Algorithm to define the coordinate frames of the ZLBT and C domains of ZLBT-C

Terry Oas^{*,1,2,}, Aulane Mpouli², Edward Cheng², and Bruce Donald^{*,1,2,3}

¹Department of Biochemistry, Duke University ²Department of Chemistry, Duke University ³Department of Computer Science, Duke University Contacts: oas@duke.edu, brd@cs.duke.edu

May, 2024

1. Define the residues corresponding to the cores of Helix 2 and Helix 3 in each domain as listed below:

- 2. Perform the following for each domain.
- 3. Let H_i denote helix i (i = 2, 3).
- 4. Make a list the coordinates of the N, C_{α} and C' backbone atoms of the Helices 2 & 3 ($H_2 \cup H_3$ list.)
- 5. Zero-mean the coordinates in $H_2 \cup H_3$.
- 6. We will use Singular Value Decomposition (SVD) to compute the optimal (least-squares) fit of orthonormal vectors (representing a coordinate frame) to the helical core. The SVD algorithm decomposes a list of ncoordinates as an $n \times 3$ matrix (**M**) into $\mathbf{U} \Sigma \mathbf{V}^{\mathbf{T}}$, where **U** is a $n \times \mathbf{N}$ orthogonal matrix, Σ is an $n \times 3$ diagonal matrix, and V is a 3×3 orthogonal matrix whose columns represent orthogonal axes based on the helical core coordinates. The first column of $\mathbf{V}^{\mathbf{T}}$ is the unit vector parallel to the major axis of the best-fit ellipsoid (in the least-squares sense) to the helical core. The third column is the unit vector parallel to the smallest ellipsoid minor axis.
- 7. Perform SVD on the centered $H_2 \cup H_3$ list and take the third column of $\mathbf{V}^{\mathbf{T}}$ as the 3×1 unit vector, $\overrightarrow{V_{23}}$. This vector is perpendicular to the central axes of Helices 2 & 3, points towards and bisects the two helices.
- 8. Make a list the coordinates of the N, C_{α} and C' backbone atoms of the Helix 2 (H₂ list.)
- 9. Zero-mean the coordinates in H_2 .
- 10. Perform SVD on the centered H₂ list and take the first column of $\mathbf{V}^{\mathbf{T}}$ as the unit vector, \vec{V}_2 . This vector is parallel to the central axis of Helix 2 and points towards the N-terminus.
- 11. The axes of the helical-core-based coordinate frame are defined as shown below:

AxisDefinition
$$x'$$
 $-\overrightarrow{V_2} \times \overrightarrow{V_{23}} \times \overrightarrow{V_2}$ y' $\overrightarrow{V_2} \times \overrightarrow{V_{23}}$ z' $-\overrightarrow{V_2}$