the target is Easy; if there is no good template of Z-score>Z0 in any of 
the programs, it is Hard; the others are Medium targets1, where Z0 is a program-specific Z-score cutoff for 
generating confident predictions. 
 
In general, the contact predictions with a higher consensus score will have a higher accuracy. For example, 
in our benchmark test, if a contact prediction with a confidence score >0.32, the average accuracy is >40%. 
But in CASP8, we submit all our contact predictions (up to 60 times of target length) with the contact pairs 
ranked by the confidence score in (1).  
 
1. Wu, S. & Zhang, Y. (2007). LOMETS: a local meta-threading-server for protein structure prediction. 
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3. Shi, J., Blundell, T. L. & Mizuguchi, K. (2001). FUGUE: sequence-structure homology recognition 
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sequence-profile and secondary structure information for fold recognition. Proteins 55, 1005-1013. 
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The TASSER human-expert structure prediction group implemented the previously developed TASSER 
methodology[1] along with the tertiary restraints derived from models generated by METATASSER, pro-
sp3-TASSER and other CASP8 servers. CASP8 targets are classified as Easy, Medium or Hard when the 
Z-score of the first SP3 threading template is  > 6.0, 4.5≤ Z-score ≤ 6.0, or < 4.5, respectively. For Easy 
targets, CASP8 server models were ranked using TASSER-QA [2], and the top 20 models are used to 
derive the distance and contact restraints for TASSER refinement. Then, the top five cluster centroid 
structures from SPICKER [3] are selected. For Medium/Hard targets, in addition to the previously used 
chunk-TASSER approach [4, 5], an upgraded version of TASSER with improved contact predictions 
(TASSER 2.0 [6]) was applied. We performed multiple simulations of chunk-TASSER and TASSER 2.0, 
followed by SPICKER clustering. The generated models are then ranked by TASSER-QA, and the top five 
centroid models are selected. Human intervention was mainly employed for possible multiple domain, 
Medium/Hard targets. In this case, we empirically obtained the domain boundaries for the target sequence 
and modeled the domains separately. The domains are then combined to generate full length models using 
short TASSER simulations. For all targets, the main-chain and side-chain atoms are built from the cluster 
centroid structures using PULCHRA[7]. 
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To predict structures for all 57 human-expert targets in CASP8, we present a hybrid method based on 
combination of threading and fragment-based assembly. Briefly, for a target sequence, the method first 
attempted to find a structural template for the full-length protein by threading it to 91686 known structures 
of single-chain proteins that were derived from Protein Data Bank (PDB) [1] as of May 3, 2008, and then 
evaluated the quality of its structural templates. If a structural template of high quality was obtained, the 
structural template was used directly to build the structure for the target sequence by MODELLER [2]. 

http://svmlight.joachims.org/
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Otherwise, the protein was parsed into domains by DOMAC [3] and then the structures of individual 
domains were modeled using the same procedure as for the full-length sequence. For those domains that 
could not find reliable templates, we used a fragment-based assembly strategy.  
 
Our efforts were mainly focused on developing the threading algorithm and fragment-based assembly 
algorithm.  
 
For threading, we developed a sequence-structure alignment scoring function by considering not only 
sequence profile and secondary structure information [4] but also local conformational energy of three 
amino acids [5]. The sequence-structure alignment score was normalized by percentage of matched sites 
and the reference score of self alignment. The best template was the template structure with highest Z-score 
value. 
 
For fragment-based assembly strategy, we developed a novel and effective five-bead coarse-grained 
scoring function which includes an atom-atom contact potential, a hydrogen-binding term and a triplet local 
conformational energy [5]. Moreover, we optimized several factors to improve the performance of the 
fragment-based assembly strategy [6,7]. The most remarkable ones include requiring the structural 
compatibility of adjacent structural elements and choice of different number of structural templates based 
on their statistical distributions. 
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Introduction 
ORCHESTRAR is a suite of tools following the iterative process for the homology modeling of proteins, 
with the underlying theme of a knowledge-based approach using the information in HOMSTRAD1.  
 
The major components of the package include the programs CHORAL2, CODA3, ANDANTE4 and 
HARMONY3. These packages were used in conjunction with the FUGUE homology recognition program. 
The user is provided with an ensemble of structurally conserved regions extracted from superposed parent 
structures. Structurally variable regions are then modeled by any one of three programs that access different 
loop solutions. Side-chain placement is aided by the use of parent information. Sequence-structure 
alignment evaluation and model validation is then performed. Poorly modeled regions can then be 
reassessed. 
 
Methodology 
1. Homologous Structure/Family Recognition.  
This is performed by the program FUGUE5. 
 
2. Core construction 
CHORAL makes use of differential geometry and pattern recognition algorithms to identify structurally 
conserved sections of superposed parent structures. Environment specific substitution tables (ESSTs) are 
used to classify and filter which patterns likely to represent the core of the target.  



117 

 
3. Loop building 
The two algorithms, FREAD and PETRA, are used to predict loop solutions. FREAD uses a fragment 
database constructed high resolution structures found in the HOMSTRAD database. FREAD uses ESSTs 
derived substitutions when the environment of a residue is its' backbone dihedral angles. PETRA constructs 
loop solutions from a set of eight phi-psi pairs. These phi-psi pairs were derived from the identification of 
high individual amino acid propensities (hot spots) located within six partitions of the Ramachandran plot. 
The CODA method then does a pair wise comparison of all FREAD and PETRA predictions.  
 
4. Side Chain Placement 
The program ANDANTE utilizes ESST information based on observed side chain chi angle conservation 
of a large number of families in the HOMSTRAD database. The parent-target residue substitution allows 
Andante to borrow entire high probability side-chain conformations or to restrict rotamer library solutions 
to specific chi bins.  
 
5. Model validation/Error detection in sequence-structure alignment 
HARMONY3 is used to locate errors that may have occurred in the sequence structure alignment that have 
been carried through the model building process. 
A score for each modeled residue is calculated based on five components; the amino acid propensity score 
for the observed environment, observed amino acid distribution for that residue obtained from a PSI-
BLAST search, a propensity score for a residue based on observed ESST scores. A composite substitution 
score from merged ESSTs. Finally, a term for local alignment flexibility is calculated. Low scoring regions 
are then re-examined for errors in the sequence structure alignment or modeling errors. 
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The 'YASARA Structure' server (www.yasara.org/homologymodeling) submitted predictions for those 
CASP8 targets that could be built reliably using known template structures. Since active site residues tend 
to be the most conserved ones, we speculated that the interaction with ligands is also conserved in a way 
that allows to benefit from the inclusion of template ligands in the homology modeling procedure, even 
without any knowledge about the target ligands. 
 
All template ligands were therefore fully parameterized using AutoSMILES (bond typing,  hydrogen 
addition, point charge assignment (combining a RESP library with AM1BCC), and GAFF force field 
parameters, see www.yasara.org/autosmiles), so that their presence could be considered during loop 
modeling and rotamer prediction. 
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Special emphasis was put on the hydrogen bonding network: we developed a new global optimizer, which 
first analyzes ligands to identify ambiguous functional groups. These are groups that can either be rotated 
(like Asn/Gln side-chain amides in proteins) or adopt different pH-dependent protonation states (like the 
His side-chain imidazole). Then an interaction graph is built for all the groups in the model, and the 
SCWRL algorithm1 is employed to solve the hydrogen bonding network using dead-end elimination and 
graph reduction to biconnected components (www.yasara.org/hbondnet). 
 
The final high-resolution refinement was performed by running molecular dynamics simulations with the 
YASARA force field, which is based on the self-parameterizing YAMBER force field2, but includes 
additional knowledge-based dihedral-angle potentials (www.yasara.org/kbpotentials). 
 
1.  Canutescu AA, Shelenkov AA and Dunbrack RL Jr. (2003). A graph-theory algorithm for rapid protein 
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The procedures we used for our human (as “Zhang”) and server (as “Zhang-Server”) structural predictions 
in CASP8 are the essentially same, except for that the human prediction exploited the templates and the 
residue contact information in CASP8 Server Section while Zhang-Server used our in-house programs. 
Both predictions are fully automatic. One of the main purposes is to develop and benchmark the algorithms 
for large-scale and automatic structure predictions. 
 
The pipeline of I-TASSER predictions includes four general steps: template identification, structure 
reassembly, atomic model construction, and final model selection.  
 
Template identification.  The target sequences are threaded through a non-redundant PDB structure 
library for identifying appropriate global-structure templates (for TMB targets) or local fragments (for FM 
targets). Threading is done by MUSTER1, which uses an extended sequence profile-profile alignment 
algorithm with the alignment score assisted by secondary structure match, structural fragment profile, 
solvent accessibility, backbone torsion angle, and hydrophobic scoring matrix. For hard targets, additional 
templates identified by LOMETS2, a local meta-threading server including FUGUE3, HHSEARCH4, 
PROSPECT5, PPA6 and SP37, are used. In human prediction, we include additionally the models generated 
by other groups in the Server Section into the template pool. Having more threading templates from the 
Server Section is the only source of differences of Zhang and Zhang-Server predictions. 
 
Structure assembly.  Continuous fragments excised from the threading templates are exploited to 
assemble full-length models6; 8 with unaligned loop regions built by ab initio modeling9. The I-TASSER 
potential includes four components: (1) general knowledge-based statistics terms from the PDB (C-
alpha/side-chain correlations9, H-bond10 and hydrophobicity11); (2) spatial restraints from threading 
templates2; (3) sequence-based C-alpha contact predictions by SVMSEQ12; (4) distance and contact map 
from segmental threading13. The last two energy terms are relatively new to the pipe-line we used in the 
previous experiment14. The structure assembly iteration includes two steps6. The first step of simulations 
starts from the threading templates. In the second step, the simulation starts from the cluster centroids 
generated by SPICKER15 which clusters all the trajectories from the first step of simulations. Spatial 
restraints collected the PDB structures searched by TM-align16 based on the cluster centroids are also 
incorporated in the I-TASSER simulations. The purpose of the iteration is to refine the local geometry as 
well as the global topology of the SPICKER centroids. 
 
Atomic model construction.  The SPICKER cluster centroids from I-TASSER are reduced models with 
each residue represented by its C-alpha and side-chain center. The full-atomic models are built by REMO17. 
REMO is a new protocol we developed for constructing full-atomic model from C-alpha traces by 
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optimizing the hydrogen-bond network. The basic backbone fragments (C, N, O) are matched from a 
secondary structure specified backbone isomers library which consists of 68,206 non-redundant isomers 
from high-resolution PDB structures. The driving force in the REMO simulations includes H-bonding, 
clash/break-amendment, I-TASSER restraints, and CHARMM22 potential.  
 
Model selection.  The reduced models from I-TASSER simulations are ranked based on the structure 
density of SPICKER clusters15. For each of the reduced models, the atomic models from REMO 
simulations are selected based on an empirical scoring function which is equal to the number of H-bonds 
plus the TM-score18 of the model with the SPICKER cluster centroid and the average TM-score of the 
model with the initial templates (for easy targets only). The weights of the empirical score have been 
trained in benchmark tests and the highest scoring models are finally submitted. 
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The problem of determining protein structure from sequence information has been at the forefront of 
modern biophysics. The challenges associated with this system include very large dimensionality and  
many non-linear interactions. Machine learners combined with extraction of relevant physical features 
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enable the good quality prediction of various one dimensional properties such as dihedral angles, secondary 
structure, accessible surface area, contact numbers, etc. In addition they are beginning to become useful as 
contact map predictors. We present two recent improvements1,2 to the prediction of the dihedral angles and 
accessible surface area using a coordinate transformation and a new type of a machine learner that uses 
guided weights to better approximate interactions between the amino-acids in sequence space. These tools 
were incorporated into our current research to find and use those influences which determine the structure 
of proteins. 
 
1. Xue, B., Dor, O., Faraggi, E. and Zhou Y. (2008). Real-value prediction of backbone torsion angles. 

Proteins 72, 427-433. 
2. Faraggi, E., Xue, B. and Zhou, Y. (2008) Improving the prediction accuracy of residue solvent 

accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer 
neural network. Proteins In press.  
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Protein structure prediction methods generate a large number of the predicted structures. Predicting how 
similar a predicted structure to the unknown experimentally determined structure is an important open 
problem. Structural biologists have developed several model quality assessment programs to determine the 
quality of the predicted models. Model quality assessment programs suffer from two limitations: (i) the 
rank-one structure is not necessarily the best predicted structure, in other words, the best predicted structure 
could be ranked as the 10th structure (ii) no single assessment method can correctly rank the predicted 
structures for all target proteins. Therefore; a model quality assessment method that is based on a consensus 
of other model quality assessment methods is likely to perform better. We have designed an energy 
function based on a hierarchy of general linear model. The hierarchical model consists of three levels. At 
the first level, the model quality assessment program DFire7 selects the top 80 predicted structures to 
eliminate low quality structures. At the second level, a linear classifier separates the top 40 structures from 
the lower 40 structures. At the third level a linear regression model ranks the top 40 predicted structures. 
My method is based on a consensus of five model quality assessment programs. Next we give the details of 
my machine learning based model quality assessment program. Figure 1 outlines the system. 
 
Data: the available data consists of the predicted 3d-models submitted to CASP6, CASP7, and CASP8. we 
used CASP6 data in training, servers' predictions in CASP7 in validation, and CASP7 humans' predictions 
and CASP8 servers’ predictions in testing. We consider all of the five 3d-models submitted by each group 
not only the rank-one 3d-models. All data are preprocessed as the following: (i) select models that are at 
least 85% complete (ii) select full atoms models (iii) run the Modeller2 program on the selections, then 
remove models whose MaxSub3 score with the original model is less than 0.85. During training, target 
proteins whose best predicted model has a MaxSub3 score less than 0.3 are excluded from the training set. 
In addition, all 3d-models which have MaxSub scores less than 0.1 are also removed from the training set. 
 
Target and Features: the learning model predicts the MaxSub rank. The MaxSub score is the three 
dimensional similarity between two protein structures. Our learning algorithm uses only five features which 
are the ranks assigned by the following five model quality assessment programs: ProQ4, Prosa-pair5, 
ModCheck6, DFire7, and the 3dSim. The 3dSim score is the average of the MaxSub scores between a 3d-
model and the other 3d-models predicted for the same target protein provided that the MaxSub similarity 
score between the two 3d-models is greater than 0.4. We use two rank-based normalization methods at the 
second and the third levels to standardize the data. In both cases, the normalization methods used are target-
wise normalization. In other words, we standardize the values of each feature with regard to the structures 
predicted to the same target protein only. 
 
First Level: the model quality assessment program DFire7 selects the top 80 structures. We assume that the 
predicted structures whose DFire’s ranks are greater than 80 are noisy structures. In addition, the goal of a 
model quality assessment program is to help the structural biologist to find a few good predicted structures, 
usually five 3d-models. Therefore, selecting 80 predicted structures are reasonable since the structural 



biologists are interested in the best 3d-model or the best five 3d-models.  
 
Second Level: the classifier learns to separate two classes: (i) the class of the top 40 ranks (1-40) and (ii) 
the class of the lower 40 ranks (41-80). We choose to make each class contains 40 structures to make sure 
that the classifier is not biased to any of the two classes. We train the linear classifier on the set D1 = 
{(x1,a1),...,(xq,aq)}. Where q = 80 x n, such that n is the number of the proteins in the training set. Input xi is 
a 5-dimensional vector representing the five features of the structure i, xi = {x1,...,x5} where xj = 1 if the jth 
feature’s rank is below 40 and is -1 o.w. and ai is the target to be learnt such that ai is 1 if the MaxSub’s  

 
Figure 1: an overall view of the hierarchical model 

 
rank is below 40 and -1 o.w. For example, the pair ([1 1 -1 1 1], 1) means that the 1st, 2nd, 4th, and 5th 
features rank the structure within the top 40 ranks, and the 3rd feature ranks the structure within the lower 
40 ranks. MaxSub ranks the predicted structure within the top 40 ranks. 
 
Third Level: the linear classifier in the previous stage selects 40 models to pass to the third and final stage. 
A regression linear model is trained to predict the MaxSub’s ranks of the 3d-models. We train the linear 
regression model on set D2 = {(x1,a1),...,(xk,ak)}. Where k = 40 x n, such that n is the number of proteins in 
the training set. Input xi is a 5-dimensional vector representing the five features of a structure i. xi = 
{x1,...,x5}, where xj is the model's rank assigned by the jth feature, and xj Є {1,2,..,39,40}. The output aj is 
the rank assigned by MaxSub, and aj Є {1,2,..,39,40}. For example, the pair ([1 5 7 3 4], 3) means that the 
five features rank the structure as the 1st, the 5th, the 7th, the 3rd, and the 4th structure, and MaxSub puts the 
structure on the 3rd rank. We have set the two thresholds to 80 and 40 to participate in CASP8 based on the 
number of the predicted structures per target protein in CASP6 and CASP7. However, these two thresholds 
should be increased when the model quality assessment program is applied to computational methods that 
produce a larger number of predicted structures and vice versa. 
 
Results: We have evaluated the hierarchical model on a set consists of the CASP7 structures predicted by 
the human predictors. Our model quality assessment program outperforms the best human predictor by 
2.9% based on the MaxSub scores of the rank-one structures. Our method outperforms the best performing 
component of its five components model quality assessment programs by 7.7%. 
 
1. Hill,T. & Lewicki,P. (2007). Statistics Methods and Applications. StatSoft, Tulsa, OK. 
2. Sali,A. & Blundell,T. (1993). Comparative protein modeling by satisfaction of spatial restraints. 

Journal of Molecular Biology, 234, 779–815. 
3. Siew,N., Elofsson,A., Rychlewski,L., & Fischer,D. (2000). Maxsub: an automated measure for the 

assessment of protein structure prediction quality. Bioinformatics, 16, 776–785. 
4. Wallner,B. & Elofsson,A. (2003). Can correct protein models be identified? Protein Science, 12, 1073–

1086. 
5. Sippl,M.J. (1995). Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol., 5, 229–235. 
6. Jones,D. (1999). Genthreader: An efficient and reliable protein fold recognition method for genomic 

sequences. Journal of Molecular Biology, 287, 797–815. 
7. Zhou,H. and Zhou,Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-

derived potentials of mean force for structure selection and stability prediction. Protein Science, 11, 
2714–2726. 
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Protein structure prediction methods generate a large number of the predicted structures. Predicting how 
similar a predicted structure to the unknown experimentally determined structure is an important open 
problem. Structural biologists have developed several model quality assessment programs to determine the 
quality of the predicted models. Model quality assessment programs suffer from two limitations: (i) the 
rank-one structure is not necessarily the best predicted structure, in other words, the best predicted structure 
could be ranked as the 10th structure (ii) no single assessment method can correctly rank the predicted 
structures for all target proteins. Therefore; a model quality assessment method that is based on a consensus 
of other model quality assessment methods is likely to perform better. We have devised the STPdata 
algorithm. We have applied it to build an on-line “custom-trained” hierarchy of general linear models to 
select and rank the best predicted structures. By “custom-trained”, we mean for each target protein the 
STPdata algorithm trains a unique model on data related to the input target protein. In CASP8, the STPdata 
algorithm has trained 128 hierarchical models for the 128 target proteins. Our method is based on a 
consensus of five model quality assessment programs. Next we give the details of our method. 
 
Data: the available data consists of the predicted 3d-models submitted to CASP6, CASP7, and CASP8. We 
used CASP6 data in training, servers' predictions in CASP7 in validation, and CASP7 humans' predictions 
and CASP8 servers’ predictions in testing. We consider all of the five 3d-models submitted by each group 
not only the rank-one 3d-models. All data are preprocessed as the following: (i) select models that are at 
least 85% complete (ii) select full atoms models (iii) run the Modeller3 program on the selections, then 
remove models whose MaxSub4 score with the original model is less than 0.85. During training, target 
proteins whose best predicted model has a MaxSub4 score less than 0.3 are excluded from the training set. 
In addition, all 3d-models which have MaxSub scores less than 0.1 are also removed from the training set. 
 
Target and Features: our learning model predicts the MaxSub rank. The MaxSub score is the three 
dimensional similarity between two protein structures. Our learning algorithm uses only five features which 
are the ranks assigned by the following five model quality assessment programs: ProQ5, Prosa-pair6, 
ModCheck7, DFire8, and the 3dSim.  The 3dSim score is the average of the MaxSub scores between a 
model and the other models predicted for the same target protein provided that the MaxSub similarity score 
between the two models is greater than 0.4. We use the 0-1 normalization method and two rank-based 
normalization methods at different stages to standardize the data. In both cases, the normalization methods 
we use are target-wise normalization. In other words, we standardize the values of each feature with regard 
to the models predicted to the same target protein only. 
 
The STP: Sample-Train-Predict1 algorithm: We apply the STP algorithm when the available data have 
two main properties. First, the available training (labeled) data is constantly growing. For example, the 
protein structure bank is increasing in size on a weekly basis. Second, the data is intrinsically clustered 
based on similarity in sequence, structure or function (each cluster has high-level semantic meaning). For 
instance, a set of predicted structures to the same target protein is viewed as a cluster in our current work. 
We describe the application of the STPdata algorithm in this abstract. The STP algorithm does its 
prediction in a batch mode i.e. it takes a cluster of data of unknown target values as its input and outputs the 
results in a batch mode as well. The STP algorithm has three stages as shown in figure 1: (i) Sample: select 
a subset of the training data based on the similarity to the unlabeled data; we use the distribution of the 
3dSim scores as the similarity measures between the input (test) cluster and the clusters stored in the 
database (ii) Train: train a hierarchy of general linear models on the sampled data (iii) Predict: use the 
trained hierarchical model to select and rank the best predicted structures. We regard the STPdata algorithm 
as a method to build a custom-trained expert designed specifically to the input target protein predictions. 

mailto:hzgirgis@buffalo.edu


 
Figure 1: The STP algorithm has three stages: Sample, Train, and Predict 

STPdata Sampling: STPdata considers the features' scores of the structures predicted to the same target 
protein as one cluster. We represent each cluster by two centers of the bimodal distribution of the 3dSim 
scores and the percentages of the predicted structures that belong to each mode. We obtain the two centers 
by applying the k-means clustering algorithm with initial centers 0.0 and 1.0 to the 3dSim scores of each 
cluster. For example, the vector [0.8 0.1 0.6 0.4] means that the k-means algorithm found two centers at 0.8 
and 0.1, and 60% of the predicted structure are clustered around the 0.8 center and the other 40% of the 
predicted structures are clustered around the 0.1 center. We represent the input cluster in a similar fashion. 
Then, we apply the k-nearest algorithm to the clusters representations to find the nearest 22 clusters to the 
input cluster. We have decided to use 22 clusters based on the experimental results on the training and the 
validation sets. 
 
STPdata Training: in this stage the algorithm trains a custom-made hierarchy of general linear models 
(GLM)2 specifically to the input cluster. The hierarchy of general linear model consists of three levels. At 
the first level, DFire selects the top 80 predicted structures to eliminate low quality structures. At the 
second level, a linear classifier separates the top 40 structures from the lower 40 structures. At the third 
level a linear regression model ranks the top 40 predicted structures. 
 
STPdata Prediction: once the on-line custom-trained hierarchy of GLM’s is trained on the related clusters 
to the input cluster, the STPdata algorithm outputs the predicted ranks of the top 40 structures. 
 
Results: We have evaluated our method on a set consists of the CASP7 structures predicted by the human 
predictors. Our method outperforms the best human predictor by 3% based on the MaxSub scores of the 
rank-one structures. Our method outperforms the best performing component of its five components model 
quality assessment programs by 10%. 
 
1. Girgis,H.Z. & Corso,J.J. (2008). Stp: the sample-train-predict algorithm and its application to protein 

structure meta-selection. Technical  Report 2008-16, The State University of New York at Buffalo. 
2. Hill,T. & Lewicki,P. (2007). Statistics Methods and Applications. StatSoft, Tulsa, OK. 
3. Sali,A. & Blundell,T. (1993). Comparative protein modeling by satisfaction of spatial restraints. 

Journal of Molecular Biology, 234, 779–815. 
4. Siew,N., Elofsson,A., Rychlewski,L., & Fischer,D. (2000). Maxsub: an automated measure for the 

assessment of protein structure prediction quality. Bioinformatics, 16, 776–785. 
5. Wallner,B. & Elofsson,A. (2003). Can correct protein models be identified? Protein Science, 12, 

1073–1086. 
6. Sippl,M.J. (1995). Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol., 5, 229–235. 
7. Jones,D. (1999). Genthreader: An efficient and reliable protein fold recognition method for genomic 

sequences. Journal of Molecular Biology, 287, 797–815. 
8. Zhou,H. and Zhou,Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-

derived potentials of mean force for structure selection and stability prediction. Protein Science, 11, 
2714–2726. 
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Application of Solid-State NMR Restraint Potentials in Membrane 
Protein Modeling 
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1 - Department of Computational Sciences, Korea Institute for Advanced Study, Korea 
2 - Department of Biochemistry, The Kansas State University, USA 

3 - Department of Chemistry, The University of Michigan, USA 
4 - Department of Molecular Biosciences and Center for Bioinformatics, 

The University of Kansas, USA 
 

We have developed a set of orientational restraint potentials for solid-state NMR observables including 15N 
chemical shift and 15N-1H dipolar coupling. A series of assessments show that the calculated restraint forces 
are numerically accurate. Torsion angle molecular dynamics simulations with available experimental 15N 
chemical shift and 15N-1H dipolar coupling as target values have been performed to determine orientational 
information of four membrane proteins and to model the structures in oligomer states. The results suggest 
that incorporation of the orientational restraint potentials into molecular dynamics provides an efficient 
means to the determination of the structures that optimally satisfy the experimental observables without an 
extensive geometrical search. 
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